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Abstract

Both auditory evoked responses and metabolites measured by magnetic resonance spectroscopy 

(MRS) are altered in schizophrenia and other psychotic disorders, but the relationship between 

electrophysiological and metabolic changes are not well characterized. We examined the relation 

of MRS metabolites to cognitive and electrophysiological measures in individuals during the early 

phase of psychosis (EPP) and in healthy control subjects. The mismatch negativity (MMN) of the 

auditory event-related potential to duration deviant tones and the auditory steady response (ASSR) 

to 40 Hz stimulation were assessed. MRS was used to quantify glutamate+glutamine (Glx), N-

Acetylasparate (NAA), creatine (Cre), myo-inositol (Ins) and choline (Cho) at a voxel placed 

medially in the frontal cortex. MMN amplitude and ASSR power did not differ between groups. 

The MRS metabolites Glx, Cre and Cho were elevated in the psychosis group. Partial least squares 

analysis in the patient group indicated that elevated levels of MRS metabolites were associated 

with reduced MMN amplitude and increased 40 Hz ASSR power. There were no correlations 

between the neurobiological measures and clinical measures. These data suggest that elevated 

neurometabolites early in psychosis are accompanied by altered auditory neurotransmission, 
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possibly indicative of a neuroinflammatory or excitotoxic disturbance which disrupts a wide range 

of metabolic processes in the cortex.
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1. Introduction

1.1 Auditory evoked responses in schizophrenia

Individuals with schizophrenia (SZ) exhibit impaired electrophysiological responses to 

auditory stimuli, as robustly observed in mismatch negativity (MMN) amplitude and 

auditory steady state response (ASSR) power to 40 Hz stimulation. The MMN is elicited in 

response to deviant auditory stimuli interspersed among a series of more frequent standard 

stimuli. The MMN peaks at 150-250 ms post stimulus onset and is thought to index echoic 

memory processes, sound-discrimination accuracy and predictive coding (Kujala et al., 

2007; Naatanen and Kahkonen, 2009; Todd et al., 2012; Wacongne et al., 2012; Winkler et 

al., 1996). Early conceptualizations of the MMN attribute change detection in sensory 

memory to temporal generators and attention shift to frontal generators (Deouell, 2007). A 

role of frontal cortex in the generation of the MMN has been supported by evidence from 

functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), 

optical imaging, EEG source imaging, and lesion studies (Kim et al., 2017; Molnar et al., 

1995; Randau et al., 2019; Rissling et al.,2014; Tse et al., 2006). MMN amplitude is usually 

reduced in patients with chronic schizophrenia, with a larger effect size for duration deviant 

compared to frequency deviant stimuli (Naatanen and Kahkonen, 2009; Umbricht and 

Krljes, 2005). MMN amplitude reduction has been less consistently found in first episode 

schizophrenia or psychosis, and there is some evidence that the MMN deficit may increase 

over the course of the illness (Erickson et al., 2016; Salisbury et al., 2017; Salisbury et al., 

2002).

The ASSR is elicited by periodic auditory stimuli which rapidly entrain the 

electroencephalogram (EEG) to the frequency and phase of the stimulus with a maximal 

response at stimulus rates of about 40 Hz in humans. Like the MMN, the scalp recorded 

ASSR appears to be generated by auditory cortex with contributions from other regions, 

including the prefrontal cortex (Reyes et al., 2005; Reyes et al., 2004). The ASSR to 40 Hz 

stimulation is usually reduced in power or phase synchronization in patients with 

schizophrenia compared to healthy adults. Deficits have also been observed in first-episode 

and high-risk patients (Tada et al., 2016), and first-degree relatives (Hong et al., 2004; Rass 

et al., 2012). While both the MMN and ASSR implicate disturbances of auditory and frontal 

cortical circuits, the neural basis for these deficits are not well characterized. Both MMN 

and ASSR are sensitive to N-methyl-D-aspartate receptor (NMDAR) antagonists, consistent 

with models of NMDAR dysfunction in schizophrenia (Javitt et al., 2012; Kocsis et al., 

2013; McCarley et al., 1999; Thune et al., 2016).
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1.2 MRS metabolites in schizophrenia

Since scalp recorded electrophysiological responses are primarily generated by post-synaptic 

graded potentials, they would likely be sensitive to alterations in inter- and extracellular 

metabolites which reflect neural integrity and signaling. In vivo proton magnetic resonance 

spectroscopy (MRS) can quantify regional metabolites in the brain in persons with 

psychiatric disorders to better understand their underlying neurobiological mechanisms. 

