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Altered Functional Brain Networks in Patients with 
Traumatic Anosmia: Resting-State Functional MRI Based 
on Graph Theoretical Analysis
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Objective: Traumatic anosmia is a common disorder following head injury; however, little is known regarding its neural basis 
and influence on the functional networks. Therefore, we aimed to investigate the functional connectivity changes in patients 
with traumatic anosmia compared to healthy controls using resting-state functional magnetic resonance imaging (rs-fMRI).
Materials and Methods: Sixteen patients with traumatic anosmia and 12 healthy controls underwent rs-fMRI. Differences 
in the connectivity of the olfactory and whole brain networks were compared between the two groups. Graph theoretical 
parameters, such as modularity and global efficiency of the whole brain or olfactory networks, were calculated and compared. 
Correlation analyses were performed between the parameters and disease severity.
Results: Patients with traumatic anosmia showed decreased intra-network connectivity in the olfactory network (false 
discovery rate [FDR]-corrected p < 0.05) compared with that in healthy controls. Furthermore, the inter-network connectivity 
was increased in both the olfactory (FDR-corrected p < 0.05) and whole brain networks (degree-based statistic-corrected p < 
0.05) in the anosmia group. The whole brain networks showed decreased modularity (p < 0.001) and increased global 
efficiency (p = 0.019) in patients with traumatic anosmia. The modularity and global efficiency were correlated with disease 
severity in patients with anosmia (p < 0.001 and p = 0.002, respectively).
Conclusion: Traumatic anosmia increased the inter-network connectivity observed with rs-fMRI in the olfactory and global 
brain functional networks. rs-fMRI parameters may serve as potential biomarkers for traumatic anosmia by revealing a more 
widespread functional damage than previously expected. 
Keywords: Traumatic anosmia; Functional magnetic resonance imaging; Resting state; Brain networks; Functional connectivity; 
Graph theory
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INTRODUCTION

Traumatic anosmia is a common disorder following head 
injury and is known to affect approximately 5–14.5% of 
patients with head trauma (1, 2). Traumatic anosmia has 
been shown to affect the patients’ quality of life (3). 
Although olfactory dysfunction after trauma is thought 
to be mostly caused by a direct damage to the olfactory 
nerve and the associated nerve center (4), a traumatic 
incident without any structural abnormality can also lead to 
clinically overt olfactory dysfunction (5). 

Functional magnetic resonance imaging (fMRI) can 
be used to measure the functional activity or functional 
connectivity in patients with smell disorders and can 
enhance our fundamental understanding of how the 
olfactory system works (6-9). Therefore, findings from fMRI 
studies may lead to better prognostication and improved 
treatment strategies (6-9). Previous fMRI studies have 
demonstrated that the administration of odors results 
in decreased activation of the olfactory brain regions in 
patients with smell disorders and olfactory dysfunction 
(6, 10-12). While task-based fMRI can provide additional 
information regarding brain function, task instructions 
can be difficult for patients with olfactory dysfunction 
due to accompanying cognitive problems. Furthermore, 
odor-stimulated task-based fMRI studies have provided 
various results due to the heterogeneity of olfactory tasks, 
overlapping functional areas responsible for sniffing and 
olfaction, and habituation of the olfactory systems (13).

Unlike task-based fMRI, resting-state fMRI (rs-fMRI) 
appears to be a promising evaluation tool for understanding 
the functional activity and connectivity without specific 
stimuli or tasks (14). In this respect, rs-fMRI may have 
additional benefits compared to odor-stimulated task-
based fMRI for the evaluation of olfactory dysfunction in 
patients with smell disorder. rs-fMRI studies on olfactory 
dysfunction have been rarely reported to date, specifically 
in those with post-traumatic anosmia (7, 15). Therefore, the 
objective of this study was to investigate the differences 
in the functional connectivity between patients with 
traumatic anosmia and healthy controls using rs-fMRI. We 
hypothesized that patients with traumatic anosmia would 
have specific disruptions in the network connectivity within 
the whole brain as well as in the olfactory networks when 
compared to healthy controls and that these alteration 
patterns would be related to the symptom severity. 

