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Bacteria often live in spatially structured groups such as biofilms. In these
groups, cells can collectively generate gradients through the uptake and
release of compounds. In turn, individual cells adapt their activities to the
environment shaped by the whole group. Here, we studied how these pro-
cesses can generate phenotypic variation in clonal populations and how this
variation contributes to the resilience of the population to antibiotics. We
grew two-dimensional populations of Escherichia coli in microfluidic
chambers where limiting amounts of glucose were supplied from one side.
We found that the collective metabolic activity of cells created microscale
gradients where nutrient concentration varied over a few cell lengths. As a
result, growth rates and gene expression levels varied strongly between
neighbouring cells. Furthermore, we found evidence for a metabolic cross-
feeding interaction between glucose-fermenting and acetate-respiring
subpopulations. Finally, we found that subpopulations of cells were able
to survive an antibiotic pulse that was lethal in well-mixed conditions,
likely due to the presence of a slow-growing subpopulation. Our work
shows that emergent metabolic gradients can have important consequences
for the functionality of bacterial populations as they create opportunities
for metabolic interactions and increase the populations’ tolerance to
environmental stressors.

This article is part of a discussion meeting issue ‘Single cell ecology’.
1. Introduction
Many bacteria live in spatially structured groups where they experience cell
densities a hundred to a thousand times higher than in a typical batch-culture
[1]. Due to these high densities, cells can modify their environment with their
collective metabolic activity [2,3]. Cells living in spatially structured popu-
lations can thus create environmental conditions that are not accessible to
cells living in isolation and this can have important consequences for the
functioning of these populations.

For example, by consuming resources and excreting metabolites cells can
generate gradients in the environment [2,3]. In turn, the different microenviron-
ments can induce phenotypic differentiation in the population [4–6]. This
differentiation can allow parts of the population to specialize on different
tasks, as has been observed in bacterial colonies and biofilms [7–10].

When different subpopulations specialize on complementary metabolic
pathways, these subpopulations can engage in cross-feeding interactions
[11–14]. Two examples of such metabolic cross-feeding have recently been
observed in Escherichia coli and in Bacillus subtilis. In E. coli, cells in the interior
of a three-dimensional colony, close to the nutrient source, ferment glucose to
acetate, which diffuses to the surface of the colony where it is consumed by a
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second subpopulation [11,13]. Likewise, in B. subtilis it was
found that cells in the interior of a two-dimensional biofilm
produce ammonium, which is consumed by a second
subpopulation on the periphery of the colony [15].

In both these examples, metabolic specialization was
observed in large populations (of 100 000 cells or more) and
the different subpopulations were separated by distances that
were much larger than a typical cell length [11,15]. However,
in nature bacteria regularly live in nutrient-poor environments
where population sizes can be much smaller [16]. This raises
the question of how relevant these metabolic interactions are
in natural environments.

Here, we hypothesized that phenotypic specialization
and metabolic interactions can also occur in small popu-
lations and can thus be of general importance in nature. We
recently found that, in dense multi-genotype communities,
cells are able to create gradients of metabolites on a spatial
scale of a few cell lengths, when these metabolites are present
in low amounts [17]. In general, the spatial scale over which
cells deplete nutrients depends on the density of cells and the
concentration of nutrients in the external environment. We
thus hypothesized that nutrient gradients could also arise
in small clonal populations of densely packed cells growing
in nutrient-poor environments. As a result, individuals
could specialize on different metabolic activities at a very
local scale and metabolic cross-feeding could occur even in
small populations.

To test our hypothesis, we studied the growth of E. coli
cells inside microfluidic chambers which open on one side
into a flow channel where we supplied low amounts of
glucose. In these chambers, cells form two-dimensional popu-
lations of about 1000 cells with cell densities comparable to
those observed in dense biofilms. While natural biofilms are
typically three-dimensional, essential features of life in struc-
tured populations can also be observed in two-dimensional
populations. This pertains especially to the formation of gradi-
ents: typically, nutrients enter a three-dimensional population
either from the substrate on which cells grow or from the
surrounding liquid environment; in both cases, nutrient gradi-
ents are created predominantly along a single dimension, like
in our chambers. Therefore, we expect qualitatively similar
gradients in two- and three-dimensional populations.

Our microfluidic chambers have multiple advantages:
unlike in biofilms, we can easily quantify the properties of
individual cells inside the population; furthermore, we can
rapidly change the external environment in a controlled
way. Our system can thus be used as a model for natural
habitats where small populations grow under rapidly chan-
ging environmental conditions. Such conditions are, for
example, likely to be found in fluid-filled porous environ-
ments, such as the soil [16], or in host compartments such
as the lungs in cystic fibrosis patients [18].