MRS allows for the examination of neurochemical correlates of relevant ERPs and their 

relation to neurobiological models proposed in the etiology of SZ, such as NMDA receptor 

hypofunction, abnormal glutamatergic and dopaminergic transmission and 

neuroinflammation (Port and Agarwal, 2011). The majority of MRS studies have focused on 

chronic SZ, with more recent studies also examining individuals at clinical high risk for 

psychosis or first episode patients. A variety of metabolites within relevant brain regions and 

circuits have been assessed using MRS to examine the neurobiological mechanisms 

underlying SZ, with studies examining glutamatergic metabolites being the most prevalent 

(Merritt et al., 2016; Poels et al., 2014). MRS glutamate metabolites include glutamine 

(Gln), glutamate (Glu) and their sum, Glx. Glu is an amino acid and neurotransmitter that is 

synthesized from Gln within glutamatergic neurons, then synaptically released during 

neurotransmission. Glial cells recycle Glu from the extracellular space and convert it into 

Gln (Bak et al., 2006; Niciu et al., 2012).

The glutamatergic system has been implicated in the pathophysiology of SZ by 

pharmacological, animal model, post-mortem and imaging investigations, possibly 

secondary to NMDA receptor dysfunction (Hu et al., 2015; Javitt, 2010; Stone et al., 2007; 

Veerman et al., 2014). A meta-analysis examining studies of the glutamatergic metabolites 

concluded that persons with schizophrenia, or at high risk for the disorder, had elevated 

concentrations of Glu and Glx in the basal ganglia, Glx in the medial temporal lobe, and Gln 

in the thalamus compared to control subjects (Merritt et al., 2016). However, secondary 

analyses also showed differences across phases of the illness. Individuals at high-risk had 

higher Glx concentrations in the medial frontal cortex, individuals within their first episode 

showed increased Glx in the basal ganglia and individuals with chronic schizophrenia had 

elevated Glx levels within frontal white matter and the medial temporal lobe. Several 

subsequent MRS studies have evaluated Glu levels in the anterior cingulate cortex in first-

episode of psychosis, but results have been inconsistent, reporting elevated (Kim et al., 

2018), reduced (Reid et al., 2019), and intact levels of Glu (Egerton et al., 2018) compared 

to control subjects.

1.3 Relationship between ERPs and MRS metabolites in EPP

Evidence for a relationship between the MMN and ASSR with metabolites in psychosis 

remains sparse, particularly in the early stages of the illness. To our knowledge, there are no 

studies of the 40 Hz ASSR examining the relationship between glutamatergic metabolites 

and EPP. For MMN, studies have associated increased thalamic Glx with smaller (less 

negative) frontal MMN amplitude in individuals at high-risk for psychosis (Stone et al., 

2010), and a trend for increased ACC Glu and smaller frontal MMN amplitude in EPP (Kaur 

et al., 2019). In contrast, smaller MMN amplitude has been associated with lower frontal and 

anterior cingulate cortex Glu levels in individuals with chronic schizophrenia (Rowland et 
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al., 2016). Consequently, there is a pressing need to characterize the metabolic correlates of 

MMN amplitude and the 40 Hz ASSR in persons with EPP. Such relationships could shed 

light on the pathophysiological abnormalities associated with psychosis, such as NMDAR 

hypofunction and altered glutamatergic neurotransmission.

1.3 Aims of current study

The primary aim of the current study was to examine correlations between MMN amplitude 

and 40 Hz ASSR power with concentrations of frontal cortex Glx in persons with EPP. 

Secondarily, glutamatergic levels and MMN amplitude were compared between subjects 

with EPP and healthy adults. We predicted that compared to control subjects, a) MMN 

amplitude and ASSR power would be reduced in EPP compared to control subjects, b) Glx 

would be increased in EPP and c) increased Glx would be associated with smaller MMN 

amplitude and reduced ASSR power in the EPP group. We also examined associations 

between the electrophysiological measures and other metabolites that have been investigated 

in schizophrenia and related disorders (Brugger et al., 2011; Kraguljac et al., 2012; 

Wijtenburg et al., 2015), including N-acetyl aspartate (NAA), myo-inositol (Ins), creatine 

(Cre), and choline (Cho; composed of phosphocholine and glycerophosphocholine). Finally, 

exploratory analyses evaluated the relationship of both biological measures with clinical 

features and cognitive function.

