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Abstract

The National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program 

(SRP) aims to support university-based multidisciplinary research on human health and 

environmental issues related to hazardous substances and pollutants. The Texas A&M Superfund 

Research Program comprehensively evaluates the complexities of hazardous chemical mixtures 

and their potential adverse health impacts due to exposure through a number of multi-disciplinary 

projects and cores. One of the essential components of the Texas A&M Superfund Research 

Center is the Data Science Core, which serves as the basis for translating the data produced by the 

multi-disciplinary research projects into useful knowledge for the community via data collection, 

quality control, analysis, and model generation. In this work, we demonstrate the Texas A&M 

Superfund Research Program computational platform, which houses and integrates large-scale, 

diverse datasets generated across the Center, provides basic visualization service to facilitate 

interpretation, monitors data quality, and finally implements a variety of state-of-the-art statistical 

analysis for model/tool development. The platform is aimed to facilitate effective integration and 

collaboration across the Center and acts as an enabler for the dissemination of comprehensive ad-

hoc tools and models developed to address the environmental and health effects of chemical 

mixture exposure during environmental emergency-related contamination events.
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1. Introduction

The risk of chemical contamination and exposure to hazardous chemicals are elevated 

during and after natural catastrophic events (i.e., hurricanes) due to the increased mobility of 

many chemical toxicants. In such situations, the rapid and precise examination of potential 

sources and pathways of chemical contamination becomes essential: (i) for identifying their 

adverse health impacts and (ii) for delivering solutions to mitigate such adverse effects. To 

this end, Texas A&M Superfund Research Program (TAMU Superfund Research Center, 

2018) aims to build both experimental and computational models, methods and tools 

through exposomics research and data analysis. The program extensively studies the health, 

economic and social impacts of hazardous complex chemical mixtures after environmental 

emergencies with Galveston Bay/Houston Ship Channel area being selected as a case study.

TAMU SRP is a cross-disciplinary program and has a tightly integrated structure which 

governs four main research projects (two environmental and two biomedical research 

projects). The two environmental projects, namely Project 1 and 2, focus on understanding 

dynamic exposure pathways under the conditions of environmental emergencies and 

designing novel broad-acting sorption materials for reducing bioavailability of contaminants. 

Project 3 and 4, being the two biomedical projects, are studying in vitro and in vivo hazard, 

kinetics and inter-individual variability of responses to chemical mixtures and developing in 
vitro multiplex single-cell assays to detect endocrine disruption potential of mixtures. Each 

of these projects utilizes various experimental methodologies for detecting, assessing, 

evaluating and characterizing the effects of complex chemical contaminants including Gas 

Chromatography-Mass Spectrometry (GC-MS), Ion Mobility-Mass Spectrometry (IM-MS), 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Ultraviolet-Visible Spectroscopy 

(UV-Vis), high-throughput imaging and image analysis. Hence, these four projects generate 

large quantities of highly diverse datasets, where their maintenance and analysis require a 

systematic approach through the development of a computational platform.

In addition to the four main research projects, there are three research supporting cores 

within the TAMU SRP, one of which is the Data Science Core. The Data Science Core 

serves as the basis for translating the data produced by the four research projects into useful 

knowledge for the community via data collection, quality control, analysis, visualization and 

model generation. This Core functions as a hub that collects, processes and integrates the 

aforementioned diverse datasets over a computational platform to draw specific conclusions 

via supervised (i.e., regression, classification) and unsupervised (i.e., clustering) analysis. 

These techniques are widely used in process systems engineering (PSE) including process 

monitoring (Onel et al., 2018b) and grey-box optimization (Beykal et al., 2018). In this 

work, we present the TAMU SRP computational platform which aims to promote 

collaboration across the Center and facilitate dissemination of methods/data across all 

projects of the program as well as to the wider community. The computational platform is 

developed as an online tool that specifically uses a relational database for data storage as 

well as statistical and machine learning techniques to create decision support models, 

housing both novel computational methodologies and state-of the-art data analytics 

techniques. It establishes an accessible front-end interface for the application of the high-

performance models and tools developed during collaborations with individual research 
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projects (Onel et al., 2018a). The details of the computational platform are provided in the 

following sections where its integration and connection with one of the biomedical projects 

is demonstrated as a motivating example.

2. Computational Platform

The online computational platform is developed in Python environment, whereas the 

backend functionalities utilize either R or Python environments. The relational database for 

storing and sharing data across the Center is based on SQLite. A flow diagram of the 

platform is shown in Figure 1. The computational platform is developed and implemented in 

two stages. The first stage entails the dissemination of datasets and methodologies across the 

Center for supplying a convenient environment for collaboration among all projects. The 

second stage enables access to the extracted knowledge, models, and tools with the scientific 

community, government and commercial stakeholders. In this work we will only present the 

developments of the first stage.