We hypothesized that cells in our microfluidic chambers
would engage in a glucose-acetate cross-feeding interaction.
When glucose is abundant, E. coli cells respire glucose only
in part, and ferment the rest to acetate [19,20]. In batch
cultures glucose and acetate are consumed sequentially: acet-
ate accumulates while cells ferment glucose and is only
consumed after glucose becomes depleted [19]. However, in
spatially structured populations, such as colonies, two differ-
ent subpopulations are able to metabolize glucose and acetate
synchronously [11]. According to our hypothesis, such
glucose-acetate cross-feeding could even occur in small
populations when the external glucose concentration is low:
the cells closest to the glucose source would rapidly consume
all available glucose and excrete acetate, while cells only a
few cell lengths away would be deprived of glucose and
consume the excreted acetate.

We furthermore hypothesized that gradients created by
the combined metabolic activity of the population could pro-
vide resilience to changing environmental conditions. As cells
adapt their phenotypes to the local conditions in the gradi-
ents, phenotypically distinct subpopulations are generated
and some of these subpopulations could be more tolerant
to stressful environments. For example, biofilms often show
tolerance to antibiotic treatments that are lethal to cells
growing in batch culture [21]. Tolerance of biofilms to these
treatments is partly explained by the formation of slow or
non-growing subpopulations [22–24]. We expected that
small populations could show similar tolerance to antibiotic
treatments whenever strong local gradients in nutrients
create subpopulations with high phenotypic variation.
2. Results and discussion
(a) Cells generate metabolite gradients on micrometre

scale
We grew cells inside microfluidic chambers of 40 µm wide and
60 µm deep, which are closed on three sides and open on one
side into a flow channel (figure 1a). In the microfluidic
chambers, which are 0.76 µm high, cells grow in two-
dimensional monolayers (figure 1b). In the flow channel, we
continuously pumped fresh media (M9 minimal medium
with 800 µM of glucose as the only growth-limiting nutrient).
In preliminary experiments, we established that this concen-
tration is high enough to allow for maximal growth rates close
to the chamber opening but low enough to be depleted towards
the chamber back. We developed two techniques to automati-
cally quantify the growth of cells: (1) a method quantifying
single-cell elongation rates using single-cell segmentation and
tracking and (2) a method quantifying average population
growth using optical flow (figure 1b and Methods).

We found that growth rates were maximal close to the
chamber opening and decreased (but did not become zero)
towards the chamber’s back (figures 1b and 2b). This suggests
that cells collectively form a gradient in glucose along the
depth of the chamber and grow slower as glucose becomes
depleted. These gradients are created on a micrometre scale:
growth rates havedecreasedbyhalfwithin 25 µmof the chamber
opening, a distance that corresponds to only 10 cell lengths.

To further quantify the behaviour of cells along the glu-
cose gradient, we measured the expression level of ptsG, a
high-affinity glucose importer that is expressed when cells
are exposed to glucose concentrations that are so low that
they limit cellular growth rates [25–27]. ptsG expression
started at depths greater than 30 µm and reached maximal
expression levels at a depth of 40 µm, suggesting that cells
in these regions are limited by glucose (figure 2a,b). Near
the back of the chamber, ptsG expression was almost comple-
tely absent, suggesting that glucose is fully depleted in this
region (figure 2a,b).

To confirm that the gradients in growth rate and ptsG
expression are caused by the depletion of glucose, we repeated
our experiments while varying the glucose concentration
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Figure 1. Two-dimensional microfluidic chambers allow for single-cell measurements in dense populations. (a) Cells were grown in chambers of 40 µm by 60 µm
that open on one side into the flow channels. The chambers have a height of 0.76 µm forcing cells to grow in a monolayer; the flow channel has a height of 23 µm.
(b) Phase-contrast image of a single chamber (left) with corresponding growth rates as function of depth (right). Average growth rates decrease towards the back of
the chamber and were estimated using an optical-flow (blue) and cell-tracking (grey) based method. Growth rates were averaged over a 1 h time window, along the
width of the chamber, and over a moving window with a depth of 6 µm (flow) or 2 µm (tracking). Shaded area indicates 95% confidence interval. Image brightness
has been adjusted. The phase contrast image shows a band (halo) of higher brightness near the chamber opening: this is an imaging artefact caused by the
proximity of the flow channel.
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Figure 2. Phenotypic variation arises from nutrient gradients. (a) False-colour image of single chamber. Cells limited by glucose express ptsG (magenta), cells
consuming acetate express acs (green). Image brightness and contrast have been adjusted for each colour channel separately. (b) Average gene expression profiles
(left) and growth rates (right) of cells when 800 µM of glucose is supplied in the flow channel. Gene expression levels were estimated as the normalized fluorescence
intensity of a RFP ( ptsG) and GFP (acs) transcriptional reporter located on the same plasmid. Expression levels were averaged over a moving region with a depth of
2 µm and normalized by their maximal values. Profiles show an average of three biological replicates (28 chambers), shaded areas indicate 95% CIs. (c) Depth of
gradient measured as the depth at which ptsG reaches maximum expression level (magenta circles) or where growth rates reach a value of 0.05 1 h−1 (grey squares)
as function of glucose concentration in the flow channel. Data show the average value of 10 chambers (five for 1400 µM) from one biological replicate, bars indicate
95% CIs. (Online version in colour.)
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supplied in the flow channel. We observed that both the depth
at which growth rate was low (less than 0.05) and at which
ptsG expression peaked moved further to the back of the
chamber as we increased the glucose concentration (figure 2c).
These data show that the consumption of glucose by the cells
in our chamber depletes glucose to such low concentrations
that it leads to a decrease in growth rate along the depth of
the chamber. This finding is compatible with previous work
in batch and chemostat cultures, where the growth rate of
cells was found to reach half its maximal value in a range
of glucose concentrations between 200 nM and 550 µM,
depending on culture conditions [28].