2. Methods

2.1 Participants

Thirty-four participants with EPP (EPP) were recruited from the Prevention and Recovery 

Center for Early Psychosis (PARC), which is part of Indiana University School of Medicine 

(IUSM) and the Eskenazi Health System. Subjects had a DSM-IV diagnosis of 

schizophrenia, schizoaffective, schizophreniform or psychosis not otherwise specified, as 

determined by the Structured Clinical Interview for DSM-IV-TR (SCID-I/P Patient Edition) 

(First et al., 2002) and corroborated by family informants and medical records. Subjects 

were between 16 and 35 years of age and within five years of the first onset of a non-

affective, non-substance use-induced psychosis. First onset was operationally defined as first 

emergence of psychotic symptoms coupled with evidence of seeking treatment. Cumulative 

antipsychotic drug dosages prior to study enrollment and during the trial were quantified as 

chlorpromazine equivalent doses (Woods, 2003). Exclusionary criteria included IQ less than 

70, current substance use disorders, pregnancy, neurologic illness or other serious medical 

disorders or inability to provide informed consent. All 34 subjects received MRS assessment 

and 31 subjects received both MRS and electrophysiological assessment.

Nineteen control participants were recruited using advertisements in local community 

newspapers and flyers. The EPP and control groups did not differ in sex distribution 

(Pearson Chi-Square (1) = 0.034, p = 0.85). All control participants were interviewed using 

the SCID-NP (non-patient edition (First, 2002)) to exclude individuals with psychiatric 

diagnoses. Exclusionary criteria were the same as for the early psychosis group. All 19 

subjects received MRS assessment and 16 subjects received both MRS and 
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electrophysiological assessment. The research was approved by the IU Institutional Review 

Board and informed consent was obtained from all participants.

2.2 Electrophysiological assessment

Participants were seated comfortably in a dark, electrically isolated enclosure for 

electrophysiological assessment. For both paradigms, the electroencephalogram was 

continuously recorded (band pass 0.1–200 Hz, sampling rate 1000 Hz) and digitized 

(Neuroscan SynAmps) from the scalp, using a 28-channel electrode cap (10–20 system; 

Falk-Minow Services, Munich, Germany) and additional electrodes to obtain vertical and 

horizontal electrooculograms. Recordings were referenced to the nose. Electrode 

impedances were maintained at <10 kOhm. All auditory stimuli were presented through 

Etymotic insert earphones.

ASSRs.—During the evaluation, participants kept their eyes open while listening to trains 

of clicks. The individual stimuli were 1 ms duration clicks (80 dB SPL), presented in 500 ms 

duration 40 Hz click trains. Eighty trains were presented with a 700 ms inter-train interval. 

Fordata processing, EEG was digitally filtered with a bandpass of .02 to 100 Hz, and 

corrected for ocular artifacts using the Gratton et al. algorithm (Gratton et al, 1983). The 

EEG data was segmented into 500 ms epochs concurrent with the click train stimulus. 

Epochs with voltage exceeding ±100 μV at any site were automatically excluded from 

analyses. A fast Fourier Transform (FFT) was applied to the averaged ASSR to generate 

power spectra. The 40 Hz signal power (μV2) was measured at the FZ electrode site.

Duration Mismatch Negativity.—Participants sat with eyes open while gazing at a 

fixation cross and listening to a series of tones. The paradigm was composed of 765 auditory 

tones with a duration of 100 ms (“frequent” tones; probability=0.90) and 85 tones with a 

duration of 50 ms (“deviant” tones; probability=0.10). Tones were presented at 800 Hz, 70 

dB SPL, and had a rise/fall of 10 ms. The inter-stimulus interval (ISI) was 500 ms. EEG data 

was stored offline for subsequent analysis. Using BrainVision Analyzer software (Brain 

Products, Munich, Germany), data were filtered using high pass (0.01Hz) and low pass 

(30Hz) filters. After VEOG correction, data were segmented into individual epochs with 100 

ms baseline and 400 ms poststimulus duration. After baseline correction, individual epochs 

were rejected if they exceeded ±100 μV. Trials within the frequent and deviant conditions 

were averaged for each subject. Difference waveforms were computed by subtracting the 

averaged deviant tone waveform from the averaged frequent tone waveform. MMN 

amplitude was measured as the most negative voltage between 140 and 280 ms in the 

difference waveform at FZ for each participant, which is typically the location of the largest 

