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Aging Alters the Rhythmic Expression of Vasoactive Intestinal
Polypeptide mRNA But Not Arginine Vasopressin mRNA in the
Suprachiasmatic Nuclei of Female Rats

Kristine Krajnak, Michael L. Kashon, Katherine L. Rosewell, and Phyllis M. Wise
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Our laboratory has shown that the ability of the suprachias-
matic nuclei (SCN) to regulate a number of rhythmic processes
may be compromised by the time females reach middle age.
Therefore, we examined the effects of aging on the rhythmic
expression of two neuropeptides synthesized in the SCN, va-
soactive intestinal polypeptide (VIP) and arginine vasopressin
(AVP), using in situ hybridization. Because both VIP and AVP are
outputs of the SCN, we hypothesized that age-related changes
in rhythmicity are associated with alterations in the patterns of
expression of these peptides. We found that VIP mRNA levels
exhibited a 24 hr rhythm in young females, but by the time
animals were middle-aged, this rhythm was gone. The attenu-
ation of rhythmicity was associated with a decline in the level of
mRNA per cell and in the number of cells in the SCN producing

detectable VIP mRNA. AVP mRNA also showed a robust 24 hr
rhythm in young females. However, in contrast to VIP, the AVP
rhythm was not altered in the aging animals. The amount of
mRNA per cell and the number of cells expressing AVP mRNA
also was not affected with age. Based on these results we
conclude that (1) various components of the SCN are differen-
tially affected by aging; and (2) age-related changes in various
rhythms may be attributable to changes in the ability of the SCN
to transmit timing information to target sites. This may explain
why the deterioration of various rhythmic processes occurs at
different rates and at different times during the aging process.
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Virtually all organisms exhibit 24 hr rhythms in numerous phys-
iological and behavioral processes. In mammals, these rhythms
are entrained to the light/dark (LD) cycle by a circadian pace-
maker located in the suprachiasmatic nuclei (SCN) (Meijer and
Rietveld, 1989). With age, many endogenous rhythms are
blunted, and their entrainment to the LD cycle changes (Wise,
1984; Cohen and Wise, 1988; Weiland and Wise, 1989; Monk,
1991; Copinschi and Van Cauter, 1994; Li and Satinoff, 1995;
Monk et al., 1995; Van Cauter et al., 1996; Wise et al., 1996).
Evidence suggests that these disruptions may be attributable to
alterations in the circadian pacemaker. First, some (Pittendrigh
and Daan, 1974) but not all (Vaswanathan and Davis, 1995; Duffy
and Davis, 1997) studies demonstrate that the period of activity
rhythms (Ralph et al., 1990) shortens with age. Second, the ability
of aged animals to shift their activity patterns in response to
photic and nonphotic stimuli changes (Rosenberg et al., 1991;
Penev et al., 1995; Zhang et al., 1996). Third, endogenous rhyth-
micity in spontaneous firing of SCN neurons in vitro is blunted
(Satinoff et al., 1993). Some of these alterations can be reversed
by implanting fetal SCN tissue into the third ventricle (Van
Reeth et al., 1994; Vaswanathan and Davis, 1995; Cai et al.,
1997a,b) suggesting that these changes in the expression of cir-
cadian rhythms result in part from changes in SCN function.
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Neurons in the SCN synthesize numerous neuropeptides (van