Together, our data show that the collective metabolism of
cells generates gradients in glucose. In our chambers, cells
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Figure 3. Glucose-acetate cross-feeding interaction emerges between subpopulations. (a) Growth rate (top) and ptsG expression levels (bottom) compared between
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corresponds to the average growth rate in a single replicate, with 6 to 10 chambers per replicate at 45 µm and one chamber per replicate at 12.5 µm. The
Δacs mutant strain has a growth defect in the back of the chamber (ANOVA analysis, electronic supplementary material, table S1). In one replicate of the
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likely create gradients in several compounds other than glu-
cose, through the consumption of nutrients and the release
of metabolites and signalling molecules. As a result, cells at
different locations in the chambers vary strongly in their
growth rates and gene expression.

(b) Nutrient gradients induce emergence of glucose-
acetate cross-feeding interactions

We hypothesized that cells near the opening of the chamber
produce acetate, which is consumed by cells at the back of the
chamber where glucose is not available. To test this hypoth-
esis, we measured the expression level of acs, a gene
required for growth on low concentrations of acetate
[19,27,29]. Expression levels of acs peak at the very back of
the chamber, where ptsG expression decreases (figure 2a,b),
suggesting that cells at the back are exposed to acetate but
not to glucose. This is consistent with our hypothesis that
cells in the back of the chamber grow on the acetate produced
by cells near the opening.

To verify that cells in the back of the chamber grow on
acetate, we compared the growth of a wild-type strain with
that of an Δacs mutant strain. Escherichia coli primarily uses
the Acs enzyme to grow on low acetate concentrations; Δacs
mutant cells should thus be severely impaired in their ability
to grow on the low amounts of acetate present in the micro-
fluidic chambers [19,29]. We observed that the Δacs mutant
cells consistently grew slower than the wild-type cells in
the back of the chamber (figure 3a). The slow growth we
still observed for the Δacs mutant in the back of the chambers
could be due to small amounts of remaining glucose, or other
metabolites excreted by cells near the chamber opening
(e.g. succinate [19]). The Δacs mutant could also potentially
metabolize acetate using the PKA pathway [19].

We quantified the growth defect of the Δacs mutant in the
back of the chamber while accounting for the possibility that
the two strains have different maximal growth rates. Specifi-
cally, we compared the maximal growth rates of cells near the
chamber opening (depth less than 12.5 µm) with the growth
rate of cells at a depth of 45 µm, where the wild-type is
expected to consume acetate (acs expression reaches 50% of
its maximal level at this depth, figure 2b). We performed an
ANOVA on log-transformed growth rates and found signifi-
cant effects of strain ( p < 0.001), depth ( p < 0.001), and the
interaction between strain and depth ( p = 0.001, figure 3b;
electronic supplementary material, table S1). The latter
indicates that the wild-type cells have a smaller growth
decrease between the chamber opening and the chamber’s
back relative to the Δacs mutant. This is consistent with the
hypothesis that only wild-type cells consume acetate in the
back of the chamber. Our data thus suggest that a cross-
feeding interaction occurs between glucose-fermenting cells
near the opening of the chamber and acetate-respiring cells
in the back of the chamber.

Glucose-acetate cross-feeding was reported previously in
E. coli colonies [11,13]. Cole et al. observed that above a
certain size of the colony two large subpopulations emerge,
one fermenting glucose and the other respiring acetate,
which are separated by a large non-growing population
[11]. Here, we found that cells growing within a few cell
lengths from each other can differ in their metabolic activity
as much as these two subpopulations. Specifically, cells
with maximal ptsG expression levels are located only five
cell lengths (11 µm) from cells with maximal acs expression
levels and the subpopulations expressing acs or ptsG are
both found over a region of only six cell lengths in depth
(14 µm, quantified as the region over which expression
levels are above 50% of their maximal value).