MATERIALS AND METHODS 

Study Population
This prospective study was approved by the ethics 

committee of Konkuk University Medical Center. Sixteen 
patients (mean age, 43.2 ± 10.2 years; 11 males) with 
traumatic anosmia were included in the study between 
November 2012 and May 2014. The inclusion criteria were 
as follows: 1) presentation within 2 years of head injury; 
2) fulfilment of criteria for anosmia based on the Korean 
Version of the Sniffin’ stick (KVSS) II test; and 3) age 
between 18 and 65 years. The exclusion criteria were as 
follows: 1) history of olfactory impairment; 2) history of 
sinonasal disease; or 3) current nasal symptoms. All patients 
completed psychophysical olfactory testing, including the 
KVSS I and II, and underwent nasal endoscopy to exclude 
the possibility of obstructive olfactory loss. 

Twelve healthy controls (mean age, 26.8 ± 8.4 years; 
8 males) were also recruited from the local community. 
The inclusion criteria for healthy controls were as follows: 
1) normal olfactory function; 2) no brain lesions or prior 
head trauma; and 3) no history of psychiatric or neurologic 
diseases. All study participants were right-handed. All 
participants provided written informed consent prior to 
study participation.

Clinical Olfactory Assessment 
An otorhinolaryngologist with 17 years of clinical 

experience performed the endoscopic examination of the 
nasal cavity and the clinical olfactory performance testing 
in all patients to ensure that patients met the criteria for 
anosmia. Clinical olfactory performance measures included 
the KVSS I and II. The KVSS I test is a modified Sniffin’ 
stick test optimized for Korean patients, which includes 
odors familiar to Korean individuals, and the KVSS II is the 
Korean equivalent of the Sniffin’ stick test (16, 17). Clinical 
diagnosis of anosmia was based on the KVSS II scores; total 
scores between 0–20 were classified as anosmia, scores of 
20.25–27 were classified as hyposmia, and scores of 27.25–
48 were classified as normosmia (16, 17).

MRI Acquisition
All participants underwent MRI using a 3T MR scanner 

(Signa HDxT; GE Healthcare, Milwaukee, WI, USA) with an 
8-channel head coil. High spatial resolution T1-weighted 
three-dimensional (3D) anatomic images were obtained in 
the axial plane using a fast-spoiled gradient echo sequence 
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(repetition time [TR]: 7.8 ms; echo time [TE]: 3.0 ms; 
matrix: 256 x 256; flip angle: 13°; number of sections: 134; 
field of view: 240 x 240 mm2; section thickness: 1.3 mm). 

rs-fMRI was performed in the axial plane using a 
gradient-echo echo-planar imaging (EPI) sequence (TR: 
2000 ms; TE: 30 ms; matrix: 64 x 64; flip angle: 90; number 
of sections: 40; field of view: 240 x 240 mm; section 
thickness: 3.5 mm; scan of volume: 800) with a voxel size 
of 3.75 x 3.75 x 3.5 mm.

fMRI Data Pre-Processing
fMRI data pre-processing was performed using SPM12 

(Wellcome Trust Centre for Neuroimaging, London, UK) and 
in-house codes of MATLAB R2016b (MathWorks, Natick, 
MA, USA). The first three volumes of each dataset were 
discarded to allow for equilibration effects. We performed 
slice timing correction to realign fMRI slices of each scan 
to the first slice that was the reference slice based on 
its relative timing within the entire scan. Then, spatial 
realignment was performed to remove movement artifacts 
from the fMRI data. Scans were spatially realigned to a 
reference scan in order to revise any spatial mismatches 
caused by movement (18). We chose the first scan as 
the reference scan and used the default option of SPM12 
(quality: 0.9; separation: 4; smoothing: 5; interpolation: 
2nd degree). fMRI scans from each subject were then co-
registered to their T1-weighted 3D anatomic images (19). 
The default option of SPM12 (objective function: normalized 
mutual information; histogram smoothing: 7) was used here 
as well. Next, steps were taken to reduce the noise signals. 
All scans were temporally band-pass filtered (0.01–0.08 
Hz) to remove slow signal drifts (20, 21). Brain tissues 
were segmented using the co-registered T1-weighted MRI 
scans, and white matter and cerebrospinal fluid signals were 
extracted. We linearly regressed out the white matter and 
cerebrospinal fluid signals, while the linear temporal trends 
and motion parameters acquired from the realignment 
step (six parameters) were also considered as nuisance 
parameters. Finally, we performed spatial normalization 
to the EPI template with a 2-mm slice thickness of the 
MNI space (Montreal Neurological Institute: International 
Consortium for Brain Mapping) and spatial smoothing with 
the 4-mm full-width at half-maximum Gaussian kernel.