den Pol and Tsujimoto, 1985) that may constitute output path-
ways to other brain regions. Few studies have examined the effects
of aging on the rhythmic expression of these peptides. We as-
sessed the effects of aging on the rhythmic gene expression of
vasoactive intestinal polypeptide (VIP) and arginine vasopressin
(AVP). VIP is synthesized primarily in the ventral SCN, whereas
AVP is produced in a different population of neurons in the
dorsomedial SCN (van den Pol and Tsujimoto, 1985; Watts and
Swanson, 1987). Although these neuronal populations synapse
with each other (Kaikoku et al., 1992), little is known about how
they interact. Both VIP and AVP neurons relay circadian infor-
mation to the basal forebrain and various hypothalamic and
thalamic nuclei (Watts and Swanson, 1987). These projections
regulate rhythms of gonadotropin-releasing hormone (GnRH)
release (Cheesman et al., 1977; Osland et al., 1977; van der Beek
et al., 1995; Harney et al., 1996; Palm et al., 1997) and glucocor-
ticoid release (Scarbrough et al., 1996; Buijs, 1997) and activity
(Pickard and Turek, 1983; Sollars and Pickard, 1995; Murphy et
al., 1997). Thus, age-related alterations in VIP or AVP expres-
sion may affect the transmission of rhythmic information from the
SCN to target sites. We also chose to examine the effects of aging
on these two peptides because aging differentially affects their
expression in other brain regions. In the cortex, there is a dra-
matic decline in VIP cell number with aging (Andreose et al.,
1994; Cha et al., 1995, 1997; Huh et al., 1997). In contrast, AVP
synthesized in the paraventricular nuclei (PVN) and supraoptic
nuclei of the hypothalamus is unaltered or mildly depressed by
aging (Dobie et al., 1991; Sladek and Olschowka, 1994), whereas
AVP synthesized in the bed nucleus of the stria terminalis is
reduced (Lucassen et al., 1998). Thus, the effects of aging on
these two neuropeptides may be region-dependent.
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We assessed the effects of age on the rhythmicity of these
neuropeptides in females because cyclic reproduction, which is
intimately linked to the circadian clock (Turek and Van Cauter,
1988; Hastings, 1991), exhibits profound changes by the time
animals are middle-aged (Wise et al., 1996). In young females, the
timing of the proestrous (Legan and Karsch, 1975) and estrogen-
induced (Legan et al., 1975) surge of luteinizing hormone (LH)
is tightly coupled to the LD cycle. However, in middle-aged
animals, the LH surge is delayed, and the amplitude of the surge
is attenuated (Wise, 1982; Nass et al., 1984). We have demon-
strated that the rhythmic expression of multiple neurotransmit-
ters and receptors (Weiland and Wise, 1986, 1989; Cohen and
Wise, 1988; Lloyd et al., 1991) is blunted by middle age, suggest-
ing that fundamental changes in the SCN may cause a deterio-
ration in the ability to maintain regular reproductive cycles. In the
present experiment, we assessed VIP and AVP mRNA levels in
the SCN of young, middle-aged, and old females. If aging involves
a change in all the essential elements (i.e., inputs, oscillators, and
outputs) of the SCN, the pattern of expression of both these
peptides would be affected. On the other hand, if only some of the
components of the clock are affected with age, we might observe
differential effects on VIP compared with AVP.

