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ABSTRACT
Background: Tumor mutational burden (TMB) has emerged as an independent biomarker to predict
patient responses to treatment with immune checkpoint inhibitors (ICIs) for lung adenocarcinoma
(LUAD). MicroRNAs (miRNAs) have a crucial role in the regulation of anticancer immune responses,
but the association of miRNA expression patterns and TMB is not clear in LUAD.
Methods: Differentially expressed miRNAs in samples with high TMB and low TMB samples were
screened in the LUAD dataset in The Cancer Genome Atlas. The least absolute shrinkage and selection
operator (LASSO) method was applied to develop a miRNA-based signature classifier for predicting TMB
levels in the training set. An test set was used to validate this classifier. The correlation between the
miRNA-based classifier index and the expression of three immune checkpoints (PD-1, PD-L1, and CTLA-4)
were explored. Functional enrichment analysis was carried out of the miRNAs included in the miRNA-
based signature classifier.
Results: Twenty-five differentially expressed miRNAs were used to establish a miRNA-based signature
classifier for predicting TMB level. The accuracy of the 25-miRNA-based signature classifier was 0.850 in
the training set, 0.810 in the test set and 0.840 in the total set. This miRNA-based signature classifier
index showed a low correlation with PD-1 and PD-L1, and no correlation with CTLA-4. Enrichment
analysis for these 25 miRNA revealed they are involved in many immune-related biological processes
and cancer-related pathways.
Conclusion: MiRNA expression patterns are associated with tumor mutational burden and a miRNA-
based signature classifier may serve as a biomarker for prediction of TMB levels in LUAD.
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Introduction

Lung cancer is the most frequently diagnosed cancer and the
leading cause of cancer death.1 Non-small cell lung cancer
(NSCLC) represents 85% of all lung cancers, and about 40%-
50% of these cancers are lung adenocarcinoma (LUAD).2,3

More than 60% of lung cancer patients present with locally
advanced or metastatic disease at the time of diagnosis, and
surgical resection may not be an option at this stage.
Conventional chemotherapy and radiation therapy have
been the mainstays of treatment for patients with advanced
NSCLC for the past decades.4 Within the last decade, targeted
therapy based on corresponding driver gene alterations has
improved clinical outcomes for certain subsets of NSCLC
patients,5-10 however, the 5-year survival rate remains less
than 20%.2,3 In recent years, the introduction of immune
checkpoint inhibitors (ICIs) for the treatment of NSCLC has
revolutionized treatment algorithms for advanced NSCLC
patients and has massively improved survival rates for certain
groups of patients.11 The most widely studied checkpoints are
the programmed death protein 1 (PD-1)/programmed death
receptor ligand 1 (PD-L1) and cytotoxic T-lymphocyte anti-
gen 4 (CTLA-4), and PD-1/PD-L1 inhibitors have been
approved by the United States Food and Drug

Administration (FDA) for the treatment of advanced
NSCLC.12 PD-L1 expression can be detected by immunohis-
tochemistry and is used as a biomarker for PD-1/PD-L1
inhibitor therapy to assist in predicting treatment
response,12 however, there is a general need to better identify
responders, as only 25–30% of patients under checkpoint
treatment show long-term responses and these might not be
exclusively identified by PD-L1 expression.13-17

Though it is still debated and randomized trials are
needed, tumor mutational burden (TMB) is promising as
another effective predictive biomarker for treatment with
ICIs and independent to PD-L1 expression.18,19 TMB mea-
sures the number of somatic mutations within a tumor and
was initially assessed by whole exome sequencing (WES),20

and several targeted sequencing panels have recently been
developed to efficiently determine TMB,21-23 however, the
limited amounts of tumor DNA obtained by conventional
or fine needle biopsy can make TMB assessment challenging
or even impossible due to theses large sequencing panels are
required larger amounts of tumor DNA.24 High TMB can
lead to modifications of the proteins encoded by the
mutated genes. The modified proteins may be recognised
by the immune system as “non-self” and activate specific
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anti-tumor immune responses.25,26 The translation of the
mutated gene into a modified protein requires post-
transcriptional regulation, and microRNAs (miRNAs) are
important molecules involved in post-transcriptional
regulation.

