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Abstract

Despite the high consumption of dietary supplements (DS), few reliable, relevant, and
comprehensive online resources could satisfy information seekers. This research study aims to
understand consumer information needs on DS using topic modeling, and to evaluate accuracy in
correctly identifying topics from social media. We retrieved 16,095 unique questions posted on
Yahoo! Answers relating to 438 unique DS ingredients mentioned in sub-section, “Alternative
medicine” under the section, “Health”. We implemented an unsupervised topic modeling method,
Correlation Explanation (CorEx) to unveil the various topics in which consumers are most
interested. We manually reviewed the keywords of all the 200 topics generated by CorEx and
assigned them to 38 health-related categories, corresponding to 12 higher-level groups. We found
high accuracy (90-100%) in identifying questions that correctly align with the selected topics. The
results could guide us to generate a more comprehensive and structured DS resource based on
consumers’ information needs.
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Introduction

Dietary supplements (DS) usage has gained popularity in recent years with almost 52% of
U.S. adults reporting the use of one or more supplement [1]. This high DS usage is
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especially common among adults aged =60 years, where 70% have reported using one or
more DS [2]. In spite of this escalating trend in DS consumption across a wide range of
consumers, there are not many online resources that consumers could refer to for DS
information that is personalized, reliable, succinct, up-to-date, and in a language that is
easily comprehensible by a lay-person.

In recent years, the internet has emerged as an important source of health-related
information providing an opportunity for people to search online for free health information.
According to a Pew Research Center report, 80% of internet users have looked for health
information online [3, 4]. This would be especially true in the case of DS as its use is
primarily self-initiated rather than based on clinicians’ recommendations [5]. Existing online
DS health information resources in the U.S. can range from open access, publicly available
databases, e.g., Food and Drug and Administration (FDA) [6]; Office of Dietary
supplements (ODS) [7]; Dietary Supplement Label Database (DSLD) [8], to commercial
databases that often require a paid subscription, e.g., Natural Medicines (NM) [9]. When it
comes to personalized queries from consumers, the information is often consolidated under
online resources such as “Frequently Asked Questions”. However, the information
dissipated from such resources is often very basic, non-specific, and not very helpful.

The rapid growth of digital data in today’s world, especially in the healthcare domain, offers
great opportunities for secondary use in clinical research. Topic modeling [10] has been an
area of great interest and to date, several studies have been conducted to make use of
electronic data and utilize this novel methodology. The reason for topic modeling’s growing
popularity is the area’s ability to reveal the latent structure and groupings of the underlying
corpus without any prerequisite knowledge. Some of the applications of topic modeling in
healthcare research include: analyzing clinical notes from Electronic Health Record (EHR)
data; discovering and understanding health care trajectories [11]; identifying medication
prescribing patterns [12]; mining adverse events of DS from product labels [13]; and
discovering health topics in social media [14, 15] among various others.

There are various social Questions and Answers (Q&A) sites and online forums within
health communities, e.g., Yahoo! Answers, allowing one to seek information through
posting questions and receiving answers from others users (e.g., consumers, health
professionals) [16]. Previously, we have used Yahoo! Answers data in several studies e.g., to
investigate the terminology and language gap between health consumers and health
professionals [17]; to mine consumer friendly medical terms to enrich consumer health
vocabulary [16]; and to understand the information needs for diabetes patients about their
laboratory results [18].

The purpose of this research study is to understand the information needs of DS consumers
by analyzing questions coming directly from consumers and in their own language. The goal
is achieved by using Correlation Explanation (CorEx) - a topic modeling algorithm on the
title and body of each question under the Q&A section of the Yahoo! Answers database in
order to unveil the “topics” around DS information needs. We generated a list of coherent
topics that more accurately represent the areas of DS-related information and associated DS
ingredients that consumers are most interested in. We will also evaluate the accuracy of the
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CorEx method in correctly identifying the topics from social media. In the future, the
knowledge gained from this study could be used as a guide for developing more meaningful
DS resources for consumers that are better aligned with their information needs.

Figure 1 illustrates the overview of the methods. We extracted and pre-processed questions
retrieved from the Yahoo! Answers database, focusing on questions around DS. We
performed topic modeling using CorEx in order to understand DS-related topics and
categories that consumers are most interested in. We then evaluated the accuracy of the topic
modeling methodology by manually reviewing a subset of top ranked questions. We further
investigated the actual DS ingredients associated with all the questions under each topic.

