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Introduction
 

It has been an ongoing and fascinating dream for more 
than 100 years to keep organs alive outside of the human 
body (1). However, only relatively small steps have been 
made to achieve this prestigious goal, despite numerous 
technical advances in the field of organ perfusion, 
including sophisticated pump heads, shielded tubes, filter 
developments, blood based perfusates, new oxygen carriers 
or computerized fully automatic circuit controls (2). Of 
note, while the process of organ donation, cold storage and 
transport appears completely reversible in healthy livers 
upon implantation in-vivo, with full function for many years, 
explanted organs, even of “good quality”, experience severe 
injury during only a few hours or days of cold storage or  
ex-situ perfusion (3). The reason behind remains the poorly 
understood metabolic needs, that determine pathways of 
injury or repair after cold or warm ischemia (4). Even more 

challenging is the task, therefore, to improve or repair 
injured organs ex-situ (Figure 1), a claim, which has however 
been frequently used by several investigators, in face of an 
ongoing organ shortage (5-8). 

In this review we specifically aim to describe limitations 
of ex-situ repair of marginal livers by different perfusion 
techniques. We summarize the current understanding of 
underlying mechanisms of different perfusion approaches. 
Next, we highlight recent achievements through clinical 
trials in the field, and discuss viability assessments. Finally, 
we suggest the potential design of upcoming trials based on 
clinical needs.

What are the main machine liver perfusion 
concepts? 

Two main ex-situ perfusion approaches for livers have 
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been recently introduced in the clinic, which differ 
fundamentally in terms of their logistics, and also in terms 
of their protective mechanism. First, an upfront machine 
perfusion, immediately after standard procurement, 
aims to replace the conventional cold storage (“icebox”) 
(Figures 1,2) (6). For this purpose, the organ is placed after 
procurement on a transportable device, and undergoes 
continuous perfusion until implantation in the recipient 
centre (2,6). Sophisticated and expensive systems are used 

for this approach, mostly at normothermic (NMP) or 
subnormothermic (SMP) temperatures, with a blood-based 
perfusate (Organox®, Transmedics®, Liver Assist®) (2,6,9-12). 
A modification of this technique involves an even earlier 
start of machine liver perfusion already in the donor, e.g., 
normothermic regional perfusion (NRP), instead of the 
routine cold in-situ organ flush (Figure 2) (13,14). Following 
donor cannulation after cardiac arrest and stand off period, 
NRP is an immediate in-situ perfusion of abdominal organs 

Figure 1 Survival of liver grafts after transplantation in-situ and ex-situ under the best possible normothermic conditions on different 
devices. Despite recent improvements of machine perfusion technology, liver graft survival during ex-situ perfusion remains limited and 
strongly depends on the perfusion device and the creation of a near physiological environment. Sophisticated and automatic devices, which 
include centrifugal pumps, oxygenators with a prolonged capability, dialysis, nutrition and diaphragm simulation may potentially prolong 
ex-situ survival of healthy livers for up to several day or weeks. Importantly, all devices fail to prevent the initiation of reperfusion injury and 
also the clearance, which lead therefore to an ongoing inflammation during prolonged perfusion of injured or high-risk liver grafts. 
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with donor blood for 2–4 hours, where the decision to 
procure the liver is based on liver enzyme release and lactate 
values during NRP. In Spain, donor cannulation prior to 
treatment withdrawal is accepted by law and national data 
from Maastricht type III donor liver transplantations have 
therefore shown a very short donor warm ischemia time 
compared to data provided by other countries (13,14). A 
logical extreme would be the combination of NRP and 
NMP, in order to keep the perfused organ without any 
intermittent cooling and therefore preventing interruption 
of normothermic perfusion until implantation. This concept 
leads to a complete abundance of cold ischemia and has 
been introduced as “ischemia free organ transplantation” 

in a few human livers (IFOT) (15). Although such 
procedure avoids repeated temperature changes during 
liver preservation, the massive technical complexity appears 
as clear hurdle for a broad clinical introduction (Figure 2). 
Additionally, the IFOT technique should be first compared 
to other perfusion techniques. 