MiRNAs are small (~21 nucleotides in length) endo-
genous noncoding RNA molecules, and aberrant expres-
sion of miRNAs is often found in cancer.27 As hallmarks
of cancer were described,28 miRNAs were included in the
regulation of various cancer hallmarks.29 Several studies
have suggested miRNAs may be promising outcome pre-
dictors for various types of cancers.30 Recently, there has
been increasing interest in the role of miRNAs in the
regulation of anticancer immune responses.31 It is eluci-
dated that miRNAs are involved in mediating and con-
trolling several immune and cancer cell interactions.32 The
baseline profile of miRNAs and their dynamic change
might be correlative with the efficacy of immunotherapy
in advanced NSCLC.33 Therefore, we hypothesized that
different TMB levels may be reflected in the expression
pattern of miRNAs, and that miRNA expression patterns
could be used as biomarker for predicting TMB levels. To
explore our hypothesis, we downloaded the datasets of
lung adenocarcinoma (LUAD) from TCGA, including
mutation annotation files and miRNA expression profiles,
and established a miRNA-based signature classifier for
predicting TMB levels.

Materials and methods

Data processing

The mutation annotation files (aligned against the genoeme
of reference GRCh38) for LUAD in TCGA (https://gdc.
cancer.gov/) were downloaded using the GDCquery_Maf
function of TCGAbiolinks package34 in R. The somatic
mutation calling workflow used is the MuTect2 pipeline.35

The read.maf function was used to read the somatic variants
of each sample. Tumor mutational burden was defined as
the number of somatic variants per megabase (MB) of
genome.18 A high TMB level was defined as ≥10 mutations
per MB, and a low TMB level was defined as <10 mutations
per MB.18,36 We used 38 MB as the estimate of the exome
size.20 The preprocessed LUAD mature miRNA expression
profiles in TCGA database, displayed as log2 converted
reads per million (log2 (RPM + 1)) were downloaded
from the UCSC Xena database (https://xena.ucsc.edu/public,
dataset ID: TCGA.LUAD.sampleMap/miRNA_HiSeq_gene).
The miRNA expression profiles contained 495 samples (450
LUAD tissue samples and 45 matched healthy lung tissue
samples) based on the IlluminaHiSeq_miRNASeq platform
(Illumina Inc., San Diego, CA, USA). A total of 444 samples
with both miRNA expression profiles and mutation annota-
tion files were included in this analysis. These samples were
randomly assigned to the training set (60%) and test set
(40%). The workflow of the present study was shown in
Figure 1.

Screening of differentially expressed miRNAs and
bidirectional hierarchical clustering

The miRNAs that were not expressed in >10% of the LUAD
samples were removed from the training set. The differentially
expressed miRNAs between high TMB samples and low TMB
samples were analyzed using the “limma” package37 in R. The
fold changes (FCs) in the expression of individual miRNAs were
calculated, and differentially expressed miRNAs with |log2FC|>
0.263 and P (adjusted by false discovery rate) value < 0.01 were
considered significant. We performed bidirectional hierarchical
clustering38 to these differentially expressed miRNAs based on
Euclidean distance and displayed the results as a heat map.

Principal component analysis (PCA) prior to and after
least absolute shrinkage and selection operator (LASSO)
method feature selection

In the training set, we extracted the expression values of
differentially expressed miRNAs for each LUAD sample. The
LASSO method with a powerful predictive value and a low
correlation between each other to prevent over-fitting39 was
applied to select optimal features for the high-dimensional
data. The LASSO logistic regression model analysis was per-
formed using the “glmnet” package40 in R. The LASSO
method was used to select the optimal biomarkers for pre-
dicting TMB level. PCA was performed prior to feature selec-
tion using the expression profiles of all differently expressed
miRNAs. PCA was subsequently performed using the expres-
sion profiles of the optimal differently expressed miRNAs.
Samples were plotted in two-dimensional plots across the
first two principal components.

The miRNA-based signature classifier for predicting TMB
level

Using the LASSO method, the miRNAs identified with non-
zero regression coefficients as optimal miRNAs were used to
establish a miRNA-based signature classifier for predicting
TMB level. A classifier index for each sample was created
using the regression coefficients from the LASSO analysis to

Figure 1. The workflow of the present study.
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weight the expression value of the selected miRNAs with the
following formula:

index = ExpmiRNA1*Coef1 + ExpmiRNA2*Coef2 + ExpmiRNA3

*Coef3+ …

The “Coef” is the regression coefficient of miRNA and is
derived from the LASSO Cox regression, and “Exp” indicates
the expression values of the miRNAs. The test set was used to
validate the robustness and transferability of the classifier. The
efficiency of the classifier was assessed by accuracy, sensitivity
(Se), specificity (Sp), positive predictive value (PPV), negative
predictive value (NPV), and area under the receiver operating
characteristic (ROC) curve. These ROC curves were drawn
and compared using the “pROC” package41 in R.