Collecting and Pre-processing Data

We collected in total 2,820,179 Yahoo! Answer questions and the corresponding answers
posted under 21 sub-categories belonging to the main category “Health”. We further
extracted 112,090 questions (including their titles and contents) from one of the sub-
categories “Alternative Medicine”. We then matched the preferred DS names in “iDISK”,
the first Integrated Dietary Supplements Knowledge base where DS related information is
represented in a comprehensive and standardized form [19], with the DS ingredient name in
the questions. After two assessors (YW, RR) had manually reviewed the matched preferred
names, we cleaned up the DS ingredient names list based on the following rules: 1) only
including ingredients with more than 5 matched questions; 2) excluding commonly
consumed everyday food/drink items, e.g., fruits, vegetables, wine, caffeine, and water; 3)
excluding body parts, e.g., adrenal cortex, brain, and stomach; and 4) excluding recreational
drugs e.g., marijuana, poppy seed. Only the questions that exactly matched the DS
ingredient names on this list were kept.

These questions were further pre-processed by subject matter experts (TN, JV) and used for
topic modeling. We removed all ingredient mentions within the questions to understand the
information needs non-specific to certain DS. Each question was then lower-cased and
tokenized. Special characters, hyperlinks, and common stop-words (e.g., ‘I, “you’, etc.)
were removed, and each word was normalized using the normalized string generator (Norm)
from the SPECIALIST NLP tool [20]. We only considered words that had at least 3
characters, since any word shorter than that was usually not meaningful. We also removed
words that occurred fewer than five times, or more than 85% of the time, as they might not
contribute much to the question.

Identifying Topics for DS Questions

In our preliminary investigation of different topic modeling strategies, we found that
Correlation Explanation (CorEx) [21] discovered the most coherent topics compared to
Latent Dirichlet Allocation (LDA). In contrast to LDA, which defines a generative model for
inferring topics, CorEx discovers topics by maximizing the mutual information between
words and topics. A subjective assessment of topic quality was performed by two
assessors/co-authors and subject matter experts (YW, RR). A topic was considered
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“coherent” by the experts if assessors found a clear semantic criterion that unites the words
under a particular topic. In total, we evaluated several results corresponding to various
CorEx models on different numbers of topics (n = 100, 150, 200, 250). Comparing topic
modeling results from 100 to 250 topics, we found the model with 200 topics yields the most
coherent topic categories.

The selected model was further analyzed and assigned topic names after mutual agreement
between two assessors (YW, RR). The “topics” with similar themes were then merged into
“categories” (e.g., gastrointestinal disorders, psychiatric disorders) that were further
condensed into higher level “groups” (e.g., “uses and symptoms™). For the group, “uses and
symptoms”, we utilized System Organ Classification (SOC) created by the Medical
Dictionary for Regulatory Activities (MedDRA), a medical terminology used to classify
adverse event information associated with the use of biopharmaceuticals and other medical
products [22].

Topic Evaluation

Results

To evaluate the accuracy of the topic modeling, we selected 15 topics and extracted their
corresponding 10 questions with highest ranked probabilities. Manual review (RR, YW) was
conducted to determine if the extracted questions correctly aligned with topics generated by
the above topic modeling methods. The measure of correctness was reported as percentage
accuracy. We also extracted the DS ingredient names corresponding to each topic in order to
explore the distribution of ingredients names across various topics. We also reported the DS
ingredients associated with most questions for selected topics.

Question Data and Topic Analysis

The final list consisted of 438 unique DS terms in total associated with 16,095 unique
matching questions. After data pre-processing, our corpus contained a total of 213,790
tokens, which made up of 7,164 unique words.

From the 200 topics generated by CorEx modeling method, the domain experts (RR, YW)
identified topics with similar themes and classified them into 38 unique categories by (Table
1). The 38 unique categories were further summarized into the following 12 higher level
groups: uses or adverse effects, product-related, healthy lifestyle, information resources/
scientific evidence, addiction, time of use qualifier, sleep disorder, interventions, adverse
effect in general, health benefits, mind and body, and population qualifier. The distribution
of higher-level groups and number of their associated categories is provided below (Figure
2).

After evaluating the top 10 ranked questions for selected topics, we reported accuracy as
number and percentage of questions that correctly aligns with the generated topic. Table 1
lists examples of selected topic groups, their associated categories along with the top 15
most probable words and common ingredients mentions.
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We found the percent accuracy for most of the selected topics is between 90% - 100%,
except sleep (80%) and frequency/time categories (70%). “Use and adverse effects” is the
most dominant topic group and accounted for 50 topics out of 200. Under this topic, there
were 15 categories classified based on MedDRA SOC (Figure 3).