The alternative machine liver perfusion approach is 
applied end-ischemically after initial cold storage and liver 
transport to the recipient center (“repair centers”) (16-18). 
Subsequently, the organs are perfused mostly for a relatively 
short period prior to implantation. Such end-ischemic 
perfusion techniques have been applied at all different 
temperatures, including normothermic and hypothermic or 

Figure 2 Currently available preservation technology for in-situ and ex-situ machine liver perfusion. Multiple new technologies for liver 
graft treatment and assessment are currently used and tested. Two main concepts include first the replacement of cold storage by perfusion 
or and endischemic approach, where livers are perfused after cold storage. Different temperatures and perfusate compositions are in use 
and one main interest is the definition of clinically relevant viability criteria, to decide if an injured or suboptimal liver can be utilized for 
transplantation or not. Importantly, multiple reasons apply for the decline of a certain graft at different categories and timepoints between 
the first donor allocation, liver procurement and implantation at the recipient centre. Clinical trials and case series, which are designed to 
assess the impact of machine perfusion technology should report such reasons and also the risk factors for livers of the declined cohort. 
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by a combination of both, defined as controlled oxygenated 
rewarming (COR) (19-22). Although, these techniques are 
logistically easier and cheaper, because a device transport 
is not necessary, the initial period of cold ischemia induces 
severe metabolic depletion before perfusion is started, 
particularly in high-risk grafts, such as steatotic or donation 
after circulatory death (DCD) livers (Figures 2,3) (23). 

Besides the timing of machine perfusion, the perfusate 
composition varies substantially among techniques 
at all temperatures (9,24). While normothermic or 
subnormothermic perfusions require the presence of red 
blood cells or artificial oxygen carriers, cold perfusion 
technologies rely on the amount of dissolved oxygen in 
the perfusate (9). Hypothermic oxygenated perfusion 

Figure 3 Mechanism of reoxygenation of ischemic liver tissue at different temperatures. Ischemic cells, experience a rapid loss of energy, 
and most adenosine triphosphate (ATP)—dependent processes are therefore on hold. This phenomenon is paralleled by a significant 
accumulation of NADH, citric acid cycle- and purine-metabolites, mainly succinate, hypoxanthine, and xanthine. Upon normothermic liver 
reperfusion, accumulated electron donors, such as NADH and succinate, deliver high amounts of electrons to mitochondrial complex I and 
II, while ADP is not yet available for the ATP synthetase (complex V), due to previous nucleotide breakdown during ischemia (“wheel is 
blocked”). This results in an intermittent blockage of proton back flow through the inner mitochondrial membrane, with consecutive high 
proton motive force, and subsequently reverse electron transfer (RET) between complex II and I, leading to the release of reactive oxygen 
species (ROS)—from complex I, which occurs within the first few minutes after normothermic reoxygenation. Further parameters, including 
DAMPs and different cytokines, which are used for viability assessment, appear just downstream. To minimize upfront mitochondrial 
injury during reoxygenation, reintroduction of oxygen at temperatures below the Arrhenius breakpoint temperature of 15 ℃ is required. 
Subsequently, the reactivity of mitochondrial transfer processes is significantly different and appears comparable to hibernating animals or 
plants. Mitochondria work more effectively at hypothermic temperatures and upload cellular ATP (Complex V; “wheel works properly”), 
while consuming cell processes are shut down. Hypothermic oxygenated perfusion (HOPE) after ischemia enables slower but congruent 
proton pumping through complex I, III and IV and protects therefore, first, from significant mitochondrial ROS-release from complex I, 
and secondly provides uploaded cellular energy reserves prior to organ rewarming and implantation. 
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(HOPE) at temperatures between 8–12 degrees is therefore 
performed with high perfusate oxygen concentrations  
(>80 kPa) (4,25). Of note, any machine liver perfusion in the 
cold need strict avoidance of too high perfusion pressures to 
prevent endothelial sheer stress with subsequent endothelial 
injury (25). 

What is the potential mechanism of protection 
of liver perfusion approaches?

