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Abstract

Background: Researchers often justify excluding some responses in studies eliciting valuations 

of health states as not representing respondents’ true preferences. Here, we examine the effects of 

applying 8 common exclusion criteria on societal utility estimates.

Setting: An online survey of a U.S. nationally representative sample (n=1164) used the standard 

gamble method to elicit preferences for health states defined by 7 health domains from the Patient-

Reported Outcomes Measurement Information System (PROMIS®).

Methods: We estimate the impacts of applying 8 commonly used exclusion criteria on mean 

utility values for each domain, using beta regression, a form of analysis suited to double-bounded 

scales like utility.

Results: Exclusion criteria have varied effects on the utility functions for the different PROMIS 

health domains. As a result, applying those criteria would have varied effects on the value of 

treatments (and side effects) that change health status on those domains.

Limitations: Although our method could be applied to any health utility judgments, the present 

estimates reflect the features of the study that produced them. Those features include the selected 

health domains, standard-gamble method, and online format that excluded some groups (e.g., 

visually impaired and illiterate individuals). We also examined only a subset of all possible 
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exclusion criteria, selected to represent the space of possibilities, as characterized in a companion 

article.

Conclusions: Exclusion criteria can affect estimates of the societal utility of health states. We 

use those effects, in conjunction with the results of a companion article, to make suggestions for 

selecting exclusion criteria in future studies.

Introduction

Utility-based measures of health-related quality of life provide quantitative estimates of 

preferences for health states, and are commonly used in cost-effectiveness and cost-utility 

analyses, decision analyses, clinical trials, and population health studies (1). Here, we 

address a problem that the creators of such measures often face: applying exclusion criteria 
to remove responses that appear not to reflect true preferences, a process that Engel and 

colleagues (2) have shown can often remove a substantial proportion of the collected data, 

sometimes more than half. A companion article examines 10 common exclusion criteria in 

terms of how and why they agree and disagree about which responses to treat as 

unacceptable (3). Here, we consider the effects of applying 8 of these criteria on mean 

societal valuations of health states. We propose a general method, illustrated with utility data 

for one widely-used set of health-state measures, the Patient-Reported Outcomes 

Measurement Information System® (PROMIS®).

PROMIS, an initiative of the National Institutes of Health, offers psychometrically 

constructed scales for eliciting self-reported health states on many domains (4). The 

PROMIS-Preference (PROPr) scoring system (5) creates societal utility scores for 7 

PROMIS domains: Cognitive Function - Abilities (cognition); Emotional Distress – 

Depression (depression); Fatigue (fatigue); Pain – Interference (pain); Physical Function 

(physical function); Sleep Disturbance (sleep); and Ability to Participate in Social Roles and 

Activities (social roles). PROPr also offers a multi-attribute utility function (6) for estimating 

a single health utility score from these 7 domains. Following convention (7–9), those utilities 

reflect the responses of representative samples of the general public to questions using the 

standard gamble method.

Two features of single-domain utility functions determine their impact on health policy 

analyses: their elevation (absolute value), showing how much intermediate health states are 

valued relative to the worst and full health states, and their sensitivity (curvature), showing 

how utility changes with changes in health status. Exclusion criteria that increase elevation 

potentially reduce the value of interventions designed to a improve a given health state and 

the aversiveness of side effects that degrade it. Exclusion criteria that reduce the elevation 

could do the opposite. Exclusion criteria that increase the curvature of a health utility curve 

increase the value of treatment that move people to better health states and the aversiveness 

of side effects that move people to poorer states. Exclusion criteria that result in flatter 

curves do the opposite.

We focus on single-domain utility functions because they are the input data used to calculate 

multi-attribute utility scores. PROPr’s multi-attribute scoring system for its 7 domains 

applies some of the exclusion criteria studied below – the removal of extreme responses and 
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the responses of those who completed its associated data collection survey in under 15 

minutes. Dewitt et al. (5) analyze the effects of several exclusion choices on the multi-

attribute score. That sensitivity analysis complements the analysis here, which reveals the 

effects of exclusion on mean utility estimates without the extra structure required to produce 

the multi-attribute score, in terms that are meaningful to those who might use them (i.e., that 

of cost-effectiveness). That structure can obscure the effects of exclusion criteria on the 

included preferences, by requiring, for example, single-domain functions to go through 0 

and 1 at prescribed points. Focusing on the single-domain functions allows us to see the 

variety of effects with different combinations of health domains and exclusion criteria.

The next section introduces the 8 exclusion criteria and the PROPr survey. We then explain 

the modeling approach, beta regression, apply it to the PROPr survey responses, discuss 

policy implications, and offer recommendations for evaluating exclusion criteria.

Methods

Data

Our analyses use data from the PROMIS-Preference (PROPr) Scoring System survey, 

described more fully in (5,11–13), the companion article (3), and Section A in the Appendix. 

Briefly, 1,164 participants were sampled to be representative demographically of the U.S. 

general population. They evaluated health states on one of 7 PROMIS health domains. The 

visual analog scale (VAS) was first used to familiarize them with the domains and was 

followed by the standard gamble (SG), which was used to estimate the PROPr health state 

utilities, given its normative properties (14). We focus on those SG responses here. 

Participants were randomly selected to evaluate one of the 7 health domains. Depression and 

social roles were evaluated by 167 participants; the other domains by 166. Participants also 

evaluated other health states, such as dead or the all-worst state. They answered several other 

tasks as well, described in the other sources.

Exclusion criteria

Exclusion criteria seek to distinguish true preferences from confused, inattentive, or strategic 

(deliberately biased) ones. Criteria can be preference-based, reflecting a respondent’s 

choices (e.g., unusually high values), or process-based, reflecting how respondents produced 

them (e.g., too quickly to be thoughtful).

Table 1 shows 10 criteria, selected to represent the space of commonly invoked rationales, 

including both preference-based and process-based ones – Section B in the Appendix shows 

more examples. The companion article (3) applies multi-dimensional scaling (MDS) to 

characterize these criteria in terms of how similarly they select participants for exclusion. 

Two criteria, low-range and no-variance, are nested, in the sense that they apply the same 

rule, one more stringently than the other. Here, we just use low-range, which subsumes no-
variance. We exclude one criterion (violates-VAS) that does not apply to the standard 

gamble, but which might be examined with the present analytical framework in a 

comparison of the two elicitation procedures.
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Previous studies have considered varied health domains and exclusion criteria and found 

mixed results (2). Most have focused on violations of dominance, with some finding that 

applying criteria had little effect on the multi-attribute utility model (15–17) and some 

finding large effects (18,19). Similarly varied results have been found when applying criteria 

to calculating the mean value of specific health states (2,15,18). The results below 

complement these studies by modeling utility for combinations of sets of health states and 

exclusion criteria, each selected to represent their universe – health states in PROPr and 

exclusion criteria in the companion article (3).

Beta regression

A single-domain utility function assigns a value of 0 to the worst possible outcome, and 1 to 

the best. (See Table A1 in the Appendix for the scale values corresponding to utilities of 0 

and 1 for each domain.)

Double-bounded variables exhibit properties that make them difficult to model using 

normal-theory regression, such as substantial skew and heteroskedasticity. Several regression 

methods have been developed to model bounded data. In health utility applications, the Tobit 

model and censored least absolute deviations (CLAD) model are common (20). However, 

here, we use beta regression. Both Tobit and CLAD assume censored data, where values 

outside the bounds are theoretically possible, but not observed because of the measurement 

procedure (e.g., tests that bound knowledge or ability at 100% scores). In contrast, the utility 

values of 0 and 1 values are theoretical bounds, in the sense that more extreme values do not 

exist, by definition. CLAD has the additional limitation of estimating medians, rather than 

the means typically used in health utility analyses.