Our study complements previous work on metabolic
cross-feeding in spatially structured bacterial populations.
Specifically, the study by Cole et al. used much higher glucose
concentrations (14 mM versus 0.8 mM in our study); as the
length scale of the gradient scales with the external glucose
concentration, we observed gradients and cross-feeding on
much smaller scales. Second, in the previous study, glucose
and oxygen entered the colony from opposing sites
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generating an internal non-growing population separating
the glucose- and acetate-consuming subpopulations; in our
system oxygen enters both with the medium (along with
the glucose) and through all surfaces of the chamber (the
microfluidic devices are fabricated from a material that is
permeable to oxygen [30]) and the glucose- and acetate-
consuming cells are located directly adjacent to each other.

Our work, combined with previous studies, shows that
cross-feeding interactions between glucose-fermenting cells
and acetate-respiring cells form both in large colonies of bil-
lions of cells in nutrient-rich environments and in small
populations of just a thousand cells in nutrient-poor environ-
ments. This suggests that glucose-acetate cross-feeding is a
robust feature of spatially structured E. coli populations.
More generally, we can expect cross-feeding interactions to
emerge in spatial populations of other bacterial species when-
ever energetically rich intermediates are released by part of
the population [15].

(c) Cells in structured environments are tolerant
to antibiotic exposure

We now turn to our hypothesis that cells in structured
environments are more resilient to environmental stressors
due to the presence of slow or non-growing subpopulation.
We exposed the populations in the microfluidic chambers to
50 µg ml−1 streptomycin for 3 h. Both before and during anti-
biotic exposure, we supplied low concentrations of glucose
(800 µM) in the flow channel to allow for the formation
of phenotypically diverse subpopulations. After antibiotic
treatment, we switched to high concentrations of glucose
(10 mM) to test whether cells in the back of the chamber
survived the antibiotic treatment and could grow.

We observed that spatially structured populations were
tolerant to antibiotic exposure. While in batch cultures a
3 h pulse of 50 µg ml−1 streptomycin led to more than a
two-million-fold reduction in cell numbers (figure 4c),
we observed that in all 38 chambers (with each about
1000 cells) parts of the populations were able to survive
the antibiotic pulse (figure 4a).

We hypothesized that the populations in the microfluidic
chambers survived antibiotic treatment due to the increased
tolerance of the slow-growing subpopulation of cells in the
back of the chamber. Visual inspection of the chambers
indeed suggested that most cell death happened near the
opening of the chamber, while cells in the back could survive
the antibiotic treatment (electronic supplementary material,
movie S1). To test this idea, we compared the effect of antibiotic
treatment in our standard deep chambers (depth = 60 µm) with
that in shallow chambers (depth = 30 µm).

We observed that populations in deep chambers could
cope much better with the antibiotic treatment than popu-
lations in shallow chambers. Before antibiotic treatment, the
growth rate of cells in the shallow chambers was similar to
those observed in the front 30 µm of the deep chambers,
but the slow and non-growing subpopulations found in the
back of the deep chambers were not present in the shallow
chambers (electronic supplementary material, figure S3).
During antibiotic exposure population growth rates
decreased in both deep and shallow chambers, however,
they recovered much faster in the deep chambers: 2 h after
removing the antibiotic the average growth rate in the deep
chambers was as high as before the antibiotic treatment,
while the average growth rate in the shallow chamber was
much lower (figure 4a). This lower growth rate was largely
due to a difference in cell survival: whereas in deep chambers
a large fraction of cells survived (electronic supplementary
material, movie S1), in shallow chambers often only a
single or very few cells could resume growth after the
antibiotic treatment (electronic supplementary material,
movie S2). The low survival in the shallow chamber also
explains why 8 out of 37 populations in the shallow chambers
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went extinct, while all 38 populations in the deep chambers
survived antibiotic exposure.

To further test whether cells in the back of the chambers
were indeed the main source of population survival, we com-
pared the average growth rates between the front and the
back of the chamber. Before antibiotic exposure cells in the
back on average grew slower than cells in the front as a
result of the glucose gradient (figure 4b). However, during anti-
biotic treatment cells in the back started growing faster while
the ones in the front rapidly stopped growing (figure 4b).
Why did the cells in the back grow faster during the antibiotic
treatment than before? Most likely, as cells in the front of the
chamber died, nutrients became available for cells in the
back, allowing them to grow faster. Directly after antibiotic
exposure, these cells grew even faster as a result of the high glu-
cose concentration we supplied in the flow channel. While most
cells in the back had survived the antibiotic treatment, most
cells at the front were not growing (and presumably dead),
thus causing the low average growth rate at the front (figure 4b;
electronic supplementary material, movie S1). Two hours after
the end of the antibiotic pulse, most non-growing cells at the
front were pushed out of the chamber and replaced by rapidly
growing cells from the back. As a result, the difference between
the front and back of the chamber disappeared (figure 4b).