MATERIALS AND METHODS

Animals. Young, regularly cycling (2-4 months; six to eight animals per
time point), middle-aged, irregularly cycling (10-12 months; six animals
per time point), and old, persistent diestrous (18—-20 months; six animals
per time point) females were housed in a 14/10 hr LD cycle (lights on at
0400 hr) with food and water available ad libitum. Vaginal cytology was
checked daily for at least 2 weeks to determine the reproductive state of
animals. All animals were ovariectomized under Metofane (methoxyflu-
rane) inhalant anesthesia. One week later, SILASTIC capsules contain-
ing 17-B-estradiol (180 wg/ml in sesame oil; young, 20 mm capsule;
middle-aged and old, 30 mm capsule) were implanted subcutaneously to
clamp plasma estradiol at equivalent and physiological levels in all
experimental groups (Wise, 1984). This is critical because ovarian ste-
roids modulate the period of circadian activity (Morin et al., 1977;
Takahashi and Menaker 1980; Albers et al., 1981) and the precise pattern
of expression of VIP mRNA (Krajnak et al., 1997). Animals were killed
at the following times after estrogen treatment: 2400 hr (day 1) and 0300,
0800, 1200, 1600, 2000, and 2300 hr (day 2).

VIP and AV'P in situ hybridization. In situ hybridization methods were
the same as previously described (Wise et al., 1992; Krajnak et al., 1997).
Briefly, brains were removed, rapidly frozen, and stored at —70°C until
sectioned. Frozen coronal sections (12 wm) through the basal forebrain
and hypothalamus were sliced, thaw-mounted onto slides, and stored at
—80°C until processed for in situ hybridization (ISH). Slides containing
sections from the middle to midcaudal SCN (three slides or six sections
per animal) were chosen for VIP ISH, and alternate slides (two slides or
four sections per animal) were chosen for AVP ISH. The riboprobe for
VIP was generated using a 500 bp human cDNA directed against exons
3-6 of the VIP-peptide histidine isoleucine gene (from Dr. R. H.
Goodman, Vollum Institute). The riboprobe for AVP was generated
using a 241 bp cDNA directed against exon C of the rat AVP gene
(provided by Dr. T. Sherman, Georgetown University). Both riboprobes
were transcribed using 50 uM total UTP. Because each cDNA contains a
different percentage of UTP, we used different amounts of **S-UTP to
produce comparable incorporation of the radiolabeled nucleotide (VIP,
12.5 uM *S-UTP and 37.5 um unlabeled UTP and SP6 polymerase;
AVP, 37.5 um *>S-UTP and 12.5 uM unlabeled UTP and SP6 polymer-
ase). Slides were thawed, fixed with 4% paraformaldehyde, and dehy-
drated using a series of increasing concentrations of ethanol. Hybridiza-
tion buffer (50 ul) containing 400 ng/ml labeled VIP cRNA or 200 ng/ml
AVP cRNA was applied to each slide. In preliminary studies, saturation
curves were generated and revealed that these concentrations of cRNA
produced maximal labeling without significantly increasing background.
Slides were incubated in humid chambers at 55°C for 18 hr, washed under
stringent conditions, dehydrated with ethanol, coated with Kodak NTB2
emulsion (Eastman Kodak, Rochester, NY; diluted 1:1 with distilled
water), and stored at 4°C. Slides processed for AVP were developed 5 d
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Figure 1. Overall levels of VIP mRNA per cell in young, middle-aged,

and old females (mean = SEM). The 3 (age) X 7 (time of day) ANOVA
revealed a significant effect of age (F, 101y = 5.99; p < 0.004) on mRNA
levels per cell. VIP gene expression was significantly lower in middle-aged
and old females compared with young (p < 0.05).

after emulsion coating, and slides processed for VIP were developed 10 d
after emulsion coating. All slides were counterstained with 0.05% tolu-
idine blue so that individual cell bodies could be identified.

All slides were examined for the presence of labeling in the SCN. If the
SCN from an individual animal was damaged, mRNA levels were not
quantified in those slides. Therefore, in some animals, AVP was not
quantified, and in others, VIP was not quantified. Gene expression was
quantified using the Bioquant OS/2 image analysis system. Slides from a
number of animals were examined, and a single threshold for determin-
ing grains versus background was set. The perimeter of an individual cell
was outlined, and both the area of the cell and portion covered by grains
(i.e., above threshold) were quantified. Lighting and contrast levels were
standardized before taking measurements to assure that all slides were
assessed under the same conditions. Background was assessed by taking
measurements over unlabeled cells outside the area of interest. Cells
having a value five times higher than background were considered
labeled.

Analyses. To determine whether aging altered VIP or AVP gene
expression per cell in the SCN or the number of cells labeled for these
peptides, 3 (age) X 7 (time of day) ANOVAs were performed. Planned
comparisons using one-way ANOVAs examining the effects of time on
gene expression in each age group were performed to determine whether
gene expression was rhythmic. Post hoc comparisons were made using
Newman-Kuels tests. Differences were considered significant if p < 0.05.