Brain Networks
In this study, we used a total of 279 functional areas 

for brain network analysis. We further added the olfactory 

network to the pre-defined whole brain network.
First, the pre-defined whole brain network suggested by 

Jonathan Power and colleagues was constructed with 264 
functional areas (22). Those areas were then divided into 
12 predefined well-known networks, involved in different 
cognitive processes. Among the 264 functional areas, 33 
areas with uncertain network classifications were also 
included (22). Next, the olfactory network was defined 
by statistical localization (23). The olfactory network was 
comprised of 21 functional areas including the piriform 
cortex, insular cortex, prefrontal cortex, and anterior 
cingulate/frontal cortex (Supplementary Table 1). All 
regions-of-interest (ROIs) were near-sphere in shape (3 x 
3 x 3 cube with an additional voxel on the center of each 
face, total 33 voxels) and located at their center. Six ROIs 
from the pre-defined whole brain network were discarded as 
they overlapped with the ROIs from the olfactory network. 
A final check was performed to ensure there were no 
overlapping voxels between the ROIs. 

Functional Connectivity and Whole Brain Network 
Analysis

Functional connectivity was measured as the Pearson 
correlation coefficient between the ROI time-series. The 
whole brain network with 279 x 279 connectivity was 
constructed. We used binary network type for calculating 
the network properties, where the connectivity of p value < 
0.05 (positive and significant correlation) takes the value 
of 1, otherwise the connectivity takes the value of 0 (24).

Two network properties were measured to explore 
functional integration and segregation (25, 26). Global 
efficiency is a measure of how efficiently a network 
exchanges information. Global efficiency has been 
suggested as a measure of functional integration and is 
calculated as the inverse of the harmonic mean of the 
shortest path length in the network:

Global efficiency = 
1

n (n - 1)
 ∑
i, j G

i≠j

 
1

dij

Where dij is the shortest path length connecting nodes i 
and j, and G represents the graph.

Modularity is a statistical unit that quantifies the degree 
of network subdivision into clearly delineated modules. 
The Louvain community detection algorithm was applied 
to construct modules in the network (27). The Louvain 
algorithm optimizes and constructs the modules to 
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maximize the modularity of the network.

Modularity = 
1

2n
∑

ij
[Kkj - 

kikj

2n
]δ(cj, cj)

Where n is the number of all edges in the graph, Kij is the 
binary value of the edge between nodes i, and j. ki and kj 
are the number of the edges attached to nodes i and j. ci 
and cj represent the modules of the nodes and δ is a simple 
delta function.

Structural MRI Analysis
A neuroradiologist with 20 years of experience who 

was blinded to the clinical data assessed the images from 
the T1-weighted fast-spoiled gradient echo sequence for 
structural brain abnormalities. For assessment, multi-planar 
reformatted images as well as original axial images were 
used. When tissue loss was present, the maximal dimension 
of the tissue loss was measured on a picture archiving and 
communication system (Centricity Enterprise Imaging, GE 
Healthcare, Barrington, IL, USA). 

Statistical Analyses 
To compare the demographic variables between patients 

with anosmia and healthy controls, the nonparametric 
Mann–Whitney test and Fisher’s exact test were used due 
to our small sample size using the Statistical Package for 
the Social Sciences (SPSS, version 23.0, IBM Corp., Armonk, 
NY, USA). P values less than 0.05 were considered to be 
statistically significant. 