Together our data support the hypothesis that many
fast-growing cells near the chamber opening die, while the
slow-growing cells in the back of the chamber are able to
survive the antibiotic treatment. This finding is consistent
with a number of previous studies that found a positive
correlation between slow growth and antibiotic survival
[22–24,31]. While we cannot exclude that other factors (e.g.
gradients in antibiotic concentration) also contribute to the
survival of cells at the back of the chambers, their low
growth rate, which results from the emergent glucose gradient,
could play a decisive role in their survival.
3. Conclusion
In dense, spatially structured environments, cells can collec-
tively change their environment and create strong gradients
in metabolites. Generally, whenever cellular densities are
high and nutrient concentrations are low, steep gradients
can occur locally, on length scales of only a few cell lengths.
As cells adapt to their local conditions, these gradients give
rise to phenotypically distinct subpopulations that specialize
at a very local scale on different metabolic tasks and that can
engage in metabolic cross-feeding interactions.

Although our study focused on E. coli, we expect our find-
ings to be of direct relevance to natural populations of many
microbial species, as often the natural environments of bac-
teria and other microorganisms are characterized by low
nutrient availability and dense spatially structured popu-
lations. Microscale phenotypic variation can thus be an
important aspect of natural microbial populations. The exper-
imental and analysis techniques developed in this work
provide tools to investigate in details how bacteria behave
in dense spatial populations and how they achieve collective
functionality.

Microscale phenotypic variation can have important conse-
quences for the functionality of bacterial populations as it
promotes metabolic interactions between distinct subpopu-
lations and tolerance to environmental stressors. Living
together in structured environments thus allows cells to achieve
a functionality collectively that they cannot achieve alone.
4. Methods
(a) Strains and plasmids
All experiments were done with E. coli MG1655 (WT) or E. coli
MG1655 acs::frt (Δacs mutant) carrying the low copy number
pSV66-acs-gfp-ptsG-rfp dual transcriptional reporter. This
plasmid was constructed from pSV66-rpsM-gfp-rpsM-rfp by
replacing the promoter sequences upstream of rfp and gfp
using a one-step Gibson assembly [32]. The following four frag-
ments were amplified using the Q5 high fidelity polymerase
(NEB) and combined using Gibson assembly (NEB): (1) acs pro-
moter, amplified from plasmid pUA66-acs-gfp [14] using primer
pGFP-fw and pGFP-rv; (2) ptsG promoter, amplified from
pUA66-ptsG-gfp [33] using primers pRFP-fw and pRFP-rv;
(3) pSV66 gfp-rfp region, amplified from pSV66-rpsM-gfp-rpsM-
rfp using primers GFP_vec-fw and RFP_vec-rv; (4) pSV66 back-
bone region, amplified from pSV66-rpsM-gfp-rpsM-rfp using
primers GFP_vec-rv and RFP_vec-fw (see electronic supplemen-
tary material, table S2 for primer sequences). The sequences of
the promoter regions were verified with Sanger sequencing.
Kanamycin was added to all growth media to select for plasmid
maintenance. However, even in the absence of kanamycin, we
expect plasmid loss to be minimal for the duration of our exper-
iment because the reporter plasmid carries the pSC101
replication origin which has very low copy number variation
[34]. The E. coli MG1655 acs::frt was constructed from MG1655
acs::kanR obtained from the Keio collection [35], by removal of
the kanamycin cassette using Flp-FRT recombination.

(b) Media and growth conditions
Cells were grown in M9 medium (47.76 mM Na2HPO4, 22.04 mM
KH2PO4, 8.56 mM NaCl and 18.69 mM NH4Cl) supplemented
with 1 mM MgSO4 and 0.1 mM CaCl2 (all from Sigma-Aldrich).
Glucose was added to the medium to a final concentration of
10 mM (high glucose medium), 800 µM (low glucose medium),
or as specified in the figure captions. All media was supplemented
with 50 µg ml−1 kanamycin and 0.1% of Tween-20 (Polysorbate-
20, Sigma-Aldrich) to reduce sticking of cells to the sides of
microfluidic devices. Overnight cultures were started from a
single colony from an LB agar plate and grown in M9 medium
supplemented with 10 mM glucose and 5% LB. All cultures
were grown at 37°C in a shaking incubator. For the experiments
on antibiotic tolerance in the microfluidic chambers 50 µg ml−1

of streptomycin was added to the low glucose medium.
We used two different batches of M9 growth media (same

manufacturer and article number, but different lot number) and
observed some quantitative differences between experiments
done with the different batches: growth and expression profiles
were shifted towards the back of the chamber in one batch com-
pared to the other. We observed qualitatively the same results
with both batches of media and all our conclusions are robust
to differences between the batches. To account for the quantitat-
ive difference between the two batches, we never made direct
comparison between data obtained from experiments done
with different batches: specifically, we used batch one to measure
how the gradient changes with glucose concentration and how
the cells respond to antibiotics (figures 2c and 4a,b) and batch
two for all other experiments.