The biochemical advantage of normothermic perfusion 
is the near physiological condition with the option to 
analyze and treat livers during ex-situ perfusion (23). 
The disadvantage, however, relies in the fact, that any 
reperfusion injury is also occurring during normothermic 
perfusion, as seen in-vivo, even in the absence of leukocytes 
or platelets, and also if filters for cytokines or danger 
associated molecular patterns (DAMPs) are used (23,26). 
This is based on recent evidence that mitochondrial injury 
is initiated by exposure of hypoxic tissues to oxygen before 
activation of non-parenchymal liver cells (Figure 3) (27,28). 
The basic steps of reperfusion injury are consecutively 
summarized as follows: ischemic cells, regardless of the 
organ type, experience a rapid loss of energy, and most 
adenosine triphosphate (ATP)—dependent processes 
are subsequently on hold (29,30). This phenomenon is 
paralleled by a massive accumulation of NADH, citric 
acid cycle- and purine-metabolites, mainly succinate, 
hypoxanthine, and xanthine (31-33). Upon normothermic 
liver reperfusion, accumulated electron donors, such as 
NADH and succinate, deliver high amounts of electrons 
to mitochondrial complex I and II, while ADP is not yet 
available for the ATP synthetase (complex V), due to 
previous nucleotide breakdown during ischemia (31,34). 
This results in an intermittent blockage of proton back 
flow through the inner mitochondrial membrane, with 
consecutive high proton motive force, and subsequently 
reverse electron transfer (RET) between complex II and 
I, leading to reactive oxygen species (ROS)—release 
at complex I (32,35,36). Any machine perfusion with 
an oxygenated perfusate after ischemia will therefore 
induce reperfusion injury to some extent. Importantly, 
mitochondrial ROS—release occurs within the first minutes 
of reintroduction of oxygen to ischemic tissues, and triggers 
an opening of the mitochondrial membrane pore with 
further release of mitochondrial DNA together with other 
DAMPs and multiple cytokines (19,35,37). Accordingly, 
the release of signaling proteins has been recently 

confirmed during endischemic normothermic perfusion of 
many different organs, including kidneys, lungs and also 
livers (3,26,38-41). In contrast, a newly recognized but 
decisive option to minimize upfront mitochondrial injury 
during reoxygenation, is cooling of mitochondria below 
the Arrhenius breakpoint temperature of 15 ℃ (42-44),  
thereby inducing significant changes in the reactivity of 
mitochondrial transfer processes, as seen in hibernating 
animals or plants (45,46). Likewise and surprisingly, 
mitochondria work also more effective at hypothermic 
temperatures in uploading cellular ATP, when consuming 
processes are shut down (Figure 3) (3,41,47,48). A similar 
central role of attenuating mitochondria derived oxidative 
injury is currently also recognized in other biological 
fields, such as aging and cancer development (49-51). 
Hypothermic oxygenated perfusion (HOPE) after ischemia 
protects therefore, first, from significant mitochondrial 
ROS-release, and secondly provides uploaded cellular 
energy reserves prior to organ implantation (3,19,36). Both 
effects depend, however, on the amount of accumulating 
metabolites during ischemia, which can in principle also 
lead to an oxidative injury during HOPE. Of note, the 
changes in mitochondrial metabolism during HOPE are 
detectable by perfusate analysis during cold perfusion, 
which will likewise be available as viability parameters in the 
future (19,52).

The clinical effect of this hypothermic perfusion 
approach is demonstrated in recent observational studies 
in Maastricht III DCD livers (53,54) and by a group from 
Milan in Maastricht II and III DCD livers, where NRP was 
combined with endischemic HOPE (55,56). These results 
have been achieved despite the use of extended DCD liver 
grafts, and are strikingly different from recent outcomes 
after end-ischemic normothermic perfusion of human  
livers (20,23).

Which livers would benefit from machine 
perfusion?

Despite the current hype for machine perfusion technology, 
cold storage remains effective for many grafts, with low cost 
and enormous simplicity (57). The transplant community 
has therefore to define thresholds for marginality, where 
perfusion concepts could add a relevant benefit. A huge 
variability exists however between countries, centres 
and surgeons how to define marginal, extended or high-
risk livers including DCD grafts (58), and guidelines are 
therefore needed in the future (59). For example, the type 
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and duration of donor warm ischemia is inconsistent in 
almost every transplant centre and country, e.g., defining 
functional donor warm ischemia (fDWIT) by an oxygen 
saturation in peripheral donor blood below <80% or 
70% or by a decrease of systolic blood pressure or mean 
arterial pressure (MAP) below 50 or 60 mmHg (60-62).  
Additionally, some studies rely more on the duration of 
the agonal phase (between withdrawal of treatment and 
circulatory arrest) or asystolic phase, than on fDWIT 
(time between asystole/circulatory death and cold flush 
or start of NRP) (63). Donor age is another classical risk 
factor with huge variations of recommended thresholds for 
acceptance of DCD livers, ranging between 50 and 90 years  
of age (63-66). The majority of clinicians would agree, 
that an advanced donor age >60 years allocates a DCD 
graft to the high risk or extended criteria donor (ECD) 
group. However, recently cohort studies have demonstrated 
comparable outcomes and suggested, that advanced donor 
age alone should not exclude utilization of an otherwise 
good DCD liver (64,65). Further risk factors in combination 
with donor age are needed to completely characterize the 
level of risk in a donor liver. To describe the entire picture 
of marginality or an ECD graft appears therefore rather 
complex and includes multiple risk factors, their thresholds 
and combinations with recipient risk (52). In addition to 
donor age, donor BMI, warm and cold ischemia times, level 
of macrosteatosis, graft type and viral status were frequently 
considered to impact on graft quality (18,59). Among 
clinicians, there is a general clinical consensus not to use a 
very “risky” livers for a sick recipient, including for example 
candidates with advanced portal vein thrombosis, listed 
for retransplantation or with higher MELD scores, which 
are already admitted or ventilated on intensive care unit  
(ICU) (62,67-71). 