The correlation between the miRNA-based signature
classifier index and the expression of three immune
checkpoints and functional enrichment analysis

Previous study showed that TMB is independent of PD-L1
expression.42 The RNA-sequencing expression profiles (dis-
played as read counts) were downloaded from TCGA, and
the expression values were normalized using VOOM43 function
from limma package in R. We explored the correlations
between the miRNA-based signature classifier index and the
expression of three immune checkpoints (PD-1, PD-L1, and
CTLA-4). The starBase44 online tool was used to check whether
these three immune checkpoints are target genes of any of
these miRNAs. In addition, DIANA-mirPath web-server45

was used to perform KEGG pathway and gene ontology
(GO)46 enrichment analysis for these miRNAs. Using the
DIANA-mirPath web-server，the experimentally validated
miRNA-gene interactions derived from TarBase 7.047 were
utilized in the present study. KEGG pathways and GO terms
with P value < .01 were considered to be significantly enriched.

Statistical analysis

The χ2-test was used for categorical data and was applied
using IBM SPSS Statistics software version 22.0 (IBM,

Armonk, NY, USA). We analyzed the expression levels of
the miRNAs in the high TMB and low TMB group samples
using unpaired t-tests provided by limma package. We con-
sidered P value <.01 to be statistically significant.

Results

Differentially expressed miRNAs and bidirectional
hierarchical clustering

There were no significant differences in routine clinicopatholo-
gical characteristics between the training and test sets (Table 1).
The training set included 66 samples with high TMB level and
201 samples with low TMB level. According to the cutoff criteria
(P < .01 and |log2FC|> 0.263), 49 miRNAs were differentially
expressed between the high TMB level and low TMB level
samples. These included 44 upregulated miRNAs and 5 down-
regulated miRNAs in the high TMB level samples. The results of
the expression analysis are presented as a heat map (Figure 2),

Table 1. Summary of patient cohort information.

Characteristic

Training set Test set

PNumbers % Numbers %

Sex
Male 125 46.82% 82 46.33% 0.919
Female 142 53.18% 95 53.67%

Age
<65 year 122 45.69% 74 41.81% 0.426
≥65 year 136 50.94% 93 52.54%
Not available 9 3.37% 10 5.65%

T
T1-2 236 88.39% 149 84.18% 0.432
T3-4 30 11.24% 26 14.69%
Tx 1 0.37% 2 1.13%

N
N0 177 66.29% 113 63.84% 0.064
N1-3 88 32.96% 57 32.20%
Nx/Not available 2 0.75% 7 3.95%

M
M0 165 61.80% 118 66.67% 0.359
M1 14 5.24% 5 2.82%
Mx/Not available 88 32.96% 54 30.51%

Stage
I-II 211 79.03% 137 77.40% 0.182
III-IV 55 20.60% 36 20.34%
Not available 1 0.37% 4 2.26%

Figure 2. Hierarchical clustering dendrograms of the expression patterns of differently expressed microRNAs that can basically distinguish between high TMB and
low TMB in lung adenocarcinoma.
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and the results of hierarchical clustering showed that the expres-
sion patterns of these differentially expressed miRNAs could
basically distinguish TMB high and TMB low level samples.

PCA and feature selection using LASSO method

For developing a miRNA-based signature classifier for TMB
level in LUAD, LASSO logistic regression method was carried
out using the expression data of the 49 miRNAs in the training
set. We computed the group-wise classifications in 10-fold
cross-validations and type.measure = “auc” is for two-class
logistic regression which gives the AUC curve. Twenty-five
miRNAs were identified with non-zero regression coefficients
(Figure 3(a)) as optimal features. These 25 miRNAs are miR-
767-5p, miR-372-3p, miR-675-3p, miR-508-3p, miR-519a-5p,
miR-552-3p, miR-147b-3p, miR-137-3p, miR-7702, miR-2355-
5p, miR-106b-3p, miR-371a-3p, miR-29b-2-5p, miR-550a-5p,
miR-185-3p, miR-3127-5p, miR-197-3p, miR-769-5p, miR-491-
3p, miR-128-3p, miR-1226-3p, miR-2277-5p, miR-4787-3p,
miR-550a-3-5p, and miR-4797-3p. Figure 3(b) presents the
results of PCA using all 49 differently expressed miRNAs and
Figure 3(c) presents the results of PCA using these 25 miRNAs
identified by LASSO methods. As demonstrated in Figure 3(c),
samples with different TMB level are more easily distinguished
using the 25 miRNAs.