RESULTS

VIP gene expression

Two-way ANOVA revealed a main effect of age on VIP mRNA
per cell (Fig. 1) (F2,101y = 5.99; p < 0.004) but no effect of time
(F 6,101y = 0.81; p = 0.57) and no interaction (F(;4,191) = 1.50;p =
0.14). Further analyses showed that VIP mRNA levels per cell
were lower in middle-aged and old than in young females (p <
0.05). VIP-expressing cells in all animals were seen predomi-
nantly in the ventrolateral SCN. However, as animals aged, there
appeared to be a loss of VIP gene expression in the most medially
located neurons (Fig. 2). The two-way ANOVA on the number of
VIP-expressing cells in the SCN revealed a main effect of age
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Figure 2. This photomicrograph shows VIP labeling in the SCN of young (A4), middle-aged (B), and old (C) females at 1200 hr. VIP labeling was seen
predominantly in the ventrolateral portion of the SCN in all animals. However, as animals age, there appears to be a decrease in the number of
VIP-expressing cells in the medial portion of the nucleus. 3V, Third ventricle; OC, optic chiasm. Scale bar, 25 pum.
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Figure 3. VIP-expressing cells per section (mean * SEM) in young,
middle-aged, and old females. The two-way ANOVA analyzing the effects
of age and time of day on the number of VIP-expressing cells revealed a
main effect of age (F 101y = 4.53; p < 0.02), with the number of
VIP-expressing cells per section being higher in young than in middle-
aged or old females (p < 0.05).

(Fa,101) = 4.53; p < 0.02) but no effect of time (F4 191y = 1.27;
p = 0.28) and no interaction (F;5 91y, = 0.80; p = 0.65). Further
analyses showed that the number of cells expressing VIP mRNA
was lower in the middle-aged and old females than in the young
females (Fig. 3).

To determine whether there was a rhythm in VIP gene expres-
sion in young, middle-aged, and old females, we performed
planned comparisons using one-way ANOVAs on VIP mRNA
levels at each age. In young females, VIP gene expression was
rhythmic (F 4 45, = 3.03; p < 0.02), with mRNA levels being lower
at 0300, 0800, and 2000 hr than at the other time points (p < 0.05;
Fig. 4). By the time animals reached middle age, a rhythm in VIP
gene expression was no longer detectable (middle age, F431) =
0.61; p = 0.72; old, F (s 7, = 0.93, p = 0.49).

AV'P gene expression
Two-way ANOVA revealed a main effect of time on the amount
of AVP mRNA per cell (Fig. 5) (F (6 10s) = 18.73; p < 0.001) but
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Figure 4. VIP mRNA levels per cell (mean = SEM) over time in young
(@), middle-aged (O), and old (V) females. One-way ANOVA revealed
that VIP mRNA was rhythmic in young females (F 43y = 3.03; p < 0.02),
with VIP gene expression being higher at 2400, 1200, and 2300 hr than at
other times of day (*p < 0.05). VIP mRNA levels did not significantly
fluctuate over the day in middle-aged or old females. The black bar under
the x-axis represents the dark phase of the cycle, and the white bar
represents the light phase.

no effect of age (F(5,05y = 0.64; p = 0.53) and no interaction
(Fiz,108) = 0.55; p = 0.87). Post hoc analyses examining the effect
of time revealed a prominent rhythm in AVP gene expression in
all groups. AVP mRNA levels were low between 2400 and 0300 hr
and exhibited significant increases at each time point from 0800 to
1600 hr (p < 0.05). After 1600 hr, AVP mRNA returned to
baseline levels, showing a significant decrease at both 2000 and
2300 hr (p < 0.05). Planned comparisons using one-way ANO-
VAs to determine whether AVP mRNA expression was rhythmic
were consistent with the two-way ANOVA; AVP gene expression
was rhythmic in all age groups (young, F (4 54y = 10.17; p < 0.001;
middle-aged, (Fg08, = 6.99; p < 0.001; and old, F s 56 = 3.81;
p < 0.008), with AVP mRNA levels being highest at 1600 hr and
lowest at 0300 hr (p < 0.05 in all age groups).