MMN deflection in nose-referenced EEG recordings (Javitt et al, 2000; Umbricht et al, 

2006),

2.3 MRS Assessment

All MRI/MRS acquisitions were performed on a Siemens 3T TIM Trio whole-body scanner 

with a 32-channel head coil. T1-weighted MPRAGE images (resolution 1×1×1 mm3) were 

acquired for anatomical information. A single voxel PRESS sequence was used with the 

following parameters: echo time (TE) = 30ms, repetition time (TR) = 1500 ms, 128 
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averages, resulting in a total acquisition time of 4 min. In addition, for every scan a water-

unsuppressed scan with 24 averages was acquired to serve as water reference for 

quantification purposes. The MRS volume of interest (VOI) was placed medially in the 

frontal cortex (size = 2×2×2 cm3). VOI placement and a representative spectrum of the 

frontal cortex are shown in Fig 1. All spectroscopy data were quantified using LCModel 

V6.2-0R and scaled to the internal water signal. MPRAGE images were segmented into gray 

matter, white matter and cerebral spinal fluid with SPM12. The percentage of each type of 

tissue within the MRS VOI was calculated using in-house Matlab code. The metabolites of 

interest were Glx, NAA, Cre, Ins and Cho. Metabolite concentrations were expressed in 

institutional units and corrected for the percentage of cerebrospinal fluid (CSF) within the 

VOI (Chowdhury et al, 2015).

2.4 Clinical and cognitive assessments

Symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS (Kay et al, 

1987)) with total score and three sub-scale scores defined by Marder et al.(Marder et al, 

1997) assessing positive, negative and disorganized thought symptoms. The Brief 

Assessment of Cognition in Schizophrenia (BACS; (Keefe et al, 2004; Keefe et al, 2008)) 

was used to evaluate cognitive function. The BACS assesses four domains of cognition, 

including verbal memory, working memory, processing speed, and reasoning/problem 

solving. All BACS scores were corrected for norms based upon age and gender of 

participants. The BACS composite score was used for analysis. One patient did not complete 

the BACS.

2.5 Statistical analysis

T-tests were used to test for group differences on the metabolite and electrophysiological 

measures. Partial least squares analysis (PLS) was used to test for an overall relationship 

between the six MRS measures and the two electrophysiological measures (MMN, ASSR 

power) in the EPP group and the entire sample. PLS computes a singular value 

decomposition of a cross-correlation matrix between two sets or blocks of measures, which 

produces a series of latent variables (singular vectors) (Bookstein et al, 1996; O’Donnell et 

al, 1999). Salience or weight measures for each variable indicate the contribution of a 

variable to a given latent variable. In order to test the significance of the association between 

the two blocks of measures, the first pair of latent variables was compared with the 

distribution of covariances arising from random permutations of the data set. Data were 

permuted 10,000 times to estimate the likelihood that the obtained covariance of a latent pair 

is due to chance alone. The calculated p value indicates whether or not the relationship 

between the two variable blocks is significant.

Exploratory analyses tested for possible relationships between the MRS metabolites and 

electrophysiological measures and clinical features in the EPP group using Spearman 

correlation coefficients. Features included the PANSS negative, positive and disorganized 

factor scores, illness duration, age, CPZ dosage and the composite score of the BACS. A 

criterion of p < .05 (two-tailed) was used for significance testing across tests.
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3. Results

3.1 Participant characteristics

Demographic, clinical, and cognitive characteristics are displayed in Table 1 for the patient 

and control groups. The BACS composite score was about two standard deviations below the 

control group mean (p < .001), indicative of marked cognitive impairment.

3.2 Group differences for MRS metabolites, MMN amplitude and ASSR power

MRS and electrophysiological measures are shown in Table 2. T-tests between groups for 

each metabolite showed increased levels (p < .05) of Glx , Cre and Cho in EPP compared to 

the control group. Figure 2 shows the grand average event-related potentials elicited from 

each group in the MMN paradigm. MMN amplitude did not differ between groups. Figure 3 

shows the averaged time domain and frequency domain 40 Hz ASSR response in both 

groups. ASSR power at 40 Hz did not differ between groups.