Beta regression models variance and skew directly (21), assuming that, conditional on each 

regressor (predictor or covariate), the dependent variable follows a beta distribution Beta(ω, 
τ), defined over (0, 1) by two shape parameters, ω > 0 and τ > 0. That distribution can 

assume many shapes. For example, when ω = τ = 1, it becomes the uniform distribution; 

when ω = τ > 1 , it is bell-shaped (but truncated at 0 and 1). In general, ω pulls the density 

towards 1 and τ pulls it towards 0, producing skewed distributions when the two are 

unequal.

The probability density function of a beta random variable y ~ Beta(ω, τ) is given by

f (y, ω, τ) = Γ(ω + τ)
Γ(ω)Γ(τ) yω − 1(1 − y)τ − 1,

where Γ(∙) is the complete gamma function. The mean is

E(y) = ω
ω + τ

and the variance is
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Var(y) = E(Y)(1 − E(Y))
ω + τ + 1 .

We follow Paolino (22), who provided an alternative parametrization that has now become 

standard (21,23,24). If μ = E(y) and ϕ = ω + τ, then ω = μϕ and τ = ϕ – μϕ. Therefore, 

Var(y) = μ(1 − μ)
(ϕ + 1)  making the variance a function of both μ and ϕ. The parameter ϕ is called 

the precision of the distribution (and ϕ−1 the dispersion), because variance increases as ϕ 
decreases. In models predicting health state utilities, the health states and exclusion criteria 

are the regressors. We focus on modeling the (conditional) mean, which is typically used in 

health policy analyses (5,8,25–27).

In PROMIS, health states are expressed as values of theta (a parameter in item response 

theory), which are constructed from responses of the PROMIS reference population, such 

that theta = 0 for the mean response and a 1-unit change in theta equals the standard 

deviation. The PROMIS reference population is close enough to the general U.S. population 

(28) to interpret these values as probability-sample estimates for that population. Larger 

theta values describe better function for three domains (cognition, physical function, social 

roles) and more symptoms for four (depression, fatigue, pain, sleep disturbance).

As with generalized linear models (e.g., logistic regression), beta regression uses a link 
function (29,30) to connect the statistic being modeled with the regressors, so that both are 

unbounded. For the mean (μ), the most frequently used link function is the logit (log μ
1 − μ ), 

producing model coefficients that reflect log-odd changes for μ. For ϕ, the link function is 

frequently the natural logarithm (i.e., log(ϕ)).

One limit to beta regression is that the dependent variable cannot equal 0 or 1, because the 

link function maps the random variable to the entire real line and the logit is undefined at 

those values. For data sets with 0 and 1 values, the convention is to squeeze the data (21), by 

applying the transformation y(n − 1) + 0.5
n  where y is a dependent value (possibly 0 or 1) and n 

is the sample size. Doing so transforms all data, unlike a transformation that affects only the 

endpoints (e.g., adding ϵ > 0 to any 0 and subtracting it from any 1). By applying this 

transformation to all data (21), the squeeze transformation preserves the ratios of distances 

between each pair of data points, treating the data as interval-scaled, as is assumed for utility 

(27,31,32). Sections C3–C5 in the Appendix report the sensitivity of the present results to 

the choice of transformation.

Beta regression models for health state utilities

A beta model is fully specified by two parameters: its mean and its precision. If responses 

are conditionally beta distributed, then the mean and precision characterize the entire 

response distribution. Under that assumption, our beta regression models for an exclusion 

criterion are:
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logit(μcriterion,domain) = β0 + β1thetadomain + β2criterion + β3thetadomain:criterion Equation 

1

log(ϕcriterion,domain) = ζ0 + ζ1thetadomain + ζ2criterion + ζ3thetadomain:criterion Equation 2

Here, μ and ϕ are the mean and precision parameters for the beta distribution, theta is a 

continuous variable representing health states and criterion is a dummy variable equal to 1 if 

a response is excluded and 0 otherwise. As mentioned, we focus on the effects of applying 

exclusion criteria to mean utilities. We also focus on intermediate health states and do not 

use the endpoints of the health domains to estimate the single-domain functions. The utility 

values of those endpoints were fixed in the survey, and not elicited from participants.

In the model for the mean, β0 (the intercept or constant) gives the mean log-odds utility for 

included responses, when theta is 0 (the mean population health status on that domain); β1 

gives the change in log-odds utility for a one-unit (one standard deviation) change in theta 

for included responses; β2 gives the difference in the intercept for excluded responses; β3 + 

β1 gives the change in log-odds utility for a one-unit change in theta for excluded responses, 

so that β3 is the difference in slope (on the log-odds scale) between the included and 

excluded groups.

Any coefficient involving a theta term estimates the slope of a best-fit line on the log-odds 

utility scale (and the curvature of the corresponding line on the utility scale). The greater the 

slope (or curvature on the utility scale), the more sensitive estimated utilities are to changes 

in theta. The lower the intercept, the lower the utility of the health state describing the 

population average (theta = 0) and the lower the utility of all health states, given a fixed 

curvature.

As these estimates are for log-odds utility, the estimate for mean utility is

μcriterion,domain = eη

1 + eη Equation 3

where η = β0 + β1thetadomain:criterion. See Section C in the Appendix for more details on 

the beta regression models used here.

To estimate these coefficients, we use the betareg package in R (23). Equation 1 models the 

parameters as a linear function of theta, from utilities elicited for six or seven values of theta 

for each domain. As one test of goodness-of-fit, our sensitivity analyses include models that 

treat theta as a factor (i.e., a categorical) variable. See Section C3–C5 in the Appendix for 

these and additional sensitivity analyses, including ones that use a more flexible mixture-
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model procedure, called zero-one inflated beta regression, which treats responses of 0 and 1 

separately, removing the need to squeeze the data.

By analyzing Equation 1 for all domain-criterion pairs, we make judgments for how mean 

preferences differ between groups excluded by each criterion, analyzing the magnitude and 

direction of the effects across domains. As each domain was evaluated by a different sample, 

the 7 domains can be seen as 7 implementations of the criteria with different samples 

undertaking the same survey, with only the domain differing between them. We then 

combine those results with those in the companion piece, where we analyze exclusion 

criteria as binary classifiers, in order to provide recommendations for readers planning on 

applying exclusion criteria or interested in using our approach to evaluate their own criteria 

or improve survey design.

Results

For expository purposes, we first model utility as a function of theta for all responses (i.e., 

with no exclusions) for one domain, sleep disturbance (Table 3 and Figure 1). We then 

repeat the analyses applying two exclusion criteria, one process related, numeracy (Table 3, 

Figure 1), and one preference related, violates-SG (Table 3, Figure 3).

The first column of Table 3 shows regression coefficients for the mean model for all 

responses to sleep disturbance states (i.e., Equation 1 without the criterion variable). The 

entries are on the logit (log-odds) scale, so an entry of value x equals logit−1(x) = ex

1 + ex  on 

the utility scale. We explain each value in turn.

The value of the constant in the regression table is the log-odds utility (0.969) of the health 

state described by theta = 0 (the population average), which is sleep of moderate quality. 

That equals utility of 0.725 (on the 0–1 utility scale). The theta coefficient shows how log-

odds utility decreases as sleep disturbance worsens (and theta increases). For example, 

moving from theta = 0 to theta = 1 reduces utility from 0.725 to 0.618 [= logit−1(0.969 — 

0.487) = logit−1(0.482).] As the units are in log-odds, the change in utility caused by a one-

unit change in theta depends on where it occurs on the theta scale. Figure 1 shows the 

conditional mean curve estimated from the model. It also shows the associated factor model 
(the diamonds), treating the health states as categorical rather than continuous variables.