(c) Antibiotic tolerance in well-mixed conditions
Eight independent cultures were started from separate colonies
from an LB agar plate and grown overnight in LB medium
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supplemented with 50 µg ml−1 kanamycin. The next day cultures
were diluted to a final optical density at 600 nm (OD600) of 0.1
into 1.5 ml of fresh LB medium (supplemented with 50 µg ml−1

kanamycin) in a 24-well plate and grown for 3 h to mid-
exponential phase. From each culture, a 20 µl sample was taken
and a dilution series was spot-plated on LB agar plates to obtain
the cell density before antibiotic exposures, measured as colony-
forming units (CFUs). Subsequently, streptomycin was added to
a final concentration of 50 µg ml−1 (MIC< 25 µg ml−1) and the cul-
tures were grown for another 3 h before being sampled again to
obtain the cell densities after antibiotic exposure. All cultures
were grown at 37°C in a shaking incubator.

Right before antibiotic exposure cell densities were 4.0 ± 1.2 ×
108 CFU ml−1 (mean ±95% confidence interval, n = 8). After anti-
biotic exposure, we had no detectable CFUs in any replicate.
As our detection limit was 200 CFU ml−1. This implies that the
antibiotic exposure caused at least a two-million-fold decrease in
cell densities.

(d) Microfluidic devices
Moulds for the microfluidic devices were constructed using a
two-layer photolithography process using SU8 photoresist on
silicon wafers. Microfluidic devices were made by pouring poly-
dimethylsiloxane (PDMS, Sylgard 184) on the SU8 moulds, after
which air bubbles were removed using a desiccator before
baking the devices at 80°C for 1 h. Subsequently, the PDMS
devices were bound to microscope cover glass slides by treating
them with oxygen plasma (PDC-32G-2 Plasma Cleaner, Harrik
Plasma, New York, USA), and leaving them on a heated plate
at 100°C for 1 min.

The device consists of a long (≈2 cm) flow channel of 100 µm
wide and 23 µm high which connects to chambers that are
0.76 µm high, 40 µm wide and 30 or 60 µm deep. The small
height of the chambers ensures that cells grow in a monolayer.
In preliminary experiments, we observed that the height of the
chambers is of critical importance: when chambers are too high
(greater than 0.8 µm), cells are lost from the chambers easily
and they cannot form a densely packed layer; when chambers
are too low (less than 0.7 µm), cell growth is impaired. We
chose a height of 0.76 µm as this is the lowest value that allows
for normal cell growth. We expect some variation in height
within each chamber because cells exert pressure and can
deform the elastic PDMS material.

(e) Microscopy
Time-lapse microscopy was done using a fully automated Olym-
pus IX81 inverted microscope controlled with the CellSens
software (Olympus). Imaging was done with a 100X NA1.3 oil
phase objective (Olympus) and an ORCA-flash 4.0 v. 2 sCMOS
camera (Hamamatsu). Fluorescent imaging was done with the
Chroma N49002 (GFP) and N49008 (RFP) filters and X-Cite120
120-Watt high-pressure metal halide arc lamp (Lumen
Dynamics). The Olympus Z-drift compensation system was
used to maintain focus. A microscope incubator (Life Imaging
Services) maintained the sample at 37°C.

( f ) Microfluidic experiments
The microfluidic devices were wetted with culture medium using
a pipette to facilitate subsequent cell loading. An overnight cul-
ture of cells was concentrated by centrifugation and loaded
into each flow channel by pipette and cells were pushed into
the side chambers. Subsequently, the inlets of the flow channels
were connected via tubing (Microbore Tygon S54HL, ID
0.76 mm, OD 2.29 mm, Fisher Scientific) to 50 ml syringes and
media was made to flow continuously at 0.5 ml h−1 using syringe
pumps (NE-300, NewEra Pump Systems).
(i) Response to nutrient gradients
Cells were first grown in high glucose medium (10 mM) until
they had filled the chambers (≈18 h). Subsequently, the
medium was switched to the low glucose medium (800 µM)
for 9 h. In preliminary experiments, we established that it takes
about 3–4 h for cells to form and adapt to the nutrient gradients.
To ensure that all measurements were taken at steady state, we
thus started imaging the chambers 6 h after switching to low
glucose medium.