The LASSO logistic regression classifier

Using the LASSO method and 10-fold cross-validation, 25
miRNAs were identified with non-zero regression coefficients,
and the value of lambda.min = 0.008563275. The miRNA-
based classifier index was created as the following formula:

index = miR-767-5p*(−0.04755288) + miR-372-3p*
(−0.07467899) + miR-675-3p*(−0.08205335) + miR-508-
3p*0.20833744 + miR-519a-5p*(−0.05549044) + miR-552-
3p*0.49432780 + miR-147b-3p*(−0.18427801) + miR-137-3p*
(−0.06280235) + miR-7702*(−0.21732314) + miR-2355-5p*
(−0.29639798) + miR-106b-3p*0.06977407 + miR-371a-3p*
(−0.21213357) + miR-29b-2-5p*0.56165110 + miR-550a-
5p*0.35626234 + miR-185-3p*(−0.12431736) + miR-3127-5p*
(−0.05386972) + miR-197-3p*0.17756353 + miR-769-5p*

(−0.22362837) + miR-491-3p*(−0.57850865) + miR-128-
3p*0.43507960 + miR-1226-3p*(−0.21905006) + miR-2277-5p*
(−0.37892148) + miR-4787-3p*(−0.12085059) + miR-550a-3-5p*
(−0.65585909) + miR-4797-3p*(−0.45563723).

The accuracy of the 25-miRNA-based classifier was 0.850
in the training set, 0.810 in the test set, and 0.840 in the total
set. Based on accuracy, Se, Sp, PPV, NPV and AUC values
(Figure 4(a,b)), the sample recognition efficiency of the clas-
sifier was high (Table 2). In particular, this classifier has
a high specificity. ROC curve analysis revealed that the AUC
was 0.895 in the training set and 0.826 in the test set, and their
difference was not significant (Delong method48 P = .125,
Figure 4(a)).

Low correlation of the classifier index and three ICIs and
enrichment analysis

In the total set, the classifier indexes of all samples were
calculated and the correlations of this classifier index with
TMB and the expression of three immune checkpoints (PD-1,
PD-L1, and CTLA-4) were estimated. Unsurprisingly, as
a classifier for predicting TMB, this miRNA-based classifier
index showed a high correlation with TMB (Pearson
R = −0.595, P = 7.46e-44, Figure 4(c)), very low correlation
with PD-1 (Pearson R = −0.144, P = 2.48e-03, Figure 4(d))
and PD-L1 (Pearson R = 0.230, P = 1.09e-06, Figure 4(e)), and
no correlation with CTLA-4 (Pearson R = −0.034, P = .473,
Figure 4(f)). Interestingly, according to starBase, only PD-L1
was targeted by 4 miRNAs (miR-372-3p, miR-137-3p, miR-
371a-3p, and miR-128-3p), and neither PD-1 nor CTLA4 are
target genes of these 25 miRNAs. The results of enrichment
analysis for these 25 miRNA shown they involved in many
immune-related biological processes (Figure 5(a)) and cancer-
related pathways (Figure 5(b)), suggesting that these miRNAs
are involved in cancer-related immune processes.

Discussion

TMB has emerged as an independent biomarker to predict
patient responses to treatment with ICIs,18,19,49,50 and the nega-
tive predictive role of low TMB could not be overcome by the

Figure 3. LASSO model and principal component analysis. (a) 10-fold cross-validation for tuning parameter selection in the LASSO model. (b) PCA prior to and (c)
after LASSO variable reduction. LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis.
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combination immunotherapy.50 Several studies have shown to
effectively measure TMB from liquid biopsies/blood,51-54 this
might be an alternative to the biopsies since it is less invasive
and easily repeatable. However, TMB assessment by liquid
biopsy must face the problem that the circulating DNA deriv-
ing from tumor cells is often only a small fraction of the
circulating cell free DNA and it needs further investigation

Figure 4. Receiver operating characteristic curves for the 25-miRNA-based signature index and its correlation with TMB, PD-1, PD-L1 and CTLA-4. (a) Receiver
operating characteristic analyses in the training and the test set. (b) Receiver operating characteristic analyses in the total set. (c) The 25-miRNA-based signature
index is highly correlated with TMB (d) The 25-miRNA-based signature index shows low correlation with PD-1 expression. (e) The 25-miRNA-based signature index
shows low correlation with PD-L1 expression. (f) The 25-miRNA-based signature index is not correlated with CTLA4 expression.