The numeracy exclusion criterion discards all responses of any participant who scores below 

2.5, after averaging the three questions (scored 1–6) on the short form of the Subjective 

Numeracy Scale (second column of Table 3) (33,34). Figure 1 shows the effects of applying 

this criterion in two ways. The first applies beta regression separately to the included and 

excluded responses, seen in the dotted and solid black lines, respectively. The second is the 

factor model, which presents conditional means of included and excluded responses for each 

theta value separately, seen in the open and solid black dots, respectively.

The regression models find that participants excluded by numeracy have higher utility for 

sleep, for all values of theta, compared to participants who have a high score on the 

numeracy test. That is, those who are excluded reported utility values for intermediate sleep 
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states closer to the utility of the best sleep state. The same result holds for the factor model, 

except for one value of theta. Given the greater stability of the regression models, which 

incorporate all data, we focus on them, but discuss the factor model in sensitivity analyses 

(see Section C3 and C4 in the Appendix). The dashed blue curve is the regression for the full 

sample, as in Figure 2. The error in estimating the curves depends on the number of 

responses in each group and their variability (see Table 2 as well as Section C1 and C2 in the 

Appendix).

The constant corresponds to the utility of a theta score of 0 for participants not excluded by 

the numeracy criterion (dummy=0). The log-odds value of 0.948 (the constant in Table 3) 

equals 0.721 on the 0–1 utility scale. The log-odds value of −0.484 for the theta coefficient 

says that one standard deviation of worse sleep disturbance – for example, from theta=0 to 

theta=1 -- reduces estimated mean utility from 0.721 [=logit−1(0.948) = 0.721] to 0.614 

[=logit−1 (0.948–0.484× 1)= logit−1(0.948 – 0.484) = logit−1(0.464)].

The numeracy coefficient indicates the extent to which the excluded group (solid line in 

Figure 1) assigned higher values to sleep quality – and the extent to which excluding them 

reduces the societal utility of sleep quality.

The coefficient for the theta:numeracy interaction term equals the difference in the change in 

predicted mean utility as theta changes for the groups included and excluded by numeracy. 
As seen in Figure 2, the sensitivity of the excluded group (solid line) is only slightly more 

pronounced than that of the non-excluded group (dotted line). The closeness of the models 

for the full sample (dashed blue) and its non-excluded subgroup (dotted line) reflects the 

relatively small number excluded by numeracy (Table 2) and the small interaction term.

The violates-SG exclusion criterion discards all responses of participants who assign a 

higher utility to any health state than to one describing a higher level of functioning. The 

third column of Table 3 and Figure 3 show the results of applying violates-SG to judgments 

for the sleep disturbance domain. Unlike numeracy, where the small theta-criterion 

interaction term and the small number of excluded participants mean relatively parallel 

utility curves, here, the interaction term and number of excluded participants are both much 

larger, producing quite different utility functions. Figure 3 shows that excluded participants 

assigned lower values to high sleep quality, similar values to moderate sleep quality, and 

higher values to poor sleep quality. Figure 4 shows the full sample curve and reduced sample 

(included) curves, applying each criterion to the sleep domain responses.

Figure 5 compares the full sample and reduced sample curves for all domains, applying each 

exclusion criterion (details in the Appendix, Figures C1–C8). Tables C1–C7 in the Appendix 

summarize the regression coefficients for all domain and criteria combinations.

The patterns revealed in the sensitivity analysis were generally similar to those in the main 

analysis (see Sections C3–C5 in the Appendix).
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Discussion

We begin by discussing the implications of these results for the worked example of sleep 

disturbance, and then summarize other results, in the form of patterns found across health 

domains and potential recommendations for selecting exclusion criteria.

Sleep Disturbance Example

As seen in Table 3 and Figure 1, applying the numeracy exclusion criterion lowers the utility 

curve for sleep disturbance. That could give sleep-related treatments higher priority because 

each level of sleep is less satisfactory and leaves more room for improvement. If a policy 

decision is sensitive to the difference, then investigators would need to decide why the 

excluded responses were different. If less numerate participants were simply less able to 

perform the standard-gamble task, then excluding them might be justified, by arguing that 

their preferences are better represented by the responses of society’s more numerate 

members. However, if the excluded participants genuinely assign higher utility to all health 

states, then excluding them misrepresents societal utilities and inappropriately increases the 

value of treatments that improve sleep quality. The analysis of exclusion patterns in the 

companion paper suggest that the former is the case. The similarity of the slopes of the 

curves for the full and reduced samples means, however, that exercising the criterion would 

not affect decisions that depend on treatment effectiveness (or side effects), captured in the 

change in utility across health states. The small number of excluded participants (5.4%) 

mitigates the effect of wrongfully excluding (or including) those participants.

Similarly, applying the violates-SG exclusion criterion increases the value of treatments for 

very poor sleep, because that part of the curve is lower for non-excluded responses. On the 

other hand, it decreases the value of treatments that make good sleep even better, because 

that part of the curve is higher. The steeper slope of the utility curve after applying violates-
SG makes a unit of improved sleep more valuable, no matter where it occurs. The 

companion article suggests that participants excluded by violates-SG struggled with the task 

but were earnestly engaged. Because 64.5% of responses violated this criterion (Table 2), 

applying it implies a tradeoff between potentially not representing the sample and potentially 

not representing the preferences of those in it.

Recommendations

Exclusion criteria assume that excluded individuals are better represented by the preferences 

of the participants who remain than by the ones that they themselves reported. In this and the 

companion paper, we have analyzed commonly used criteria, in terms of whom they exclude 

and how they affect utility estimates. Here, we summarize our recommendations for using 

each exclusion criterion, by examining all criterion-by-domain pairs in Figures C1–C8 of the 

Appendix.

The need to consider exclusion criteria at all means that more inclusive elicitation 

procedures are needed. Our recommendations appear in Table 4.

We begin with the three process-related criteria.
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Process-related exclusion criteria

Numeracy.—Applying the numeracy criterion produces a lower utility curve for all 

domains except depression. As mentioned, the companion article concluded that less 

numerate participants’ difficulty with the task produces artifactually high estimates. We 

recommend excluding responses of less numerate participants. Given their small number in 

the demographically diverse PROPr sample (7.8%), however, the choice might make little 

practical difference, as in the sleep example (Figure 1).

Time.—This criterion excludes participants who spent less than 15 minutes taking the 

survey, deemed the minimum for thoughtful responses, based on pre-tests. Across the 7 

health domains, the utility curves for those excluded by this criterion were not consistently 

higher or lower than those for the remaining participants. However, they were consistently 

flatter. Although that response pattern could reflect insensitivity to health states, the analyses 

in the companion article suggest that these participants were inattentive. We recommend 

excluding them. Including them would produce inappropriately flat utility curves, 

diminishing the value of treatments that improve health states – and underestimating the 

importance of side effects that degrade health states. They represent 15.6% of the PROPr 

sample.

Understanding.—This criterion excludes participants who reported not understanding the 

task. Applying it would have little effect on the elevation of the utility curves, other than 

lowering that for fatigue, while slightly increasing the slope for all domains. The similarity 

in the curves suggests that those who reported not understanding the task may have set a 

higher standard for themselves, rather than actually experiencing more difficulty. As a result, 

we recommend including them, even if they are uncertain that they should be. They 

represent 14.3% of the PROPr sample.

Preference-related criteria

Dead-all worst.—This criterion excludes participants whose utility for the dead or all-

worst state was not lower than the utility for the best health state. These participants had 

systematically higher and flatter curves than the others. The companion article (in Box 1) 

suggests how the mechanics of the standard-gamble interface might have inadvertently led to 

unduly high responses. We recommend excluding these participants. They represent 28.0% 

of the PROPr sample.