We imaged the population with two regimes: for the first
hour we imaged in phase contrast, taking an image every
1 min and 45 s; for the next 2 h, we imaged the population in
phase contrast (to measure biomass), GFP (acs expression) and
RFP ( ptsG expression) taking an image every 6 min.

We used this strategy because accurate determination of
growth rates (using either optical flow or single-cell tracking tech-
niques) requires high-frequency imaging, which is not compatible
with the time required for the acquisition of fluorescent images.

(ii) Response to antibiotic pulse
Cells were first grown in high glucose medium (10 mM) until they
had filled the chambers (≈18 h). Subsequently, the medium was
switched to the low glucose medium (800 µM) for 9 h, to establish
the gradient in growth rates. Finally, cells were submitted to anti-
biotic treatment and recovery, applying 3 h of low glucose
medium with 50 µg ml−1 streptomycin, followed by 35 h of high
glucose medium without streptomycin. We used high glucose
medium after the streptomycin pulse to ensure that all cells had
access to glucose so we could observe growth of surviving cells
irrespective of their location in the chamber.

The population was imaged in phase contrast (to measure
biomass), GFP (acs expression) and RFP ( ptsG expression)
taking an image every 6 min for 40 h. The imaging was started
2 h before the start of the (3 h long) antibiotic pulse and contin-
ued for 35 h after the end of the pulse. To compare the growth
rate profiles in 30 and 60 µm deep chambers, we furthermore
imaged a subset of the data at high frequencies (taking an
image every 1 min and 45 s) in phase contrast only for 1 h
starting 3 h before the antibiotic pulse.

(g) Image analysis
Time-lapse movies were analysed using the custom build Vanel-
lus image analysis software (Daan Kiviet, [17]), Ilastik [36] and
MATLAB (v. 2016a and newer). Movies were registered to compen-
sate for stage movement and cropped to the region of the growth
chambers.

(i) Segmentation
Cells were segmented using the phase-contrast images and two
independent segmentation techniques. We segmented the
single cells using Ilastik software based on supervised machine
learning. The Ilastik classifier was trained to maximize accuracy
in identification of individual cells (i.e. to accurately separate
nearby cells). As this technique tends to underestimate the total
biomass (part of the cell contour is excluded), we used a
second technique to accurately identify total biomass in the
chamber. This second technique is optimized to maximize accu-
racy in detection of biomass, without attempting to separate
neighbouring cells. This technique was implemented in
custom-built MATLAB code and uses an algorithm combining
edge detection with subsequent filtering on cell size and texture
(Hessian Eigen values).

(ii) Tracking
Cell tracking was done using the optical-flow-based tracking
algorithm described in Dal Co et al. [17]. In short: cells were
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tracked by estimating the movement between two subsequent
images with optical flow and using this to predict the location
of each cell in subsequent frames.

(iii) Fluorescent images
Fluorescent images were deconvolved using the Lucy–Richardson
method and background corrected as Icorr ¼ ðI �DÞ=ðBG�DÞ,
where I is the uncorrected background intensity, D is the
median pixel value of an image taken with closed shutter (dark
count) and BG is the background intensity measured in the flow
channel directly adjacent to the chamber exit.

(h) Growth rate calculation
(i) Population average growth rate
The average population growth rate can be estimated as follows.
Consider a region in the chamber of width Δy centred at depth y
(the y-axis is oriented from the chamber opening to the
chamber’s back), and let B(t,y) be the biomass in this region at
time t. During a time period Δt, the biomass B(t,y) varies due
to growth and movement of biomass in and out of the region.
The variation due to growth is given by μ(t,y) · B(t,y) · Δt, where
μ(t,y) is the average population growth rate; the variation due
to movement is the balance between movement of biomass in
and out of the region, thus if Φ(t,y) is the velocity field this is
given by: F(t, y� Dy=2) � Dt�F(t,yþ Dy=2) � Dt. The total
change in biomass ΔB(t,y) is thus given by:

DB(t,y)
Dt

¼ m(t,y) � B(t,y)þF t,y� Dy
2

� �
�F t,yþ Dy

2

� �
:

This equation can be used to calculate the growth rate as:

m(t,y) ¼ 1
B(t,y)

� DB(t,y)
Dt

þ DF(t,y)
Dy

� �
:

We estimated B(t,y) from the segmented images as the number of
pixels occupied by cells, and we estimated Φ(t,y) using the Farne-
back optical flow algorithm applied to the phase-contrast images
[37]. All quantities are calculated over a time window Δt around t
(typically 1 h) and over a spatial region Δy around y: B(t,y) is the
biomass averaged over Δt and Δy; DB(t, y)=Dt is the average slope
of the linear regression of B(t,y) with t, for t within Δt; DF(t,y)=Dy
is the slope of the linear regression of Φ(t,y) with y, for y within
Δy. The main source of error in this estimation of growth rates is
the velocity field Φ, which sometimes wrongly detects move-
ment between two frames. To automatically correct for this, we
excluded the four time points (10%) with the worst quality
before averaging DF(t,y)=Dy over the remaining time points.
The quality of each time point was automatically assessed as
the mean squared error of the linear regression averaged over
all y for a given time point.