Statistical analysis for the rs-fMRI data was performed in 
MATLAB using in-house codes. All group comparisons were 
tested using a two sample t test after controlling for age 
difference between the groups. The age effect unaffected 
by the disease was estimated by linear regression for 
the healthy controls and was controlled for both groups 
(28). Individual functional connectivity was tested using 
Student’s t distribution and was transformed into p values 
to determine whether the functional connectivity was 
significant in the brain networks. Functional connectivity 
comparison within networks was further tested in 
consideration for multiple comparisons. False discovery rate 
(FDR) was controlled in the olfactory network comparison 
(29, 30). For the other comparisons, we adopted a cluster-
wise inference method, a degree-based statistic to find 
clusters significantly influenced by the disease (31). 
Finally, multiple linear regression was used to evaluate the 

explanatory power of the network properties in predicting 
the behavioral scores of patients.

RESULTS

Demographics and Clinical and Imaging Features
The mean age of the patients with traumatic anosmia 

was significantly greater than that of healthy controls (p 
< 0.001), with no significant difference in the sex ratio 
(p = 1.000). The mean time between head injury and 
clinical consultation was 9.6 months (range, 3–24 months) 
in the anosmia group. Four of the 16 patients exhibited 
focal encephalomalacia on the structural MRI, with the 
maximum dimension ranging from < 1.0 cm in 3 patients 
to approximately 3.0 cm in one patient; the lesions were 
located at both gyri recti (n = 1), the left gyrus rectus (n 
= 2), or the right gyrus rectus (n = 1). The patient with 
the largest lesion showed involvement of the left medial 
orbital gyrus as well. There were no additional structural 
abnormalities in the brains of all subjects. In patients with 
anosmia, the mean KVSS II score was 9.44 ± 3.7 (range, 
3–15), indicating that all patients met the diagnostic 
criteria for anosmia. 

Changes in Olfactory Network in Patients with Traumatic 
Anosmia

Compared with healthy controls, patients with anosmia 
exhibited different patterns of connectivity in the olfactory 
network (Fig. 1). Intra-cluster connectivity was decreased 
in patients, specifically in the insular cortex and anterior 
cingulate/frontal cortex (FDR-corrected p < 0.05). Inter-
anatomical-cluster connectivity (across piriform cortex, 
insular cortex, prefrontal cortex, anterior cingulate/frontal 
cortex) was increased in the patients compared with that in 
the healthy controls (FDR-corrected p < 0.05). 

Comparison of Whole Brain Functional Connectivity 
Patients with traumatic anosmia showed increased 

connectivity in most brain regions (Figs. 2, 3) compared 
with that in healthy controls. Furthermore, the functional 
connectivity in the patients was primarily increased among 
the thalamic and sensory networks (visual and somatomotor 
hand) compared with the healthy controls (Table 1).

Comparison of Functional Network Organization 
Compared with healthy controls, patients with traumatic 

anosmia showed significantly increased global efficiency 
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(0.753 ± 0.056 vs. 0.704 ± 0.042) (p = 0.019) and 
decreased modularity (0.165 ± 0.044 vs. 0.245 ± 0.054) (p 
< 0.001) in the whole brain network. 

Correlation between Network Parameters and KVSS II 
Score 

In patients with traumatic anosmia, the global efficiency 

of the whole brain network was significantly correlated 
with the KVSS II score (r2 = 0.71, p = 0.002) and remained 
significant after controlling for disease duration (r2 = 0.75, 
p < 0.001) (Fig. 4). Modularity of the whole brain network 
was also significantly associated with the KVSS II score (r2 = 
0.79, p < 0.001) and remained significant after controlling 
for disease duration (r2 = 0.82, p < 0.001). 

Fig. 1. Functional connectivity of olfactory network and functional connectivity differences between healthy controls and 
patients with traumatic anosmia. Numbers in left column and bottom row indicate anatomical ROI numbers, and information about each ROI 
number is provided in Supplementary Table 1. 
A. Significant difference in functional connectivity between groups. White color indicates significantly lower functional connectivity and black 
color indicates significantly higher functional connectivity in patients. Intra-cluster connectivity was decreased in patients, specifically in insular 
cortex (ROI numbers 4, 5, 8, and 10) and anterior cingulate/frontal cortex (ROI numbers 13, 15, 16, 17, 19, 20, and 21). Inter-anatomical-cluster 
connectivity was increased in patients (ROI numbers 3, 4, 5, 6, 7, 9, 15, 18, and 19). B. Glass-brain representation of functional connectivity 
differences. Both higher and lower functional connectivity were observed in patients with anosmia compared to that in healthy controls. FDR = 
false discovery rate, ROI = region-of-interest
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DISCUSSION