The computational platform first requires a data upload by the user, which is further passed 

to an initial quality monitoring module. The quality monitoring module checks the dataset 

for any missing data and/or outliers. Missing data is handled two-fold: (i) Deletion of rows 

or columns that include missing data, (ii) imputation by k-nearest neighbor (k-NN) 

methodology (Ramaswamy et al., 2000). This pre-processed data is stored under the 

relational database for future reference. A summary of this first module is provided as a 

feedback to the user. Second, the user specifies a type of inquiry, namely visualization and 

analysis. Currently, four visualization techniques are implemented within the platform 

including, boxplots, heatmaps, pie charts and scatter plots. Guidelines for selecting the 

relevant visualization technique is provided online. The generated plots or maps are then 

displayed on the interface which can be downloaded by the user. Specifically, further 

interpretation of boxplots, containing the summary of statistics (i.e., median, interquartile 

range etc.) is provided along with the visuals. Next, the datasets can be analyzed via 

unsupervised or supervised techniques depending on the purpose of the study. For 

untargeted analysis, clustering with hierarchical, k-means, and deep learning techniques are 

utilized. For targeted analysis, where the output of certain experiments is known and used 

for training models, supervised learning approaches are chosen. Specifically, for the datasets 

with discrete type of output (or label), classification techniques are used. Current 

classification techniques include Support Vector Machines (SVM), Random Forest (RF) 

Algorithm, and logistic regression. Whereas if the output of the dataset is continuous, 

regression techniques are employed. Here, in addition to SVM and RF Algorithm, 

interpolation (i.e., Kriging, radial basis functions) and multivariate regression techniques 

(i.e., linear, quadratic) are employed. The analysis selection is guided by the collaboration 

between the Data Science Core personnel and individual research projects. Once the data 

analysis methodology is established for a specific type of data, custom tools are generated 

and implemented within the platform. This automates the workflow across the Center, 

minimizes repetitive efforts, thus increasing the overall efficiency.

It is important to note that the large (i.e., exposomics and imaging) datasets generated by the 

two biomedical research projects under TAMU SRP are in high dimensional space. This 
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necessitates the use of dimensionality reduction techniques along with the aforementioned 

data analysis methodologies. To this end, numerous dimensionality reduction methodologies 

are implemented in the computational platform. These include Principal Component 

Analysis, Chi-squared test, built-in feature ranking algorithms of RF and in-house developed 

SVM-based feature selection algorithms (Onel et al., 2018b).

3. Motivating Example

Here, we present a motivating example from TAMU SRP Project 4 to showcase the use of 

the developed computational platform. This project focuses on understanding the hazardous 

effects of environmental contaminants and mixtures that may interfere with proper function 

of the human endocrine system, causing several adverse health effects (i.e., reproductive, 

developmental, metabolic etc.) due to modulations in hormone nuclear receptors’ action. 

Hence, Project 4 personnel develop single-cell high throughput microscopy experiments 

with associated image analysis and informatics, thus producing high dimensional imaging 

data to fingerprint the endocrine disruptor potential of chemicals and environmental 

mixtures, whereas Data Science Core personnel use the generated data to build predictive 

models that classifies and quantifies the endocrine disruptor potential. Below, the 

development of data-driven models that predict potential activity of chemicals on a 

prototypical target, the estrogen receptor (ER), and their use through the computational 

platform are described in detail.

In order to establish a framework, 45 known chemical compounds (agonists, antagonists and 

inactive for the ER) used by the United States Environmental Protection Agency (US EPA) 

are utilized to determine the effectors of ER action (Judson et al., 2015). The GFP-

ERα:PRL-HeLa cell line, and its derivatives, is an engineered model that allows multi-

parametric simultaneous measurements of many important features, including, ligand 

binding, DNA binding, chromatin remodeling and transcriptional output, required for the 

activation of Estrogen Receptors (ER) (Szafran et al., 2017). This high throughput 

microscopy assay is used to test the responses to the EPA 45 reference compounds as well as 

to the control agonist 17β-estradiol (E2) and antagonist 4-hydroxytamoxifen (4OHT). The 

effect of these test chemicals can broadly be classified three-fold: (i) agonist (which elicits a 

positive response of the ER signaling pathway – akin to E2), (ii) antagonist (mimicking a 

response like 4OHT), or (iii) inactive. By treating the cells with a six-point dose-response of 

these compounds, high throughput imaging data is generated and analyzed. This yields a 

data matrix of 180 (4 measurements for each 45 compounds) by 70 descriptors (features). 