The velocity field cannot be correctly estimated close to the
opening of the chamber because of the presence of a halo in
the phase-contrast images (this imaging artefact is well visible
around approx. 12.5 µm from the chamber opening and is caused
by the proximityof the flow channel). The growth rate cannot be esti-
mated in this halo region using the formula above.As thehalo region
is small, we can still estimate the growth profile along most of the
chamber depth and particularly how growth decreases with depth.
The growth profiles are automatically cut off at the depth where
they reach their maximal value to exclude regions where growth
rate cannot be estimated well with this method.

(ii) Single-cell growth rates
Single-cell growth rates were measured as the elongation rate of
cells: l(t) = l(0) · eμ·t; μ was estimated as the slope of the linear
regression of the log-transformed cell length over a moving
time window of seven points (12 min). Thus, only cells for
which length measurements were available for at least seven
time points were included in the analysis. Both cell segmentation
and tracking were fully automated with no manual correction
applied at any stage. To automatically exclude tracking mistakes,
we screened for cells whose length displayed large fluctuation in
time. This was done by calculating the reduced χ2 value for each
regression as x2 ¼ 1=ðN � 1Þ P

iðlp � liÞ2, where N is the number
of time points over which the regression is done, lp is the length
predicted by the linear regression and li is the measured cell
length. Visual inspection of a subset of the data suggested that
excluding trajectories with a x2 . 4� 10�4 resulted in reliable
estimates of single-cell growth rates.

(i) Single-cell growth rates near the chamber opening
Within 10 µm of the chamber opening the automatic procedure
described above is no longer able to measure single-cell growth
rates. The rapid movement of cells in this region complicates auto-
matic tracking, while the phase-contrast artefact caused by the
proximity of the flow channel affects both the automatic segmen-
tation and tracking quality. To still obtain growth rates in this
region for both the wild-type and Δacs mutant populations, we
selected a subset of our data (one chamber per replicate) based
on the quality of the image segmentation. We subsequently manu-
ally corrected the segmentation and tracking of cells in the region
up to 20 µm from the opening for 12 frames (17 min). Afterwards,
the single-cell growth rates were obtained as described above.

( j) Statistical treatment of data
(i) Data exclusion
We only included chambers that were fully packed with cells
during the full observation window, based on visual inspection.
Chambers where part of the population was lost at any time
(large groups of cells leaving the chamber likely because of
pressure fluctuations) were excluded from the analysis.

(ii) Spatial averaging
Our system is quasi-one-dimensional: there is no systematic vari-
ation along the width of the chamber. We thus averaged all
quantities along the chamber width to obtain one-dimensional
profiles of phenotype versus depth in the chamber. To obtain
smooth profiles along the depth of the chamber, we used
moving averages. Specifically, population average growth rates
(optical flow-based) were calculated over a 6 µm (91 pixel)
window, while single-cell growth rates and fluorescent profiles
were averaged over a 2 µm (31 pixel) window.

(iii) Time averaging
All gradient measurements were averaged over 1 h. Growth rates
and gene expression level measurements were taken in two non-
overlapping but directly adjacent time windows. As the growth
rate and gene expression profiles are approximately constant
during the experiment, we can superpose these two measurements
despite the small time offset. For the analysis of the response to
antibiotics, growth rates before antibiotic treatment were averaged
over a time window of 2 h (for one replicate only 6 min of data
were recorded before the switch, in this case, averaging was
done only over this interval); growth rate during and after
antibiotic treatment were averaged over a time window of 1 h.

(iv) Replicates
For the gradient measurements, we imaged three flow channels
with nine to 10 chambers each (28 chambers in total) for the
wild-type and three flow channels with six to nine chambers
(22 chambers in total) for the Δacs mutant. Each flow channel
was inoculated with a different overnight culture and was
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considered to be an independent biological replicate. We treated
chambers within the same flow channel as technical replicates.
For the antibiotics, we measured 38 deep and 37 shallow
chambers, both from the same four independent flow channels.

(v) Chamber averaging
For the data shown in figures 1–3, all chambers of a given flow
channel were first averaged together. Simple averages were
used for the optical flow-based population growth rate and flu-
orescent measurements; weighted averages were used for the
single-cell growth rates, with weights corresponding to the
number of cells measured in each chamber at a given depth
(chambers with less than 20 cells at a given depth were excluded
from the analysis).
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