In this study, we demonstrated that the intra-network 
connectivity of the olfactory network was decreased in 
patients with anosmia compared with that in healthy 
controls, whereas the inter-network connectivity of both 
olfactory and whole-brain networks was increased. These 
findings may suggest that the compensatory mechanism, 
which is based on the recruitment of other brain 
areas, partly plays a role in the evolution of traumatic 
olfactory dysfunction as previously suggested in many 

neurodegenerative and psychiatric diseases (32-34). 
Indeed, there is strong evidence supporting brain 

plasticity in response to pathological damage induced by 
various insults (34), as well as in the case of olfactory 
dysfunction (32, 35). The results of a previous study on 
anosmia revealed diverse network changes, involving 
mostly non-olfactory regions, the prefrontal areas, the left 
inferior frontal gyrus, and the left premotor cortex (35). 
In addition to plasticity as it relates to functional loss, 
the reorganization and establishment of new connections 
have been demonstrated at the cognitive level of the 
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Cingulo-opercular task control
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Visual

Fronto-parietal task control
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Fig. 3. Glass brain representations of functional connectivity differences. Nodes are highlighted with various colors according to their 
assigned networks. Edges in blue indicate lower connectivity, while red indicates higher connectivity in patients. Top 5 clusters are presented 
separately in bottom figure. Cluster presented on left was more significant. Additional information on clusters is provided in Table 1. Major 
clusters had significant functional connectivity differences between visual, sensory/somatomotor hand, and subcortical networks. 

Table 1. Information of Top Clusters with Increased Functional Connectivity in Whole-Brain Analysis

Top 5 
Clusters

ROI 
Number

Network Classification Anatomical Label x y z Weighted Degree

1 163 Visual Right middle occipital 40 -72 14 19
2 166 Visual Left middle occipital -28 -79 19 16
3 267 Ventral attention Left middle occipital -52 -63 5 14
4 176 Visual Right middle occipital 29 -77 25 12
5 240 Subcortical Right thalamus 12 -17 8 10

ROI = region-of-interest



1542

Park et al.

https://doi.org/10.3348/kjr.2019.0104 kjronline.org

olfactory system, although the underlying mechanisms 
behind the plasticity of the olfactory system are still under 
investigation (35, 36). Furthermore, a structural analysis 
in patients with traumatic anosmia has also revealed 
paradoxical increases in gray matter volume according to 
disease duration (32), giving another line of evidence for 
the compensatory mechanism after olfactory dysfunction. 
Therefore, we believe that an impaired activation of the 
olfactory network, manifesting as a decreased intra-
network connectivity of the olfactory network, may induce 
a compensatory activation of other networks as observed in 
our study. 

However, our finding is not entirely consistent with the 
observations of previous studies that investigated the 

effects of olfactory disorders or neurodegenerative disorders 
presenting as olfactory dysfunction at the early stage. They 
reported a decreased activation in the olfactory areas of 
the brain, using odor-stimulated task-based fMRI (6, 12). 
Yet, the functional connectivity and network properties 
beyond the olfactory areas have not been studied until 
recently. Kollndorfer et al. (7) first reported task-based fMRI 
connectivity analysis, which revealed decreased functional 
connectivity in the somatosensory and integrative networks 
as well as the olfactory network. In contrast to the 
previous report, we observed that functional connectivity 
was prominently increased in the motor and visual cortex 
in addition to the inter-network connectivity of the 
olfactory network and that in the somatosensory networks. 
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This discrepancy may be due to differences in the study 
methodology, as the previous study used task-related fMRI 
for the olfactory, integrative, and somatosensory networks, 
whereas we analyzed the whole brain connectivity with 279 
different functional networks while using rs-fMRI for the 
first time. 