3.3 Partial Least Squares Analysis of MRS metabolites and electrophysiological 
measures in the EPP group.

PLS analysis revealed an overall relationship between the MRS metabolites and the 

electrophysiological measures in the EPP group (Table 3). This relationship was captured in 

the salience or weights of the first latent factor of the PLS analysis, which accounted for 

98.5% of the variance contributed to the overall sum of the summed squared cross-block 

correlations in the analysis. Permutation tests revealed a significant relationship between the 

two blocks of measures (p = 0.01). The magnitude of the salience value indicates estimates 

the contribution of that measure to the latent variable. For MMN amplitude, the positive 

salience value indicated that MMN amplitude became smaller (i.e. less negative) as MRS 

metabolite levels increased. For the 40 Hz ASSR, the positive salience value indicated that 

power increased as metabolite levels increased. The larger salience value for MMN 

amplitude (0.88) indicated that it had a stronger relationship to the set of MRS metabolite 

values than 40 Hz power (0.47).

A second PLS using the same variables was computed using the entire sample of EPP and 

control subjects (Table 4). The overall relationships were comparable to the PLS on the EPP 

sample. The relationship between the MRS and electrophysiological measures was 

significant (p = 0.01), with 96% of the covariance loading on the first latent factor. As MRS 

metabolite levels increased, MMN decreased in amplitude and ASSR increased in power.

3.3 Correlations between neurobiological variables and clinical features

MRS metabolites, MMN amplitude and ASSR power did not show significant correlations 

with PANSS symptom severity, illness duration, CPZ dosage, age or the BACS composite 

score.

4. Discussion

Consistent with hypotheses, the EPP group showed higher Glx levels compared to the 

control group, as well as elevations of Cre and Cho. In contrast, and inconsistent with 
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hypotheses, there were no differences between groups for MMN amplitude or 40 Hz ASSR 

power. Partial least squares analysis group showed that increased MRS metabolite levels 

were associated with smaller (less negative) MMN amplitude within the EPP group and in 

the combined sample. There was a weaker association between increased metabolite levels 

and increased ASSR 40 Hz power. Additional analyses indicated that neither the MRS 

metabolites nor electrophysiological measures were correlated with symptom severity, age, 

CPZ lifetime dosage or cognitive function in the EPP group. These data can be interpreted in 

terms of the specific implications of abnormal glutamatergic signaling, or of the 

consequence of pathophysiological processes which could broadly interfere with metabolic 

functioning.

While MMN has been a robust finding in patients with chronic schizophrenia, MMN 

amplitude reduction has been less consistently found in first episode psychosis. The current 

findings in EPP are congruent with several other studies showing an unaffected MMN in 

first episode psychosis (Salisbury et al., 2007; Salisbury et al., 2018; Salisbury et al., 2017; 

Salisbury et al., 2002; Umbricht et al., 2006). Forty Hz ASSR power was also unaffected in 

the present EPP sample. This differs from Tada et al. (2016), who found reduced a 40 HZ 

ASSR deficit in persons with first episode schizophrenia. The findings suggest that these 

two electrophysiological measures may be less affected in a diagnostically heterogeneous 

EPP sample compared to persons with chronic SZ.

The MRS metabolites Glx, Cre and Cho were elevated in the FEP group. Increased levels of 

Glx and Glu are common in first-episode patients (Kahn and Sommer, 2014). Prior MRS 

studies suggest that the course of schizophrenia may be characterized by an initial increase 

in prefrontal Glx during the prodromal and early phase, followed by a decrease with age and 

illness progression (Abbott and Bustillo, 2006; Kahn and Sommer, 2014; Liemburg et al., 

2016). Results from a longitudinal study suggest that increased Glu levels in the associative-

striatum are associated with conversion to psychosis (de la Fuente-Sandoval et al., 2013). 

Creatine is thought to reflect energy metabolism, while choline reflects membrane integrity. 

Elevated Cre has been reported in the frontal lobe of children with schizophrenia (O'Neill et 

al., 2004), while reduced frontal Cre has been reported in first-episode patients relative to 

healthy controls (Ohrmann et al., 2007). Increases in Ins and Cho have been found in the 

right associative striatum, along with increased Ins in the bilateral medial temporal lobes in 

previous MRS studies of first-episode psychosis (de la Fuente-Sandoval et al., 2013; Plitman 

et al., 2016b; Wood et al., 2008). Contrary to the current findings, several previous studies 

assessing NAA concentrations in EPP have found reduced NAA (Brugger et al., 2011; 

Liemburg et al., 2016; Schwerk et al., 2014).

