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Abstract

Motivation: Flow and mass cytometry are experimental techniques used to measure the level of

proteins expressed by cells at the single-cell resolution. Several algorithms were developed in flow

cytometry to increase the number of simultaneously measurable markers. These approaches aim

to combine phenotypic information of different cytometric profiles obtained from different cytome-

try panels.

Results: We present here a new algorithm, called CytoBackBone, which can merge phenotypic in-

formation from different cytometric profiles. This algorithm is based on nearest-neighbor imput-

ation, but introduces the notion of acceptable and non-ambiguous nearest neighbors. We used

mass cytometry data to illustrate the merging of cytometric profiles obtained by the CytoBackBone

algorithm.

Availability and implementation: CytoBackBone is implemented in R and the source code is avail-

able at https://github.com/tchitchek-lab/CytoBackBone.

Contact: nicolas.tchitchek@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Flow and mass cytometry are experimental techniques used to meas-

ure the level of proteins expressed by cells at single-cell resolution.

Flow cytometry is currently limited to the measurement of approxi-

mately 15–22 cell markers. Mass cytometry, derived from this tech-

nique and mass spectrometry, increased the number of available

measurements per single cell to more than 50 cell markers. However,

the study of immune responses would be further improved by increas-

ing the number of simultaneously measurable markers.

Computational approaches were designed in flow cytometry for

simultaneously studying cell markers from different cytometric pro-

files. In these approaches, algorithms overlap phenotypic information

in different profiles using a set of common markers. An approach

based on nearest neighbor (NN) imputation was first proposed

(Pedreira et al., 2008), and subsequent developments were later pro-

vided (Lee et al., 2011; O’Neill et al., 2015).

We designed a new algorithm, called CytoBackBone, which

allows combining phenotypic information of cells from different

cytometric profiles obtained from different cytometry panels.

Importantly, profiles to combine must be obtained from the same

sample or same tissue type. CytoBackBone is based on NN imput-

ation, but introduces the notion of acceptable and non-ambiguous

NNs. This notion is key to produce symmetrical and noise-free

results. We used mass cytometry data to illustrate the merging per-

formed by CytoBackBone.
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2 Algorithm details

CytoBackBone is an NN-based algorithm that merges phenotypic

information obtained from different cytometry panels.

In our approach, CytoBackBone combines marker expression in-

formation of two cells from different cytometric profiles if, and only

if, these two cells are acceptable and non-ambiguous NNs. To find

these NN cells, CytoBackBone uses the expression levels of the set

of markers shared by the two cytometric profiles. We define here-

after this set of common markers as the backbone. This NN imput-

ation is based on a k NNs algorithm (with k¼1) based on k-d tree

space partitioning.

The merging of two cytometric profiles performed by the

CytoBackBone algorithm is shown in a three-dimensional space

(Fig. 1). In details, CytoBackBone works as follows: (i) cells of each

cytometric profile with no acceptable neighbors are first excluded

from the two input profiles; (ii) all acceptable and non-ambiguous

NN cells remaining in the two profiles are merged into a new profile

and discarded from the two input profiles; (iii) the second step is

repeated until no more acceptable and non-ambiguous neighbor

cells can be found in the two input profiles and (iv) finally, all

excluded and remaining cells are isolated in a supplementary cyto-

metric profile for information purposes. In the merged profile, the

phenotypes of cells correspond to the average marker expressions

for the set of backbone markers and to the specific marker expres-

sions for non-backbone markers.

These successive iterations ensure that the algorithm finds a new

set of acceptable and non-ambiguous neighbor cells at each step.

In the best situation (i.e. if the two cytometric profiles to

merge are highly similar based on their backbone markers), the

resulting merged profile will contain as many cells as the smallest

profile.

To be acceptable neighbors, the phenotypic distance between

two cells must be lower than a specific distance threshold

(defined by the user). This phenotypic distance corresponds to the

Euclidean distance computed as the square root of the sum of the

squared expression differences for each pair of common markers.

More precisely, we defined this phenotypic distance between two

cells as

Dc1;c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðMSIc1;i �MSIc2;iÞ2
s

;

where c1 and c2 correspond to two cells, n to the number of back-

bone markers, and Median Signal Intensity (MSI) to the transformed

arcs in expression intensities for the backbone marker i of the cell c.

To be defined as non-ambiguous NNs, two cells of the two

different profiles must reciprocally be the closest neighbors.

To identify these non-ambiguous NNs, the algorithm identifies the

closest cells in cytometric profile #2 for each cell from cytometric pro-

file #1. Then, the algorithm identifies the closest cells in cytometric

profile #1 for each cell from cytometric profile #2. The merging of

phenotypic information is possible only if the two cells from the

two different cytometric profiles are identified as mutual non-

ambiguous NNs.

A distance threshold, defining acceptable NNs, needs to be speci-

fied to avoid merging two cells with large differences in the expres-

sion levels of backbone markers: the lower the threshold, the more

stringent is the merging. Distribution expressions of backbone

markers can be quantile-normalized to ensure similar intensity levels

across the different cytometric profiles (Bolstad et al., 2003). Such a

strategy is based on the assumption that the differences of backbone

marker distributions between the cytometric profiles to merged are

only due to experimental variabilities.

3 Merging illustration

The efficiency of the CytoBackBone algorithm was illustrated using

whole blood samples from a healthy patient. Samples were stained ei-

ther with a complete mass cytometry panel of 35 markers, or with

one of the four incomplete mass cytometry panels. Incomplete anti-

body panels were derived by omitting several markers from the com-

plete panel, and were used to generate combined cytometric profiles

(Supplementary Appendix S1 and Supplementary Table 1). As shown

in Supplementary Appendix S2 and Supplementary Figure S1, the dis-

tributions of cells present in the combined Flow Cytometry Standard

(FCS) files were similar to those from reference FCS file.

Merging produced by CytoBackBone are symmetrical and noise-

free thanks to the notion of acceptable and non-ambiguous NNs

(Supplementary Appendix S3 and Supplementary Fig. S2). Without

the notion of non-ambiguous neighbors, multiple cells from one

given profile can be mapped to the same cell from the other profile.

The concept of acceptable neighbors avoids the merging of very dis-

tinct cells.

A benchmarking of merging settings revealed that both the

length and the content of the backbone impact the merging quality

(Supplementary Appendix S4 and Supplementary Fig. S3). The nor-

malization increased the number of merged cells but only slightly

the merging quality.

(a) (b)

(c) (d)

Fig. 1. 3D representation of the merging process. Axes correspond to back-

bone markers and cells are positioned based on their marker expressions. (a)

and (b) Profiles #1 and #2 correspond to the cytometric profiles to merge. Red

dots correspond to cells with acceptable neighbors between the two cytomet-

ric profiles. Black dots correspond to cells without acceptable NNs. (c) Profile

#output represents the merged cytometric profile. Red dots correspond to the

combined phenotypes of cells from profiles #1 and #2 with non-ambiguous

and acceptable NNs. (d) Profile #discarded corresponds to cells without ac-

ceptable NNs. The presence of red dots (i.e. cells with potential acceptable

neighbors) in the profile #discarded can be explained by a higher number of

cells in one of the two cytometric profiles
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4 Conclusion

In principle, there is no limit to the number of cytometric profiles

that can be merged by the CytoBackBone algorithm. Merging results

produced by CytoBackBone are symmetrical and more-stringent

compared to other approaches.
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