To clearly understand the dynamic interaction among 
different brain regions, we performed a graph theory-based 
network analysis, which can offer a better understanding of 
the local and global organization of resting-state networks 
(37). Specifically, we used two of the most popular 
measures: global efficiency and modularity. Global efficiency 
indicates how effectively information is integrated across 
the entirety of the networks. Conversely, modularity 
indicates how effectively information is integrated between 
immediate neighboring brain regions of a given network 
node (38). 

We found that global efficiency was increased while 
modularity (modular organization) was decreased in 
patients with traumatic anosmia compared with those 
in healthy controls. With respect to modularity, our 
finding is consistent with previous observations showing 
that modularity decreases with normal aging (39, 40), 
neuropsychiatric disorders, such as schizophrenia (41), and 
preclinical Alzheimer’s disease (42). Modularity can be large 
when nodes are maximally connected within a module, but 
minimally connected between modules (42). Accordingly, 
the decreased modularity in the patients with traumatic 
anosmia indicates a less distinctive functional modular 
structure than that in the normal group, and this alteration 
of network could be a manifestation of a compensatory 
mechanism either from an increase in intermodular 
connections, a decrease in intramodular connections, or a 
combination of both (40). 

The increased global efficiency of the resting-state 
connectivity in patients can be explained by the increased 
functional connectivity of the whole brain networks for 
adapting to the local damage responsible for olfactory 
core dysfunction. In many networks, modularity and global 
efficiency are inversely related and this is consistent 
with what we observed in our study (43). As the brain is 
a complex network, an increased global efficiency with 
decreased modularity reflects a less organized connectivity 
and a more random network (44). We speculated that 
although the brain of patients with traumatic anosmia 
attempts to overcome impairment derived from olfactory 
dysfunction by increasing the functional connectivity both 

within and outside the olfactory network, disorganized and 
increased randomization within the networks may hinder 
the perfect compensation to these damages. 

When interpreting our findings, however, we should not 
ignore the potential effect of concomitant brain pathology 
from non-olfactory traumatic brain injury. It has been 
reported that diffuse microstructural and functional changes 
can be present even without overt structural abnormality 
in patients with mild traumatic brain injury (45, 46). The 
reported results of these invisible changes, however, are 
inconsistent in terms of functional connectivity. Some 
studies reported decreased global efficiency and increased 
modularity in patients with mild traumatic brain injury 
and posttraumatic stress disorder (47, 48). Conversely, 
several recent studies reported an increase in the resting 
functional connectivity after traumatic concussion relative 
to the controls (49, 50), which is in line with our findings. 
Thus, our findings may represent a pattern of the dynamics 
behind functional connectivity changes following trauma as 
well as a representation of the olfactory dysfunction itself. 

It is worth noting that global efficiency and modularity 
were found to have a significant correlation with the 
severity of olfactory dysfunction based on the KVSS II 
score in our study. This suggests that a lower degree of 
organization in the brain network, expressed as decreased 
modularity and increased global efficiency, is correlated 
with the clinical severity in traumatic anosmia. This may 
support the claim that olfactory dysfunction is the major 
contributor to the connectivity changes observed in our 
study. Furthermore, given the relationship between these 
two measures and the clinical severity, we believe that 
these two measures can be used as imaging biomarkers to 
objectively evaluate the clinical status of subjects with 
traumatic anosmia in the future. 

There are several limitations in this study. Although 
this study recruited a relatively small study population, 
we found statistically significant differences in the rs-
fMRI analysis, even after multiple comparison corrections. 
Second, the difference in the age between the groups might 
have contributed to the results, but we included the age as 
a covariate in the analyses to minimize the effect of age 
differences. Furthermore, there was a significant correlation 
between disease severity and rs-fMRI derived parameters, 
indicating that the changes in the anosmia group are likely 
induced by the disease itself rather than aging. Third, 
cerebromalacia in the orbitofrontal cortex was present, 
albeit in a small number from the whole population and this 
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might subsequently have affected the connectivity changes 
in the rs-fMRI. 

In conclusion, we present rs-fMRI evidence of traumatic 
anosmia-induced connectivity changes in the global 
functional networks and olfactory functional networks. 
These findings suggest that rs-fMRI parameters, by revealing 
more widespread functional damage than previously 
expected, may serve as potential biomarkers for traumatic 
anosmia.
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