Violates-SG.—This criterion excludes participants who rated at least one health state more 

highly than another strictly better health state. For all 7 domains, the utilities of these 

participants were lower than those of other participants, for most theta values. Their 

responses showed less curvature on all domains except fatigue and pain. However, the mean 
utility curves of these participants do not violate dominance, in the sense of decreasing, 

rather than increasing, as health states improve. The lack of an overall effect suggests that 

the individual violations reflect the noisiness of a challenging task, consistent with a 

previous finding that violations are more likely with more similar health states (2,35). That 

interpretation provides one explanation for our violates-SG and dead-all-worst results in 

both papers: the former could be capturing many engaged participants trying to distinguish 
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between similar health states, whereas the latter violation involves such distant health states 

that it is unlikely an engaged participant would produce it. Given the large number of 

participants with at least one such violation (71.6% of the PROPr sample), we recommend 

not applying this exclusion criterion.

Upper-tail and lower-tail.—These criteria exclude the highest and lowest 5% of 

responses, for each health state. As they are the only criteria we considered that exclude 

individual responses and not entire individuals, we examined differences between those 

eligible for exclusion by these criteria and those who are not. Most studies that apply these 

criteria combine them, in a procedure known as 10% trimming. However, the companion 

article found that they identify different response processes. By definition, upper-tail 
excludes participants with the highest utility values at a given state, whereas lower-tail 
excludes participants with the lowest – but they say nothing about their utilities for the states 

at which they are not among the extremes. For cognition, depression, pain, physical 

function, sleep disturbance, those excluded by upper-tail have less sensitive utility curves 

(and equally sensitive for the other three domains). For cognition, depression, fatigue, pain, 

sleep, and social roles, lower-tail excludes participants whose curves are less sensitive to 

changes in health states (and equally sensitive for physical function). One difference not 

captured by the regressions is that a much higher percentage of responses fall in the upper 

tail than the lower tail, 78.5% vs. 44.1%. Both percentages are much higher than 5% because 

of ties. Because they disqualify so many responses, standard practice is to sample at random 

enough eligible responses to make up 5% of the total sample. The large number captured by 

each supports the need for improved elicitation methods – see also Box 1 in (3). We 

recommend not applying them, because of the mismatch between their combined rationale 

and our empirical results (i.e., that they do not act in a completely symmetric manner).

Low-range.—This criterion excludes participants who used less than 10% of the utility 

scale. Their utility curve is necessarily less sensitive to health states. As a result, removing 

them increases the sensitivity of the utility curve. Highly similar responses could mean 

either insensitivity to the health states or inattention. As noted in the companion article, most 

of these responses were 1, suggesting that participants rushed through the survey, hence 

were inattentive. As a result, we recommend using this exclusion criterion. It applies to 

12.2% of the PROPr sample.

Conclusion

Exclusion criteria for health state preference surveys seek to identify responses that are not 

valid representations of participants’ preferences. In this article and the companion one, we 

offer an approach to assessing the properties of exclusion criteria and their impacts on utility 

estimates. We demonstrate the approach with responses from a nationally representative 

U.S. sample, evaluating health states on 7 domains from the PROMIS inventory, producing 

the PROPr scoring system.

The approach has two components. The first, in the companion paper, uses multidimensional 

scaling (MDS) to characterize the agreement among criteria regarding whom to include and 

exclude. Applied to the PROPr data, it found differences between the usual rationales of 
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criteria and their empirical effects, such as when two criteria that are typically combined 

have quite different exclusion patterns (“trimming” the highest and lowest 5% of responses).

The second component of our approach, described here, estimates the impact of applying 

exclusion criteria on health state utilities. It uses beta regression, a procedure suited to 

modeling double-bounded variables, such as health utility. Applied to the PROPr data, the 

beta regression analyses found that some criteria had little impact, because relatively few 

responses were involved or preferences were similar for the included and excluded groups. It 

also found criteria that affected the elevation of health utility functions (hence, the 

acceptability of health states) or their sensitivity to changes in health state (hence, the 

importance of changes).

Applying these two methods clarifies who is excluded by an exclusion criterion and how it 

affects the resulting societal health utility estimates. That clarification should help 

researchers make informed trade-offs between data quality and sample representativeness. It 

should also help them to inform policy analysts and policy makers how data analytic choices 

affect health utility estimates and decisions using them.

In addition to contributing new methodologies, the MDS and beta regression results extend 

previous ones by their inclusiveness. In their systematic review, Engel et al. (2) found only 

one study that analyzed the effects on utility models of exclusion criteria other than 

violations of dominance (18).

Nevertheless, our specific results are limited to the exclusion measures studied, the sample 

(nationally representative U.S.), the 7 health state domains, their measure (PROMIS), the 

elicitation procedure (standard gamble, preceded by visual analog scale), administration 

method (online), and implementation (see sample screenshots, Figures A2 and A3, in the 

Appendix). The effects of changing any of these features is an empirical question.

The standard gamble is attractive because it is rigorously grounded in utility theory (36). 

Given some participants’ apparent difficulty with the standard gamble, we encourage 

additional research designed to improve the method, especially for online implementation, 

with its potential for efficient elicitation from large, representative samples. The need for 

exclusion criteria is primarily attributable to two related sources: inattentive participants and 

difficult survey items. We can reduce exclusions by improving the accessibility of our 

stimuli, which could include more warm-up exercises that train participants to use the 

stimuli to communicate their preferences. Our methodology offers a systematic way to 

evaluate alternative designs, whether those be new implementations of widely-used methods 

or wholly new preference elicitation mechanisms. The better people can understand their 

tasks, and translate their preferences into those terms, the less need there will be to worry 

about exclusion criteria.
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Appendix A

The PROPr survey

The survey used to collect the data for the PROPr scoring system had the following 

components:

1. Consent to participate.

2. Demographic information.

3. Participant’s overall self-rated health: excellent, very good, good, fair, or poor 

[1].

4. One of 4 existing patient-reported outcome measures, chosen at random:

• The PROMIS Global Health Items [2].

• The EQ-5D-5L with visual analogue scale VAS [3].

• The Health Utilities Index Mark 2 and 3 [4, 5].

• Chronic Health Conditions List (12 conditions) [6].

5. The PROMIS-29 questionnaire [7], plus 4 questions from the Cognition short 

form [8].

6. The participant’s self-assessed additional life expectancy.

7. Valuation of 1 of the 7 health domains, assigned at random.

8. Task engagement questions.

9. Additional questionnaires presented in randomized order:

• The 3 questionnaires from (4) not yet administered.

• The 3-question short form of the Subjective numeracy Scale [9, 10].

• Experience with disability.

• Distributional preferences.

These are described in more detail in the PROPr technical report [11], available at http://

janelhanmer.pitt.edu/PROPr.html.

Figure A.1 shows the qualitative descriptors used to present health states to participants. 

Figure A.2 shows an example screen from the VAS elicitations. Figure A.3 shows an 

example screen from a standard gamble elicitation.

Table A.1 provides the theta scores corresponding to the health states valued by participants 

in the PROPr survey. A theta value is the number associated with the health states on that 
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health state’s underlying domain scale (e.g., pain scale). Table A.2 provides demographic 

characteristics of the participants in the PROPr survey.
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Figure A.1: 
Qualitative descriptions of health states presented to survey participants. A single health 

state is represented by responses selected at every row. For single-domain health states, the 

other domains were kept at their highest levels.
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Figure A.2: 
An example valuation, using the visual analogue scale (VAS).
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Figure A.3: 
An example valuation, using the standard gamble (SG).

Table A.1:
PROMIS theta scores used in PROPr elicitation tasks.

The table shows the theta values corresponding to the health state descriptions valued in the 

PROPr survey. The levels between the unhealthiest and the healthiest correspond to the 

intermediate states valued in the elicitation task. The unhealthiest levels, together, define the 

all-worst state, while the best levels, together, define full health. The disutility corner state 
for a domain corresponds to the state described by the worst level on that domain, and the 

best on all others.