Increases in Glx in the EPP group and entire sample were associated with lower MMN 

amplitude and greater ASSR power. The relationship of Glx to MMN and ASSR in the 

present study may indicate that the pathophysiological processes involved in the onset of 

psychosis may be associated with disrupted glutamatergic neurotransmission, which 

contributes to variation in electrophysiological responses. Consistent with this model, acute 

administration of NMDA receptor antagonists in rodents can produce increased 40 Hz ASSR 

power or phase locking (Leishman et al., 2015; Sullivan et al., 2015) particularly at low 

levels of receptor occupancy (Sivarao et al., 2016). Importantly, glutamatergic disturbances 
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may affect other metabolites. For example, elevated Cre has been attributed to 

hypermetabolism induced by aberrant glutamatergic signaling (Olney and Farber, 1995; 

Smesny et al., 2015; Tibbo et al., 2013) and higher levels of glutamatergic neurotransmission 

may produce excitotoxic damage to neurons (Plitman et al., 2014).

The present findings suggest that individuals with EPP may display a different relationship 

between neurochemical metabolites and event-related potentials than individuals with 

chronic illness. Increases of glutamate metabolites have been associated with reduced MMN 

amplitude in clinical high-risk subjects (Stone et al., 2010) and in EPP (Kaur et al., 2019). In 

contrast, smaller MMN amplitude has been associated with lower Glu levels in individuals 

with chronic schizophrenia (Rowland et al., 2016). In addition to a relationship between 

higher levels of Glu and larger MMN, a higher ratio of glutamine to glutamate has been 

associated with smaller (less negative) MMN in chronic SZ (Rowland et al., 2016), 

suggesting that altered glutamatergic signaling impacts MMN generation. These findings 

support the possibility that glutamatergic transmission or metabolism changes during the 

transition from early psychosis to more chronic illness (Kahn and Sommer, 2014).

The elevation of multiple metabolites observed in the present data may reflect a 

pathophysiological mechanism that interferes with a broad range of metabolic processes, 

such as neuroinflammation. Converging evidence has implicated neuroinflammatory 

responses to the risk for and expression of psychosis (Radhakrishnan et al., 2017). The 

present findings are similar to the results observed in the associative striatum of sixty 

antipsychotic naïve patients during their first episode of psychosis. In these patients, Glu, 

Cho and Ins were significantly increased in the patient group, while Glx, NAA and Cre were 

elevated but did not reach significance (Plitman et al., 2016a). Plitman et al. hypothesized 

that elevated levels of Cho and Ins may reflect neuroinflammatory disruption of astrocyte 

function, which in turn disturbs the conversion of glutamate to glutamine within astrocytes. 

Notably, this research group had previously found higher levels of NAA, Glu, Ins and Cho in 

an anti-psychotic naïve first episode group in the associative striatum or cerebellum (de la 

Fuente-Sandoval et al., 2013).

There are several limitations affecting interpretation of the present findings. All of the 

patients were medicated, which could affect electrophysiological responses and MRS 

metabolites (de la Fuente-Sandoval et al., 2013). The MRS voxel was placed in a different 

brain region than the temporal lobe generators of the MMN and ASSRs. MRS levels may be 

differentially affected in regions of the brain which were not assessed in the present study. 

The psychosis group was diagnostically heterogeneous, unlike many MRS studies which 

only include persons with schizophrenia or schizoaffective disorder. Mood disturbances 

were not assessed with rating scales. The number of control subjects was appreciably 

smaller than the number of EPP subjects.

Despite these limitations, these findings suggest that joint use of human metabolite and 

electrophysiological measures could help better characterize psychosis pathophysiology. 

When coupled with a longitudinal design, this multimethod approach could be highly 

informative in characterizing neurophysiological and neurochemical changes that occur with 

the emergence and varied outcomes of psychotic disorders. Finally, these non-invasive 
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methods are well suited for measurement of the neurobiological effects of therapeutic 

interventions.
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Highlights

• Electrophysiological responses and brain metabolites are affected in 

psychosis.

• The relationship between these biomarkers in the early phase of psychosis 

was examined.

• The brain metabolites Glx, creatine and choline were elevated in patients.

• Elevated metabolites were associated with decreased mismatch and increased 

gamma responses.

• Metabolic changes may contribute to neurophysiological alterations in early 

psychosis.
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Fig. 1. 
Location of MRS voxel of interest (VOI) in medial frontal lobe and representative spectrum. 