Table 2. Performance of 25-miRNA-based classifiers of tumor mutation burden
in lung adenocarcinoma.

Cohort Se Sp PPV NPV Accuracy AUC

Training set 0.770 0.960 0.500 0.960 0.850 0.895
Test set 0.670 0.960 0.260 0.960 0.810 0.826
Total set 0.740 0.960 0.400 0.960 0.840 0.867

AUC, area under the receiver operating characteristic curve; NPV, negative
predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity.

Figure 5. Enrichment analysis of the 25 miRNAs. (a) Significantly enriched immune-related biological process GO terms and (b) Significantly enriched cancer-related
KEGG pathways.
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and may be clarified within the ongoing clinical trials.55 Given
the crucial role of miRNAs in tumor-related immune
responses,33,56,a plasma immune-related miRNA-signature
classifier was established that could supplement PD-L1 tumor
expression to identify a subgroup of patients with advanced
NSCLC.7 The association of miRNA expression patterns and
TMB was not previously described. In the present study, the
differently expressed miRNA between high TMB level and low
TMB level samples were identified, and their expression pat-
terns could basically distinguish high TMB level and low TMB
level samples. This suggests that changes in genomics may
partially lead to changes in transcriptomics. After feature selec-
tion, a miRNA-based signature classifier was established in the
training set and then validated in an independent test set. The
accuracy of the 25-miRNA-based classifier was 0.850 in the
training set, 0.810 in the test set and 0.840 in total set. ROC
curve analysis revealed that the AUC was 0.895 in the training
set and 0.826 in the test set, and this difference was not
significant (P = .125), indicating that the classifier is robust.
In particular, this classifier has strong recognition ability for
low TMB, with a high specificity and NPV. However, this
classifier has a low PPV, which means that this classifier has
a poor recognition ability for high TMB.

For treatment with ICIs, the strongest responses are seen in
patients with both high TMB and high PD-L1 expression. It is
currently unclear if TMB might be a good addition to existing
PD-L1 expression analyses or if TMB level might be able to
completely replace PD-L1 testing. It is now widely speculated
that high TMB levels lead to an increase in tumor neoantigens
may trigger the immune system to attack the tumor.25 The
present study suggested that various immune-related miRNAs
are differentially expressed between tumors with different
TMB levels. The enrichment analysis for the miRNA-
signature classifier suggested the 25 miRNAs are involved in
inmmune-related biological processes, such as the “TLR sig-
naling pathway”, leukocyte migration, Fc-gamma receptor
signaling pathway involved in phagocytosis. These 25
miRNAs are also involved in cancer-related pathways, includ-
ing “non-small cell lung cancer”. Although further experi-
mental validation is required, these results suggested that the
25-miRNA-based classifier predicts TMB levels in a biological
perspective may be feasible. A study with small sample sizes
reported that the expression of plasma exosomal miRNAs
might be correlative with the efficacy of immunotherapy in
EGFR/ALK wild type advanced NSCLC.33 In addition, this
miRNA-based signature classifier index has a very low corre-
lation with PD-1 and PD-L1, and no correlation with CTLA4.

Although the present study provides a potential surrogate
signature for TMB low LUADs, there are some limitations. First,
the threshold to distinguish TMB levels may vary for different
methods. Second, this classifier has poor recognition ability for
high TMB, it may still need to be further confirmed by other
methods when a patient is predicted by this classifier to be with
high TMB level. Third, further studies are required to validate and
even improve the 25-miRNA-based signature classifier in a larger
independent cohort of patients. In addition, the molecular
mechanisms of these 25 miRNAs in cancer-related immune
responses are not yet clear, it is not clear whether these miRNAs
are causal or merely markers for response to TMB in LUAD.

Conclusion

In conclusion, LUADs with different TMB levels have differ-
ent miRNA expression patterns.We established a miRNA-
based signature classifier that may be served as biomarker to
predict TMB levels in LUAD.
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