Several risk score models were therefore developed to 
capture the cumulative risk in donors and recipients, for 
example by combing cold and warm liver ischemia, donor 
age, recipient age, recipient MELD, surrogate parameters 
of hepatic steatosis, and retransplantation (62,67,72-74).  
Despite well-known shortcomings of a relatively low 
overall positive predictive value of all score models, such 
systems help to decide which liver could be accepted 
for which recipient (62,75). In addition to centre and 
surgeons experience, the national donation rate per million 
inhabitants significantly impact on the level of donor risk 
accepted for transplantation. Countries with lower donation 
rates are forced to accept higher risk livers. One good 
example is Switzerland or Italy, where DCD livers with 

a prolonged fDWIT time (median >30 min) are usually 
accepted, in context of a high waiting list mortality (76). 
Interestingly, centres in countries with lower donation 
rate are usually more interested in underlying mechanisms 
of preservation technology to finally apply the perfusion 
approach with the greatest impact on the function of high 
risk liver grafts (16,19,25,47,55,77). 

Another part of the strategy to use risky livers is the 
selection of a fairly healthy recipient, as for example a 
transplant candidate with good liver function, but suffering 
from hepatocellular carcinoma (HCC). These patients have 
a prolonged waiting time, which depends on the extra point 
policy of allocation systems (MELD- or UKELD system: 
United Kingdom model of end stage liver disease) (78).  
Implantation of injured livers in cancer patients may 
generate however a higher risk for tumor recurrence due to 
a more pronounced reperfusion injury (79-82). Although 
retrospective series showed inconsistent results of tumor 
recurrence in relatively low risk DCD and DBD transplants 
(79,83,84), utilization of higher risk DCD livers, may need 
optimization by machine perfusion, particularly when used 
for tumor patients to avoid higher HCC recurrence rates in 
the future. 

How good are recent clinical liver perfusion trials?

The vast majority of clinical studies are retrospective 
assessments of new preservation techniques demonstrating 
mainly feasibility. Relevant conclusions are therefore 
difficult to obtain. While at least five randomized controlled 
perfusion trials are currently recruiting participants, 
only one RCT has been completed in 2018 (6,85). In 
this study, the authors compared normothermic machine 
liver preservation against conventional cold storage, and 
chose peak Aspartate-Aminotransferase (AST) as primary 
endpoint, which is however only a weak parameter of liver 
injury after transplantation (6). More clinical convincing 
would be the impact of machine perfusion on post-
transplant complications within a reasonable time-period, 
e.g., 6 months to 1 year, as for example in the two ongoing 
multicentric randomized machine perfusion trials on 
hypothermic liver perfusion (HOPE, D-HOPE). Of note, 
the lack of transparency in reporting of key risk factors 
makes a real comparison between different transplant 
centers and new preservation approaches difficult. For 
example, the reasons for discard of machine perfused livers 
are frequently subjective and underreported and lead to 
major selection bias (6). Additionally, parameters of livers, 
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declined just prior to ex-situ machine perfusion, assuming 
their quality appears too inferior to achieve a good outcome 
with normothermic perfusion, are often not described 
(21,86). Such practice fails to answer the most relevant 
clinical question, whether certain preservation techniques 
can increase the utilization rate and provide more livers, 
previously declined. 

