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IntroductIon

A major goal of neuroprosthetics is to design artificial limbs that are experienced 

(‘embodied’) like real limbs. However, despite important technological advances, this goal 

has not been reached and prosthesis embodiment is still very limited. Differently from our 

physical body, current bionic limbs do not provide the continuous multisensory feedback 

required for a limb to be experienced as one’s own. Here, we present a novel neuroprosthetic 

approach that combines peripheral neurotactile stimulation—inducing tactile sensation on 

the missing limb—and immersive digital technology—providing visual illumination of the 

prosthetic hand. We tested whether coherent multisensory visuo-tactile neural stimulation 

(VTNS)1 induced higher prosthesis embodiment and reduced the distorted perception of the 

phantom limb (telescoping, ie, the phantom limb is perceived as shorter than the intact 

limb).

Methods

Patient 1 and patient 2 are tranSRadial left forearm chronic amputees, who suffered upper 

limb telescoping. Patients were implanted with transverse intrafascicular multichannel 

electrodes (TIMEs), which induced the sensation of a vibration in a circumscribed skin 

region of the finger 2 via medial nerve stimulation in patient 1 (online supplementary figure 

1A) and in a skin region of finger 5 via ulnar nerve stimulation in patient 2 (online 

supplementary figure 1B and material 1). Neurotactile stimulation2 was coupled with 

automatised visual illumination of a skin region on the patient’s prosthetic hand that 

corresponded to the somatotopic location of touch sensations experienced on the phantom 

hand (VTNS; online supplementary video 1, online supplementary figure 1, online 

supplementary material 1). VTNS was administered in two conditions, either with 

synchronous visual and neurotactile stimulation or in a control condition of asynchronous 

stimulation (1.5–2.5s delay).

Prosthesis embodiment was measured via a questionnaire, whereas changes in phantom limb 

perception were tested via a body landmark task where patients indicated the perceived 

position of different parts of the phantom limb by moving a ruler in absence of visual 

stimulation (figure 1B). The experimental procedures were approved by the competent 

ethical committee.

Results

Prosthesis embodiment

In both patients, embodiment ratings based on questionnaires revealed significantly higher 

scores during synchronous than asynchronous VTNS stimulation (ps<0.001; Fisher test; 

control items for suggestibility were not modulated: ps>0.073; figure 1A).

Reduction of abnormal phantom limb perception: telescoping

During the embodiment-inducing condition, VTNS improved telescoping (online 

supplementary video 1). Both patients perceived the phantom finger of the stimulated limb 

in a more distal position as compared with asynchronous stimulation (t=2.13, p<0.01, patient 
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1; t=3.6, p<0.001, patient 2; figure 1C), while there was no change in the perceived elbow 

position (control) between conditions (p=0.76, patient 1; p=0.099, patient 2). Thus, 

synchronous VTNS increased the perceived length of the phantom hand. Importantly, this 

effect persisted 10min after VTNS had ended (t=1.95, p=0.026, one-tailed, patient 1; t=1.94, 

p=0.029, one-tailed, patient 2; figure 1D). See online supplementary material 1 for extended 

results.

DiscussIon

By combining immersive digital technology, neuroprosthetics and paradigms from cognitive 

neuroscience, in two amputees, we administered direct tactile stimulation to the phantom 

limb via an intraneural implant into the residual limb nerves. Such stimulation, combined 

with personalised and coherent visual stimulation using immersive digital technology, 

VTNS, induced embodiment for the prosthetic hand, and importantly, reduced telescoping of 

the phantom limb thus improving abnormal phantom limb perceptions.