PROMIS 
Domain Healthy … … … … Unhealthy

Cognition 1.124 0.520 −0.002 −0.367 −0.649 −0.902 −1.239 −1.565 −2.052

Depression −1.082 −0.264 0.151 0.596 0.913 1.388 1.742 2.245 2.703

Fatigue −1.648 −0.818 −0.094 0.303 0.870 1.124 1.688 2.053 2.423

Pain −0.773 0.100 0.462 0.827 1.072 1.407 1.724 2.169 2.725

Physical function 0.966 0.160 −0.211 −0.443 −0.787 −1.377 −1.784 −2.174 −2.575

Sleep −1.535 −0.775 −0.459 0.093 0.335 0.820 1.659 1.934

Social roles 1.221 0.494 0.083 −0.276 −0.618 −0.955 −1.293 −1.634 −2.088
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Table A.2:
Participant demographics.

The first column shows the expected demographic characteristics based on the U.S. 2010 

Census. The second column shows the demographic characteristics of the participants who 

completed the survey.

Gender U.S. 2010 Census Total sample (n = 1164)

Female 51.0% 52.7%

Male 49.0% 47.0%

Other N/A 0.3%

Age Census Total

18-24 13.0% 12.0%

25-34 17.0% 18.0%

35-44 17.0% 15.0%

45-54 19.0% 17.0%

55-64 16.0% 17.0%

65-74 9.0% 11.0%

75-84 6.0% 6.0%

85+ 3.0% 5.0%

Hispanic Census Total

Yes 16.0% 17.0%

No 84.0% 83.0%

Race Census Total

White 72.0% 75.4%

AA 12.0% 12.5%

American Indian 1.0% 1.0%

Asian 5.0% 5.5%

Native Hawaiian 1.0% 0.2%

Other 6.0% 3.2%

Multiple Races 3.0% 2.2%

Education for those age 25 and older Census Total (n = 1029)

Less than high school 13.9% 11.9%

High school or equivalent 28.0% 26.3%

Some college, no degree 21.0% 21.7%

Associate’s degree 7.9% 6.9%

Bachelor’s degree 18.0% 19.4%

Graduate or professional degree 11.0% 13.8%

Income Census Total

Less than $10,000 2.0% 3.7%

$10,000 to less than $15,000 4.0% 3.5%

$15,000 to less than $25,000 14.0% 10.3%
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Gender U.S. 2010 Census Total sample (n = 1164)

$25,000 to less than $35,000 17.0% 15.8%

$35,000 to less than $50,000 20.0% 18.5%

$50,000 to less than $65,000 15.0% 16.4%

$65,000 to less than $75,000 6.0% 6.0%

$75,000 to less than $100,000 10.0% 11.1%

$100,000 or more 12.0% 14.7%

Self-Rated Health Census Total

Excellent N/A 14.9%

Very Good N/A 38.7%

Good N/A 33.1%

Fair N/A 11.5%

Poor N/A 1.8%

Appendix B

Exclusion criteria

Table B.1 provides additional examples of how exclusion criteria can be implemented in the 

PROPr dataset.

Table B.1:
Examples of implementing exclusion criteria in PROPr.

Examples of how to implement the exclusion criteria from Table 1 in the main text of 

Exclusion I, using the PROPr data. Unless otherwise indicated, valuations refer to the 

valuations of the single-attribute states. Unshaded rows indicate preference-based criteria, 

shaded rows indicate process-based criteria.

Exclusion criterion Requirements for exclusion

Violates dominance on the SG A participant, using the standard gamble (SG), violates dominance at 
least once.

Violates dominance on the SG, more than 
twice

A participant, using the standard gamble (SG), violates dominance at 
least twice.

Violates dominance on the SG by more 
than 10% of the scale

A participant, using the standard gamble (SG), is considered to have 
violated dominance only if they do so by a difference of more than 0.1 on 
the utility scale.

Violates dominance on the SG by more 
than 10% of the scale, more than twice

A participant, using the standard gamble (SG), is considered to have 
violated dominance only if they do so by a difference of more than 0.1 on 
the utility scale, more than twice.

Violates dominance on the VAS A participant, using the visual analog scale (VAS), violates dominance at 
least once.

Violates dominance on the VAS, more than 
twice

A participant, using the visual analog scale (VAS), violates dominance at 
least twice.

Violates dominance on the VAS by more 
than 10% of the scale

A participant, using the visual analog scale (VAS), is considered to have 
violated dominance only if they do so by a difference of more than 10 on 
the 0–100 VAS scale.
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Exclusion criterion Requirements for exclusion

Violates dominance on the VAS by more 
than 10% of the scale, more than twice

A participant, using the standard gamble (SG), is considered to have 
violated dominance only if they do so by a difference of more than 10 on 
the 0–100 VAS scale.

Valued the all-worst state or dead as the 
same or better than full health.

A participant is excluded if they rated the all-worst state or dead as the 
same or better than full health, using the standard gamble (SG).

Used less than 10% of the utility scale A participant is excluded if their valuations, using the standard gamble 
(SG), represent less than 10% of the range of the utility scale.

Provided the same response to every SG A participant is excluded if they valued every state the same, using the 
standard gamble (SG).

In the top 5% of responses for an SG A response is excluded if it falls in the top 5% of responses for that 
health state, using the standard gamble (SG).

In the bottom 5% of responses for an SG A response is excluded if it falls in the bottom 5% of responses for that 
health state, using the standard gamble (SG).

Score on the Subjective Numeracy Scale of 
less than 2.5

A participant is excluded if they scored less than 2.5 on the short form of 
the Subjective Numeracy Scale (McNaughton, Cavanaugh, Kripalani, 
Rothman, & Wallston, 2015).

Self-assessed understanding equal to 1, on 
a scale of 1 = “Not at all” to 5 = “Very 
much”

A participant is excluded if they rated themselves a “1” on the self-
assessed understanding question, which occurred after the preference 
elicitations.

Self-assessed understanding equal to 1 or 
2, on a scale of 1 = “Not at all” to 5 = 
“Very much”

A participant is excluded if they rated themselves a “1” or a “2” on the 
self-assessed understanding question, which occurred after the preference 
elicitations.

15-minute time threshold A participant is excluded if they completed the PROPr survey in under 
15 minutes.

Appendix C

Beta regression

Section C.1 shows utility curves – corresponding to Equation 1 in the main text – for all 

domain and criteria combinations, and their associated regression tables. Section C.2 

describes more information on assessing model fit with beta regression. Section C.3 

describes the sensitivity analyses for the study presented in the main text in more detail than 

presented there, and Sections C.4 and C.5 describe the results of those analyses.

C.1 Figures and tables for beta regression models

Figures C.1–C.8 show the estimated mean utility curves for those excluded and not excluded 

by the 8 criteria studied in the main text, organized by exclusion criterion. Tables C.1–C.7 

show the associated regression coefficients of these curves, organized by domain. (For 

example, Table C.6 completes Table 3 from the main text by adding the rest of the exclusion 

criteria applied to sleep disturbance.)

C.2 Beta regression model fit

The goodness-of-fit statistic for beta regression models, the pseudo-R2 (also called the 

proportional reduction of error), reported in Table 3 of the main text, compares the log-

likelihoods of the null model (estimating the global mean) and the model under 

consideration [13]. The value for the model with the numeracy criterion is 0.11. To provide 

context for that fit, we conducted simulations using data created to be conditionally beta 
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distributed, with two key properties of the present data: (a) a continuous regressor 

discretized to have six values matching the theta values used in the sleep domain and (b) the 

same slope (coefficient on theta) as estimated from the real data. The pseudo-R2 of that 

model is 0.09 (compared to 0.08 for the true model). We repeated the simulation, for 

violates-SG (third column of Table 3). The pseudo-R2 is 0.22, compared to the observed 

value of 0.11 in Table 3.
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Figure C.1: Beta regression models for violates-SG.
Modeling mean utilities for each domain as a function of theta and the violates-SG criterion.