Any future clinical trial should base on a uniform policy 
how to discard livers for transplantation. Unfortunately, 
most retrospective clinical studies, which aim to assess 
the impact of NRP or end ischemic NMP, fail to clearly 
demonstrate, why livers were declined prior to or during 
perfusion. It is also necessary to report parameters of 
injury during liver perfusion, similarly as done in kidney 
and lungs, to quantify the amount of circulating cytokines 
and DAMPs (26,39,87). In this context, the group of Chris 
Watson has demonstrated in a very detailed and transparent 
way, how they use reperfusion injury to assess livers 
during endischemic NMP (20). These investigators also 
reported based on which criteria they accepted or declined 
high-risk livers. In this context, perfusate lactate showed 
its inferiority to predict liver function and to prevent 
PNF (20). Additionally, bile flow alone was also a weak 
predictor of outcomes and complications. However, bile 
parameters including bicarbonate and pH at a threshold 
7.4, clearly discriminated livers with and without biliary 
complications in this series from Cambridge (20,23). Other 
retrospective case studies, where liver grafts were assessed 
during endischemic NMP, did not describe the reasons 
for decline transparently enough (86). Good DBD livers, 
declined for logistical reasons (Figure 4), perform equally 
well on any normothermic device with or without previous 
cold storage (6,88). In contrast, for example DCD livers or 
steatotic grafts, accumulate further invisible injury during 
prolonged cold storage, and experience the full reperfusion 
injury cascade, which suddenly becomes visible end enables 
quantification during endischemic NMP (41,89). Based on 
this, the detailed presentation of reasons why livers were 
declined, in any clinical series is of utmost importance 
(Figures 2,4). 

What is currently known in terms of viability 
assessment during machine liver perfusion?

All perfusion techniques have been investigated regarding 
liver metabolism and release of liver specific enzymes as 
markers of hepatocellular injury. For example, during NRP 
or NMP, markers of liver injury are now routinely analyzed 

and led to a first suggestion of a combination of parameters, 
which may serve as viability criteria (Figure 2). Yet, most 
viability markers currently rely rather on measurement of 
liver injury than on hepatocellular or biliary function. In a 
recent paper, Watson et al. demonstrated impressively, and 
very detailed, that such markers appear very insufficient and 
do not answer the question, if a certain liver is too high risk 
for transplantation. For example, Lactate clearance requires 
very few hepatocytes only and when a liver demonstrates 
lactate clearance, it does not automatically mean, that this 
graft will work properly in the recipient and moreover 
protect from ITBL. 

Some authors have therefore suggested to assess also 
bile fluid, not only in terms of quantity, but also the 
composition. And a bile pH of >7.4 was recently shown 
to represent appropriate Bicarbonate secretion into bile 
by Cholangiocytes and therefore protect from ITBL 
development. The use of different markers implies several 
critical points, not only the type of marker but also the 
threshold when to accept or not a graft needs to be defined. 
Our group has worked on new mitochondrial markers, such 
as flavoproteins released from mitochondrial complex I 
during normothermic or hypothermic perfusion. Although 
metabolic assessment of grafts during machine perfusion 
appears promising and feasible, validation in clinical trials 
will be needed before establishing routine perfusate analysis 
for the difficult decision whether to use or not marginal 
organs. 

The currently used markers include bile bicarbonate, 
pH and perfusate lactate clearance, assessed after 2–4 hours 
of normothermic perfusion (12,23,48,86). However, the 
declaration that “liver viability assessment is only feasible 
at normothermic temperatures” should be applied with  
caution (5). Numerous proteins and metabolites are also 
released during hypothermic and subnormothermic 
machine liver perfusion (90,91). A few of them are currently 
explored to predict liver function and outcomes after 
transplantation (19,91,92). A similar set of proteins has also 
been recently described in kidney perfusates and metabolic 
changes after reperfusion in brain tissue is very comparable 
to livers (92).

How should future clinical trials be designed? 

The design of the next clinical trial depends on the clinical 
question to be answered. Here the most burning and 
difficult one appears as: “Which perfusion technique enables the 
highest utilization rate of otherwise discarded livers with the best 
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available outcomes, regarding complications, graft- and patient 
survival”. Other important parameters, which require 
assessment are the reliability of viability markers and how 
cost effective is a specific preservation approach. While 
several RCTs are currently recruiting transplant recipients, 
the next clinically relevant trial should compare most recent 
concepts. For example, continuous with endischemic NMP 
compared to endischemic HOPE. However, to find a 
uniform definition of donor and graft risk with guidelines 
for clinicians how to utilize higher risk livers best for a 
certain population of liver recipients is at least equally 
important. 

In the next years, we may therefore expect the field 

to become even more interesting though possibly more 
difficult, as new devices, technologies and markers will 
appear and require further comparisons through clinical 
trials.
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Figure 4 Decision making based on clinical assessment and viability testing in DCD liver transplantation. Throughout the entire process 
of organ offer, donation, preservation, transport and implantation, decision making is becoming increasingly important and liver grafts are 
declines at different time points and for various reasons. DCD, donation after circulatory death.
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