Dietary Supplements Associated with Most Questions

We also extracted the DS ingredient names associated with most questions corresponding to
a particular topic in order to explore the distribution of most commonly discussed
ingredients. Only DS ingredients associated with 210% of questions under a specific topic
were reported (Table 2).

Discussion

In this study, we employed CorEx topic modeling over user-generated questions coming
from the Yahoo! Answers data in order to better understand the information needs of
consumers. We also discovered interesting information on the distribution of DS ingredients
across topics of special interest to consumers. This research effort further validates the
feasibility of topic modeling to extract important information hidden in large corpus of
social media data.

Applying CorEx topic modeling methods, we were able to accurately identify 12 topic
groups. The top three groups with the most number of respective assigned categories and
topics, which can be regarded as the information most sought by consumers, are: “use and
adverse effects”, “product-related”, and “healthy life style” (Figure 2). Extracted information
pertaining to any symptom or sign could either be an indication or an adverse event of a DS,
(e.g., diarrhea, abdominal pain, palpitations, headaches); therefore, uses and adverse effects
were combined as one group, “use and adverse effects”. We found a higher number of topics
and the associated number of questions concerning: gastrointestinal system (specifically
diarrhea and constipation); psychiatric (mainly anxiety and depression); and skin and
subcutaneous tissues (primarily acne and UV protection). We also had a “mixed group”,
having keywords corresponding to more than one system. For “product-related groups”, we
merged categories like dose, dose from, preparation because of their co-occurrence under
one topic (e.g., Topic #43). Under the “healthy life style” group, the topics were mostly
around eating healthy and weight control/exercise.

We found high accuracy when we identified questions that correctly align with the topic
categories/groups (Table 1). We found few low matching accuracy topics also having
questions related to other topics, e.g., sleeping disorders topic with questions related to
recreational drug, anxiety/depression. We also reported actual DS ingredient names
associated with most questions for a particular topic (Table 2). We found a substantially
higher percentage of questions for the ingredients “Honey” under respiratory disorders and
“Melatonin” under sleep disorders. This information provides essential knowledge on the
use of DS for various specific reasons and needs further exploration.

This research study had several limitations. We analyzed only questions belonging to
alternative medicine sub-category under “health” section and might have missed dietary

Stud Health Technol Inform. Author manuscript; available in PMC 2019 October 15.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Rizvi etal. Page 6

supplement occurrences under other sub-categories, e.g., mental health conditions, general
health care. We only used preferred DS ingredient names and not their synonyms (e.g.,
scientific names, common names) to extract the corresponding questions. Also, there are
inherent limitations to topic modeling e.g., topics were generated based on the statistical
word distribution within the questions and thus topics with incoherent topic keywords were
also generated.

Conclusions

This research provides essential insights on extracting and understanding the information
needs of consumers around dietary supplements using CorEx-based topic modeling that
could identify the relevant topics embedded in a large corpus of Yahoo! Answers data with
high accuracy. The knowledge gained here could be used to generate a more comprehensive
repository of resource for consumers around dietary supplements usage. Thus, this study is
an important contribution in further accentuating the potential benefits of using social media
data in the clinical research.
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Total Number of Questions Matched for Each Topic The representative ingredient is the one that matched the
most questions. The percentage of the questions that mentioned the representative ingredient is shown in the
parenthesis. The text in bold represents the ingredient with high percentage of associated questions.

Topic categories Topic Index)

Number of

Representative

Questions containing

questions matched  Ingredient Representative Ingredient
Gastrointestinal disorders (65) 145 Magnesium 24 (16.55%)
Musculoskeletal disorders (93) 45 Copper 11 (24.44%)
Psychiatric disorders (11) 256 Valerian 45 (17.58%)
Respiratory (including ear, nose & throat), thoracic
& mediastinal disorders (1) 416 Honey 226 (47.48%)
Skin & subcutaneous tissue disorders (23) 84 Apple Cider Vinegar 17 (20.24%)
Elze)trdio—vascular/blood & lymphatic system disorders 264 Iron 38 (14.39%)
Endocrine disorders (68) 48 lodine 11 (22.92%)
Infections & infestations (31) 160 Cranberry 37 (23.12%)
Smokables (21) 134 Damiana 11 (8.21%)
Dose/dose form/preparation (43) 98 Biotin 35 (35.71%)
Sleeping (50) 45 Melatonin 29 (64.44%)
Weight control (19) 171 Acai 26 (15.20%)
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