C.3 Details of the beta regression sensitivity analysis and model-checking

a. Functional form: Comparing the continuous and factor models provide one 

assessment of the appropriateness of writing the linear predictor as a linear 

function of theta in Equation 1 in the main text. The factor model is the extreme 

of non-linearity, as it calculates the utility value for a given theta using only 

information from that theta value, and none of its neighbors.

b. Residual analysis: Residuals for beta regression are constrained by the bounded 

scale of the beta regression. To examine the fit of the beta model, we simulate a 

beta distribution data-generating process and fit a correctly specified model. We 

do this for a case not requiring squeezing, and a case requiring squeezing where 

beta regression still nearly recovers the correct parameters. We then compare the 

residual versus fitted values plots with those from our data.

c. Zero-one inflated beta regression: There is an alternative to the squeezing 

procedure, that still allows one to take advantage of the benefits of beta 

regression (e.g., explicit modeling of the variance), called a zero-one inflated 
beta (ZOIB) model [14]. ZOIB is a mixture model: two binomial models 

estimated via logistic regression describe the 0 and 1 responses, while a beta 

regression model describes all the data between 0 and 1.

One disadvantage of the ZOIB approach is that it assumes that there are two processes 

producing responses, which might not be appropriate depending on the setting: one 

described by two binomial distributions (producing 1s and 0s) and the other described by a 

beta distribution. A second is that it is more computationally intensive. A third is that, if we 

assume each part of the model has the same linear predictor (e.g., η = β0 + β1theta + 
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β2criterion + β3theta : criterion), a ZOIB model is described by twice the number of 

coefficients than the equivalent squeezed beta regression model, because we are estimating 

not only the μ and ϕ parameters of the beta but also the means (proportions) of the two 

logistic regressions.

An advantage of the ZOIB model is that it can better reproduce the data, because of its 

additional flexibility. In our context, the parsimony of the squeezed beta regression models is 

useful, because it allows us to easily compare the effects of the different criteria. However, to 

explore the fit of the squeezed model, we compare it using some of our data to three 

approaches to ZOIB, which differ in their estimation procedures: a Bayesian approach using 

Markov chain Monte Carlo (MCMC) sampling, from the R package zoib [14]; separate 

logistic regressions on the 0/1 data using R’s default function for estimating general linear 

models, which estimates parameters via iteratively reweighted least squares, combined with 

a beta regression using the betareg package on the un-squeezed (0,1) data;1 and, a method 

that uses simulated annealing (a type of numerical optimization) to find the maximum of the 

joint likelihood of the two logistic regressions and the beta regression [15].

1We will refer to this method, which uses the glm() function in R for the two logistic models and betareg() in the betareg package for 
estimating the beta model, as the “double-logistic plus beta” version of ZOIB, because it estimates coefficients by running those 
models separately. Of course, formally, the other methods are also a mixture of two logistic regressions and a beta regression, but their 
implementation in R differs from simply combining glm() and betareg().

Dewitt et al. Page 23

Med Decis Making. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure C.2: 
Modeling mean utilities for each domain as a function of theta and the dead-all-worst 
criterion.
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Figure C.3: 
Modeling mean utilities for each domain as a function of theta and the low-range criterion.
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Figure C.4: 
Modeling mean utilities for each domain as a function of theta and the upper-tail criterion.
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Figure C.5: 
Modeling mean utilities for each domain as a function of theta and the lower-tail criterion.
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Figure C.6: 
Modeling mean utilities for each domain as a function of theta and the understanding 
criterion.

Dewitt et al. Page 28

Med Decis Making. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure C.7: 
Modeling mean utilities for each domain as a function of theta and the numeracy criterion.
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Figure C.8: 
Modeling mean utilities for each domain as a function of theta and the time criterion.
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C.4 Summary results of the beta regression sensitivity analysis and model-checking

a. Functional form: As described earlier, comparing the squeezed and ZOIB models 

that are linear in theta to their associated factor models – where theta is treated as 

a categorical variable – allows us to test the linearity assumption. For example, 

the model of those not excluded by numeracy tracks its associated factor model 

(open dots) well, while the model of those excluded (the solid curve) has some 

large differences with its factor model (solid dots). This demonstrates that there 

could be a model that is non-linear in theta and has a better fit for the excluded. 

Overall, however, most of the continuous models across the domains and the 

exclusion criteria track their factor counterparts well.

b. Residual analysis and c) Zero-one inflated (ZOIB) regression: Examining the 

residuals of our main models (Figures C.1–C.8) shows that they systematically 

vary from those expected from a conditionally beta-distributed random variable 

because of the number of 0s and 1s in the data at every value of theta. Moving to 

the ZOIB models necessarily produces a better fit. However, differences between 

the included and excluded groups remain, and are, in fact, more pronounced in 

the ZOIB models. Thus, we believe the squeezed models provide good within-

sample comparisons for the main models (Equation 1 in the main text), which are 

the focus of our study.

C.5 Detailed discussion of the beta regression sensitivity analyses

C.5.1 Residual analysis—The correctly specified beta model with no squeezing shows 

how residuals in a beta regression are affected by the boundedness of the beta distribution 

(Figure C.9). Large residuals are only possible near the endpoints. For example, when the 

fitted values approach 1, the beta distribution – which always places some probability 

density over the whole open interval – will sometimes produce small values, producing large 

negative residuals. In the figure, the residuals “step down” as one moves to the right because 

the beta is skewed unless the two shape parameters are equal, which necessitates a (fitted) 

mean of 0.5. Otherwise, a mean value less than 0.5 necessitates a right skew, and one greater 

than 0.5 necessitates a left skew, producing many positive and negative residuals, 

respectively.

The residuals versus fitted values plot for the correctly specified beta model requiring 

squeezing, in which beta regression nearly recovers the correct coefficients, shows nearly the 

same pattern (Figure C.10). That provides us with confidence that squeezing can work well.

Figure C.11 shows residuals versus fitted values for the model of cognition utilities as a 

function of theta and the time criterion, i.e., whose mean is modeled by:

log μ
1 − μ = β0 + β1thetacognition + β2time + β3thetacognition : time .

It shows a similar pattern to Figure C.9 and Figure C.10. However, the columns of residuals 

at each fitted value have much more consistent length. That is due to the fact that every 

observed conditional distribution has some 0s and 1s in the data. The spread of the residuals 
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for a fixed fitted value is discrete and often evenly spaced because of the SG elicitation 

method: utilities could only be given for every 0.05 of the 0-1 utility scale. Notice, too, that 

the fitted values start just above 0.5, in contrast to our simulations. That is, in our data we are 

never modeling distributions whose means are close to 0.
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Figure C.9: Residuals versus fitted values for a simulated, correctly specified beta model.
Plot of residuals versus fitted values for a simulated, correctly specified beta model, where 

beta regression recovers the correct parameters.
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Figure C.10: Residuals versus fitted values for a simulated, correctly specified beta model 
requiring squeezing.
Plot of residuals versus fitted values for a simulated, correctly specified beta model.
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Figure C.11: Residuals versus fitted models for cognition as a function of theta and time.
Plot of residuals versus fitted values for the squeezed model 

log μ
1 − μ = β0 + β1thetacognition + β2time + β3thetacognition + β3thetacognitiontime.