VOI placement in sagittal and axial views, together with a representative MR spectrum (red: 

LCModel fit, dashed: raw data, solid black line: fitted baseline) from a EPP subject, showing 

the peaks of Cho, Cre, Glx and NAA.
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Fig. 2. 
Event-related potential grand average responses to deviant and standard tones in the EPP 

(dashed line) and Control group (solid line). Deviant - Standard grand average difference 

waveforms showing the MMN deflection (third column).
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Fig. 3. 
ASSR grand average responses to 500 Hz click trains in the EPP and Control groups (left 

column). Grand Average power spectra showing 40 Hz power in the two groups (right 

column).
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Table 1.

Participant Characteristics

Gender and Diagnoses

EPP Control

Sample size 34 19

Female/Male 7/24 14/5

Diagnosis, n (%)

 Psychosis disorder NOS 4 (13%) -

 Schizoaffective 6 (19%) -

 Schizophrenia 17 (55%) -

 Schizophreniform 4 (13%) -

M (SD) M (SD)

EPP Control

Age, years 22.0 (4.3) 22.9 (3.6)

BACS composite score 29.9 (14.2) 48.8 (11.7)**

Illness Duration, years 2.01 (1.33) -

CPZ Lifetime Exposure, grams 139.6 (173.0) -

PANSS total scoreb 53.7 (13.6) -

PANSS cognitive/disorganized factor 12.6 (3.7) -

PANSS negative symptom factor 12.7 (5.6) -

PANSS positive symptom factor 16.9 (6.5) -

Note. EPP = Early Phase Psychosis, CPZ = chlorpromazine, PANSS =the Positive and Negative Syndrome Scale, BACS = Brief Assessment of 
Cognition in Schizophrenia.

**
p < .001.

Int J Psychophysiol. Author manuscript; available in PMC 2020 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bartolomeo et al. Page 20

Table 2.

MRS Metabolite, MMN Amplitude and 40 Hz ASSR Power

M (SD)
EPP

M (SD)
Control

Test statistic 95% CI Effect size
(d)

Metabolite concentration (i.u.)

 Glx 4.93 (1.44) 4.07 (1.18) t [51] = 2.24* [1.64, 0.09] 0.62

 NAA 4.23 (1.05) 3.71 (0.82) t [51] = 1.85 [1.08, −0.04] 0.52

 Cho 0.96 (0.23) 0.73 (0.18) t [51] = 3.80** [0.35, 0.11] 0.97

 Cre 3.34 (0.86) 2.75 (0.77) t [51] = 2.50* [1.07, 0.12] 0.68

 Ins 2.76 (0.88) 2.40 (0.66) t [51] = 1.59 [0.83, −0.10] 0.45

Electrophysiological measure

 MMN (μV) −2.71 (2.76) −2.27 (2.40) t [45] = 0.54 [1.20, −2.07] −0.17

 40 Hz Power (μV2) 0.05 (0.05) 0.05 (0.04) t [45] = 0.28 [0.02, −0.03] −0.09

Note. Group differences were tested using t-tests. EPP = Early Phase Psychosis, Glx = Glutamate+Glutamine, NAA = N-Acetylasparate, Cho = 
Choline, Cre = creatine, Ins = Myoinositol, MMN = mismatch negativity.

*
p < 0.05,

**
p < 0.001
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Table 3.

Partial Least Squares Analysis of Association Between MRS Metabolites and Electrophysiological Responses 

in the EPP Group

Latent variable 1 2

Singular Values 1.027 0.128

Percent variance 98.5  1.5

MRS Metabolite Level

 Glx 0.445  0.574

 NAA 0.458 −0.770

 Cho 0.501  0.256

 Cre 0.480  0.010

 Ins 0.333 −0.108

Electrophysiological Measure

 40 Hz ASSR power 0.473 0.881

 Mismatch Negativity Amplitude 0.881 −0.473
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Table 4.

Partial Least Squares Analysis of Association Between MRS Metabolites and Electrophysiological Responses 

in Pooled EPP and Control Subjects

Latent variable 1 2

Singular Values 0.828 0.170

Percent variance 96.0 4.0

MRS Metabolite Level

 Glx 0.316 0.645

 NAA 0.492 −0.681

 Cho 0.449 0.266

 Cre 0.538 −0.121

 Ins 0.408 0.187

Electrophysiological Measure

 40 Hz ASSR power 0.287 0.958

 Mismatch Negativity Amplitude 0.958 −0.287
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