Each descriptor considers various aspects of the ER pathway (i.e., Is the ER level changing? 

Does ER bind to DNA? How much chromatin remodeling happens? etc.). This dataset is 

later passed to the Data Science Core for further analysis and for modeling the ER disrupting 

potential of the tested compounds. The details on model generation and step-by-step use of 

the developed model within the computational platform are provided below.

Step 1 – Data Quality Monitoring:

As an initial step, the quality of the received experimental data is inspected by identifying 

any potential missing data. In this case study, there are no missing data. The complete 
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dataset is analyzed to detect any potential outliers via hierarchical clustering algorithm with 

complete linkage methodology and Euclidean distance metric. Identification and removal of 

outliers is essential in order to ensure accurate model development. The results reveal 

“Reserpine” as an outlier, which has been removed from further analysis (Figure 2).

Step 2 – Normalization:

The goal is to classify the compounds based on agonist/antagonist activity. To achieve this, 

inactive compounds must be separated prior to normalization and model building. This is 

done by using a threshold for the cell population with a visible nuclear spot, signifying ER-

DNA binding. Less than 10% of the cell population, that has a visible nuclear spot, are 

considered to be inactive and removed from further analysis. Then, the dataset is normalized 

in order to attain a consistent range per feature. Specifically, the order of magnitude of 

intensity related measurements significantly differ from measurements derived from nucleus 

shape. Therefore, normalization is performed by using Equation 1.

samplenormalized = sample − median media
median E2 − median media (1)

Step 3 – Predictive Modeling & Dimensionality Reduction:

Once the data is pre-processed, cleaned from outliers and normalized, various classification 

algorithms are applied to build predictive models. In this study, RF algorithm is employed 

for the classification of agonist/antagonist activity and for identifying important descriptors 

through the built-in feature ranking property (Breiman, 2001). Tuning is performed and 

optimal number of trees is identified as 500. Final model is then built with the optimal 

number of trees by using 5-fold cross-validation. The top 10 informative features achieved 

during modeling are also reported in Table 1. The model accuracy before dimensionality 

reduction is achieved as 90%, whereas the end-model, the reduced model that use the top 10 

informative features, has 92% accuracy.

Step 4 – Automation of Analysis:

This end-model is then converted into an executable tool and implemented to the Python 

based environment of the computational platform.

4. Future directions

Development of the computational platform is an ongoing process. As new data are 

generated, corresponding tools and models are tailored, updated and incorporated in the 

platform. Current limitation of the platform is that the analysis only covers the Center 

projects and datasets. However, access to historical data provided by government agencies is 

crucial for comparative analysis in TAMU SRP (e.g., ToxCast and Tox21 initiatives). 

Therefore, additional features will be provided for access to the relevant public data 

repositories through integration. Finally, one of the main goals of the Data Science Core is to 

serve as a basis to facilitate TAMU SRP data analysis and understanding. Therefore, training 
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for the use of generated models and tools within the computational platform will be 

provided in collaboration with the Research Translation and Training Cores.

5. Conclusions

In this study, development of a computational platform for the Texas A&M Superfund 

Research Center is presented. This platform provides on-demand, intuitive access to the 

custom-made data analysis tools and models developed for the environmental and 

biomedical projects within the Center. These analysis techniques are applicable to PSE 

problems. The ultimate goal is to establish an online data analytics services for rapid 

decision-making during environmental emergencies. This research is funded by U.S. 

National Institute of Health grant P42 ES027704 and Texas A&M Energy Institute.
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Figure 1. 
Online computational platform flowchart.
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Figure 2. 
Outlier identification via hierarchical clustering. Reserpine is identified as outlier.
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Table 1.

Top 10 informative features for agonist/antagonist classification.

Rank Measurement Rank Measurement

1 Nucleoplasm GFP Pixel Intensity Variance 6 Ratio of Nuclear Spot to Nucleoplasm GFP Intensity

2 Nuclear GFP Pixel Intensity Variance 7 Nuclear Spot GFP Pixel Intensity Variance

3 Nucleoplasm 90th Percentile GFP Pixel Intensity 8 Cytoplasm 75th Percentile GFP Pixel Intensity

4 Nuclear 90th Percentile GFP Pixel Intensity 9 Nuclear Spot 75th Percentile GFP Pixel Intensity

5 Nuclear Spot 90th Percentile GFP Pixel Intensity 10 Cytoplasm 90th Percentile GFP Pixel Intensity
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