Our approach presents several advantages with respect to earlier therapeutic approaches 

aimed at inducing ownership in amputees,3–5 as those require the external application of 

tactile cues on skin regions of the residual limb, which had to be applied manually3 or via a 

robotic5 device as well as the concurrent application of a physical visual stimuli on the 

prosthetic device.3–5 This way, such procedures are difficult to apply during continuous 

prosthetic use in daily-life activities, thus limiting the intensity and duration of the induced 

prosthesis embodiment and thereby reducing their clinical relevance. Moreover, these 

previous studies did not test whether embodiment affected phantom limb sensations, that are 

critical for prosthesis acceptance.6 Our VTNS stimulation procedure shows that 

multisensory stimulation necessary to induce prosthesis embodiment does not need to be 

linked to realistic4 5 or functionally relevant interactions4 as long as VTNS respects the 

fundamental constraints of embodiment and multisensory integration (eg, synchronous 

multisensory stimulation).1

Abnormal phantom limb perceptions

Our results reveal another important clinical benefit: the reduction of telescoping. VTNS 

was able to reshape subjective sensations of upper limb dimensions, as to make it being 

perceived as more similar to the actual size of the missing limb and the prosthesis. 

Interestingly, previous research on phantom sensations in a large sample of amputee patients 

found that prosthesis embodiment sensations are more frequent in patients with an extended 

phantom as compared with patients with a telescoped phantom.6

Two theories have tried to account for cortical reorganisation and phantom sensations 

following amputation.7 8 On the one hand, the maladaptive plasticity theory posits that 

abnormal phantom sensations and phantom pain arise from maladaptive cortical 

reorganisation, triggered by loss of sensory input,7 thus associating greater pain with 

increased local cortical reorganisation. Recent data, on the other hand, suggest that cortical 

changes following limb amputation may also be due to a combination of loss/altered sensory 

inputs from the periphery and phantom pain experience, resulting in a maintained brain 

structural and functional representation of the missing limb in the sensorimotor cortices, but 
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disturbed long-range connectivity.8 Our multisensory neuroprosthetic approach might act on 

either mechanism for the phantom limb syndrome and might be used to reduce telescoping, 

or in future studies to alleviate phantom pain, if such effects were to be found. Indeed, 

VTNS provides multisensory coherent bodily stimulation which may target central body 

representations, but also aims at restoring peripheral inputs from the residual nerves, in turn 

affecting long-range connectivity. At the moment, it is not possible to determine which 

mechanism is at the basis of the present effect.

Limitations of our study include the small number of participants tested, and the use of only 

one measure of embodiment (questionnaire). Future studies investigating prosthesis 

embodiment in amputees with peripheral neural implants should examine several aspects of 

embodiment in greater detail. Other limitations are the fact that the experimenters 

conducting the tests were not blinded to the experimental conditions and that the 

investigations were only carried out over a limited amount of time (ie, for several hours over 

different days).

Taken together, our results open up new opportunities to enhance prosthetic acceptance and 

advance the engineering of personalised artificial limbs that, by providing continuous 

multisensory feedback, might feel like real limbs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Prosthesis embodiment. Average ratings of embodiment (Q1–3) and suggestibility items 

(Q4–5) are shown for all experimental conditions are shown for both patient 1 and patient 2 

(see online supplementary material 1). embodiment was highest when VTNS was 

administered synchronously with illumination of the prosthetic hand (as compared with the 

asynchronous condition). the synchronous stimulation was characterised by a delay smaller 

than 10ms between the neurally induced tactile sensation and the visual illumination, 

whereas in the asynchronous condition the temporal mismatch (1.5–2.5s) between the neural 
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stimulation and the visual illumination was randomly selected on each trial. In patient 1, 

suggestibility items were always rated 0 (shown as coloured lines). (B) reduction of 

abnormal phantom limb perceptions (telescoping). to measure the perceived length of the 

phantom limb, both patients were asked to operate a movable cursor inside a ruler with their 

right hand. the difference between the perceived position of this phantom finger and elbow 

was used to estimate the perceived length (in cm) of the phantom limb (average scores are 

reported). (C) During synchronous VTNS (blue) both perceived the tip of their phantom 

finger in a more distal position (vs asynchronous condition; p<0.01; red), compatible with an 

increase in the perceived length of their phantom limb (B; online supplementary video 2). 

(D) this condition-specific change in telescoping persisted, in both patients, 10min after 

VTNS had ended. error bars show Se of the mean. *P<0.05; **P<0.01. VTNS, visuo-tactile 

neural stimulation.
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