As a comparison, Figure C.12 shows the residuals versus fitted values for the same model 

using the cognition data and excluding the 0s and 1s from the dataset – and thus not 

requiring squeezing. The pattern is very similar to the squeezed model, although there is a 

more pronounced lowering of the columns of residuals, more closely matching the residual 
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plot of the correctly specified model (Figure C.9). Note, too that the range of fitted values is 

shifted compared to Figure C.11, and that we do not get close to either endpoint of the scale. 

There are significantly more 1s than 0s – 574 versus 150 in the cognition domain – and so 

removing all the 0s and 1s shifts the (fitted) means downwards.
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Figure C.12: Residuals and fitted values for cognition utilities as a function of theta and time, no 
0s or 1s in the data.
Plot of residuals versus fitted values for the model 

log μ
1 − μ = β0 + β1thetacognition + β2time + β3thetacognition : time, using the cognition data 

without the 0 and 1 responses. (Note this would be the beta portion of the associated ZOIB 

model.)
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Given the patterns of residuals, we believe beta regression provides a useful method for 

summarizing our data. Although it does not appear that the conditional distributions are 

exactly beta distributed given our covariates, the general shape of the residual plots reflects 

some of the key structural features of correctly-specified beta regressions.

We also believe the squeezing procedure is theoretically legitimate for our data. By 

assumption, the utilities are on an interval scale; more importantly, they are not on a ratio 

scale. Thus, the 0 is not an absolute, as it would be in a scale for mass or length. In fact, 

throughout the estimation of the PROPr scoring system [16], we often translate between 

different utility scales where 0 corresponds to the utility of various states (e.g., dead, the 

allworst state). Therefore, moving the 0s in the data to 0.5/n via a linear transformation is 

conceptually equivalent to the other translations of 0s that occur throughout the PROPr 

scoring system: the interval-scale properties of the data are retained, but the data is 

transformed for modeling purposes.

By construction, a theta value outside of its domain endpoints – that is, outside of the 

extreme values in Table A.1 – is given a utility equal to 0 or 1 (depending on which side of 

the scale it lies). The societal valuation of a state – usually taken to be a mean value – is 

always between the endpoints, and in practice never equals those extremes, unless it is one 

of the pre-defined endpoints (i.e., full health and the all-worst state or dead). Thus, making it 

impossible for an intermediate state to have predicted mean utility of 0 or 1 is not, within the 

context of health state valuation studies, an unusual assumption.

C.5.2 Zero-one inflated beta (ZOIB) models—To further investigate the squeezing 

method used in our modeling, we used the data from the cognition domain and compared its 

results with those of the three ZOIB alternative models. (Recall that, if squeezing were 

unnecessary, the ZOIB models would reduce to normal beta regression.)

We estimated conditional mean curves for the four models where the linear predictor is only 

theta (i.e., where there are only two coefficients, the intercept and the slope on theta). Figure 

C.13 shows the squeezed model (solid black), the double-logistic plus beta version of the 

ZOIB model (solid red), the Bayesian ZOIB model (dashed brown), the ZOIB model 

estimated via simulated annealing (dashed blue), and the sample mean utilities of the un-

squeezed data (dots). The deviations between the black curve and the sample means suggest 

some bias in the squeezed model. The Bayesian ZOIB and ZOIB estimated via simulated 

annealing are almost collinear, and closely reproduce the sample means. The double-logistic 

plus beta regression have a shape like the two other ZOIB models, but a different intercept.

We also estimated conditional mean curves for the four models where the linear predictor 

included an exclusion criteria (time), as in the models from the main text. These curves, two 

for each model – one for those participants excluded by time and one for those left included 

in the sample – are plotted for each method in Figure C.14. The double-logistic plus beta 

regression (red) and Bayesian ZOIB (blue) are almost collinear, while the included curve of 

the ZOIB using simulated annealing (dotted brown) is close to the included curve of the 

other two ZOIB models, but its excluded curve (solid brown) is further from their excluded 

curves. The two parts of the squeezed results (black) have a similar shape to the others, but 
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show less extreme slopes in both curves than the ZOIB models, and also show the bias in the 

excluded (solid) and included (dotted) curves that is seen in Figure C.13.

Dewitt et al. Page 46

Med Decis Making. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure C.13: Comparison of ZOIB estimation techniques using the cognition data.
A comparison of beta regression on squeezed data (black) and three methods to estimate 

zero-one inflated beta (ZOIB) models: two logistic regressions on the 0-1 data plus a beta 

regression on the (0, 1) data (solid red), ZOIB estimated using simulated annealing for 

maximum likelihood estimation (dashed brown), and a Bayesian ZOIB approach that uses 

Markov chain Monte Carlo sampling to produce coefficient estimates (dashed blue). The 

sample means from the data are plotted as points. Every component of every model has the 

same linear predictor, η = β0 + β1theta.
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We implemented the ZOIB models to see the effect of modeling the untransformed data, and 

compare those models with our main, squeezed models. As seen in Figure C.13, the ZOIB 

models more closely recover the sample means, which are unbiased estimates of the 

conditional mean utilities. As there are many 0s and 1s in the data, squeezing them into data 

in the open interval (0,1) then requires the optimization algorithm to search for beta 

parameters that will produce many high and low values, and recover the mid-range of values 

as well. Unless the shape of the empirical distribution of the data (0,1) has peaks at the 

extremes, this procedure will necessarily do a worse job at recovering the shape of the (0,1) 

data, as a beta distribution cannot take on every shape imaginable (e.g., it can have at most 

two modes). The ZOIB models fit a beta regression on only the data in the open interval 

(0,1), allowing its beta regression to have fewer constraints. Thus, the differences could be 

caused by squeezing, or the different model assumptions (i.e., the multiple data-generating 

processes in ZOIB models) or even over-fitting from the more flexible ZOIB models, or by a 

combination of factors.

In Figure C.14, where the model also includes the interaction, we see that the differences 

between the included and excluded curves are more pronounced than in the squeezed beta 

regression. This could be because squeezing brings all the data closer together, thus 

diminishing the differences between otherwise untransformed utilities. It is promising that 

the general shapes of the curves are the same in the squeezed and the ZOIB models, and that 

any relationships are only more pronounced in the more complicated models. Thus, we 

believe it is more likely we have missed an effect of the exclusion criteria than produced one 

that would disappear with a ZOIB analysis. Again, two of the ZOIB estimation procedures 

(the Bayesian and double-logistic plus beta regression) closely recover the sample means.

Based on the results of our comparisons, we believe our squeezed models are best 

interpreted as parsimonious descriptions of the relationships between utility, health domains 

(i.e., theta), and exclusion criteria, allowing within-sample comparisons of those 

relationships, rather than as descriptions of mean population utility estimates. Future work is 

needed to determine the role of the potential causes of the differences seen between the 

ZOIB and squeezed models, which include the squeezing, the (in)appropriateness of the beta 

distribution for describing the data conditional on our chosen covariates, and the extra 

parameters estimated in the ZOIB models. Moving to the ZOIB models in all aspects of the 

work could improve the modeling, but would require additional insight to interpret these 

complicated models for those who wish to use them to inform their survey design - in 

contrast to those who want to run their own ZOIB models, who might appreciate the 

thorough methodological discussion. It is unclearwhether there is a large (or any) 

intersection of these two groups, so care must be taken when proceeding with an even more 

complex modeling strategy.
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Figure C.14: Comparison of ZOIB estimation techniques using the cognition data and time.
A comparison of beta regression on squeezed data (black) and the same model estimated 

using three different methods for zero-one inflated beta (ZOIB) regression on the un-

squeezed data: two logistic regressions on the 0-1 data plus a beta regression on the (0, 1) 

data (red), ZOIB estimated using simulated annealing for maximum likelihood estimation 

(brown), and a Bayesian ZOIB approach that uses Markov chain Monte Carlo sampling to 

produce coefficient estimates (blue). The solid curves show the estimated conditional mean 

values for those participants excluded by the time criterion; the dashed curves show the 

estimated conditional mean values for those participants left in the sample. Every 
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component of every model has the same linear predictor, η = β0 + β1theta + β2criterion + 

β3theta : criterion.
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Figure 1. 
Modeling mean sleep disturbance utilities as a function of the health states. The solid curve 

is the line of best fit for the model treating health states as a continuous linear variable (i.e., 

theta in item response theory). The diamonds are the result of treating the health states as 

factors (i.e., a categorical variable)
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Figure 2. 
Modeling sleep utilities as a function of health states and the numeracy criterion, treating 

health states as continuous (lines) and as factors (dots).
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Figure 3. 
Modeling sleep utilities as a function of health states and the violates-SG criterion, treating 

health states as continuous (lines) and as factors (dots).
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Figure 4. 
The estimated conditional mean utility curve for sleep, after applying the indicated exclusion 

criterion (or no exclusion). Note the y-axis begins at 0.2, to magnify the utility curves.
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Figure 5. 
The estimated conditional mean utility for each domain, after applying each exclusion 

criterion (or no exclusion). Note y-axis starts at 0.2, to magnify the curves.
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Table 1

Core exclusion criteria. Core exclusion criteria, implemented with the PROPr data. Unless otherwise indicated, 
valuations refer to the valuations of the single-domain states. Unshaded rows indicate preference-based 
criteria, shaded rows indicate process-based criteria.

Exclusion criteria (short-hand) Requirements for exclusion

Violates dominance on the SG (violates-SG) A participant, using the standard gamble (SG), violates dominance at least once.

Violates dominance on the VAS (violates- VAS) A participant, using the visual analog scale (VAS), violates dominance at least once.

Valued the all-worst state or dead as the same or better 
than full health (dead-all-worst)

A participant is excluded if they rated the all-worst state or dead as the same or 
better than full health, using the standard gamble (SG).

Used less than 10% of the utility scale (low-range) A participant is excluded if their valuations, using the standard gamble (SG), 
represent less than 10% of the range of the utility scale.

Provided the same response to every SG (no-variance) A participant is excluded if they valued every state the same, using the standard 
gamble (SG).

In the top 5% of responses for an SG (upper-tail) A response is excluded if it falls in the upper 5% of responses for that health state, 
using the standard gamble (SG).

In the bottom 5% of responses for an SG (lower-tail) A response is excluded if it falls in the bottom 5% of responses for that health state, 
using the standard gamble (SG).

Score on the Subjective Numeracy Scale of less than 2.5 
(numeracy)

A participant is excluded if they scored less than 2.5 on the short form of the 
Subjective Numeracy Scale (McNaughton, Cavanaugh, Kripalani, Rothman, & 
Wallston, 2015).

Self-assessed understanding equal to 1 or 2, on a scale 
of 1 = “Not at all” to 5 = “Very much” (understanding)

A participant is excluded if they rated themselves a “1” or a “2” on the self-assessed 
understanding question, which occurred after the preference elicitations.

15-minute time threshold (time) A participant is excluded if they completed the PROPr survey in under 15 minutes.

Med Decis Making. Author manuscript; available in PMC 2020 August 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dewitt et al. Page 59

Table 2

Proportion of participants flagged by each criterion, per domain. The proportion of participants in the PROPr 
data flagged by each criterion from Table 1, per domain. Each column label is one of the seven PROPr 
domains, with the number of participants assigned to value that domain in parentheses, with the sum 1,164. 
Each row is one of the core criteria (Table 1), with the percentage of all participants excluded by each criterion 
in parentheses. Unshaded rows indicate preference-based criteria, shaded rows indicate process-based criteria.

Exclusion criterion (% 
excluded in total)

Cognition (n 
= 166)

Depression (n 
= 167)

Fatigue (n 
= 166)

Pain (n = 
166)

Physical 
function (n = 

166)

Sleep (n = 
166)

Social (n = 
167)

understanding (14.3%) 17.5% 10.8% 14.5% 14.5% 15.1% 12% 15%

time (15.6%) 12% 17.4% 16.9% 16.3% 17.5% 13.9% 15%

numeracy (7.8%) 8.4% 9.0% 9.0% 12.7% 4.2% 5.4% 6.0%

no-variance (11.8%) 12.0% 6.6% 14.5% 15.1% 9.0% 13.3% 12.0%

low-range (12.2%) 12.7% 7.2% 15.1% 15.7% 9.6% 13.3% 12.0%

lower-tail (44.1%) 42.2% 44.9% 45.8% 42.8% 52.4% 38.0% 42.5%

upper-tail (78.5%) 78.9% 77.8% 80.1% 74.1% 77.1% 83.7% 77.8%

violates-SG (71.6%) 72.3% 74.9% 72.3% 71.1% 77.7% 64.5% 68.3%

dead-all-worst (28.0%) 28.9% 25.7% 26.5% 30.7% 24.7% 28.9% 30.5%

violates-VAS (84.7%) 85.5% 80.8% 88.6% 80.1% 89.8% 85.5% 82.6%
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Table 3

Modeling mean utilities for the PROMIS sleep disturbance domain. The first column shows the model with no 

exclusion criterion (utility as a function of theta only). The second column shows the model with the numeracy 
criterion. The third column shows the model with the violates-SG criterion.

Dependent variable:

log-odds utility

(1) (2) (3)

constant (intercept) 0.969*** (0.050) 0.948*** (0.051) 1.419*** (0.093)

theta −0.487*** (0.056) −0.484*** (0.057) −0.837*** (0.096)

numeracy 0.448* (0.241)

theta:numeracy −0.073 (0.260)

violates-SG −0.618*** (0.111)

theta:violates-SG 0.486*** (0.118)

Observations 996 996 996

R2 0.076 0.081 0.111

Log Likelihood 1,561.564 1,563.459 1,581.657

Note:

*
p<0.1;

**
p<0.05;

***
p<0.01
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Table 4

Summary of recommendations for exclusion criteria. We summarize our recommendations for each criterion 
below, based on our results from this paper and its companion (3). Note that any criterion includes the risk of 
wrongful exclusion. The magnitude of that risk is partly a function of the number of participants affected by 
the criterion. The extent to which that varies across studies is an empirical question.

Exclusion criteria (short-hand) Recommendations

Violates dominance on the SG (violates-SG) We do not endorse this criterion. Our results suggest it captures many who are engaged 
with the task.

Valued the all-worst state or dead as the same or 
better than full health (dead-all-worst)

We endorse this criterion. It represents the most egregious violation of dominance, and 
our analysis suggests a response process for it that is different from violates-SG and 
more likely to produce responses that are not preferences.

Used less than 10% of the utility scale (low-range) We recommend this criterion as well as more stringent versions of it (e.g., no-variance). 
Our results support the claim that it captures inattentive responses.

In the top 5% of responses for an SG (upper-tail) We do not endorse the criterion – usually combined with lower-tail – because of the 
mismatch between the basis for it and our empirical results.

In the bottom 5% of responses for an SG (lower-
tail)

We do not endorse the criterion – usually combined with upper-tail – because of the 
mismatch between the basis for it and our empirical results.

Score on the Subjective Numeracy Scale of less 
than 2.5 (numeracy)

We endorse this criterion. However, a researcher must consider any problems with 
representing the preferences of the less-numerate in their sample with their more 
numerate counterparts.

Self-assessed understanding equal to 1 or 2, on a 
scale of 1 = “Not at all” to 5 = “Very much” 
(understanding)

We do not endorse this criterion, as it appears likely that it captures conscientious 
participants.

15-minute time threshold (time) We endorse this criterion, as its rationale (inattention) is supported by its empirical 
effects.
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