AVP gene expression was seen predominantly in the dorsome-
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Figure 5.  AVP-expressing cells per section (mean = SEM) in young,
middle-aged, and old females. Aging did not alter the number of AVP-
expressing cells in the SCN of females (F, 0, = 0.928; p = 0.399).

dial portion of the SCN in all animals examined (Fig. 6). The
two-way ANOVA on the number of cells expressing AVP mRNA
per section revealed a main effect of time on cell number (F 4 10g)
= 11.19; p < 0.001) but no effect of age (F(,,195) = 0.93; p = 0.40)
and no interaction (F,5,105y = 1.43; p = 0.16). The effect of time
on cell number was similar to that seen on AVP mRNA levels
(Fig. 7). The number of cells expressing AVP mRNA was low
between 2400 and 0800 hr and increased to reach peak levels by
1600 hr (p < 0.05). The number of AV P-expressing cells then
began to fall and decreased significantly by 2300 hr (p < 0.05).
Aging did not alter this pattern, nor did it affect the number of
cells expressing AVP mRNA (Fig. 8).

DISCUSSION

Previous studies demonstrate that aging alters the expression of
numerous physiological and behavioral rhythms that are driven
by the SCN. This raises the possibility that age-related deterio-
ration of the pacemaker itself may underlie the changes in rhyth-
micity of these diverse physiological endpoints. Therefore, the
purpose of this study was to examine the effects of aging on two
major peptides synthesized within the SCN, VIP and AVP, to
determine whether the rhythmic expression of their mRNAs was
altered.

We focused our attention on these two neuropeptides because
(1) they are critical neuropeptides synthesized rhythmically in the
SCN (Inouye et al., 1993); this rhythmic expression dictates the
ability of the SCN to interpret environmental cues (Kiss et al.,
1984; Bosler and Beaudet, 1985; Hisano et al., 1988; Ibata et al.,
1989) and drive multiple outputs (Osland et al., 1977; Sodersten
et al., 1983; Sollars and Pickard, 1995; van der Beek et al., 1995;
Harney et al., 1996; Scarbrough et al., 1996; Palm et al., 1997); and
(2) these peptides also modulate the timing of GnRH secretion
(van der Beek et al., 1995; Huhman and van der Beek, 1996; Palm
et al., 1997), which is critical to cyclic reproduction in females.
Our study was performed in females because reproductive success
in this sex is intimately tied to the SCN and begins to display
overt signs of senescence by middle age (Wise et al., 1996, 1997).
Our results clearly demonstrate a selective age-related alteration
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in VIP gene expression in the absence of any change in AVP
gene expression.

The rhythm of VIP mRNA was not detectable by the time
animals reached middle age. In young females, VIP mRNA
showed a peak at ~1200 hr and a smaller rise during the mid-
evening. This finding is consistent with our previous work, which
showed that mRNA levels in females are high during the day, and
that this daytime rise is coincident with the timing of the LH
surge in young females (Krajnak et al., 1997). Other studies also
indicate that if VIP activity in young females is blocked in the
hour just before the surge with either antisense oligonucleotides
to VIP (Harney et al., 1996) or VIP antibodies (van der Beek et
al., 1995), the timing of the surge is delayed, and the amplitude is
attenuated. Thus, the loss of the daytime peak of VIP mRNA in
middle-aged animals may be responsible for the delay in the
timing and attenuation in the amplitude of the LH surge.

The rise in VIP mRNA during the middle of the dark phase
(2300-2400 hr) was also attenuated in aging animals. In young
males, VIP mRNA levels and peptide concentrations in the SCN
are high at night and decline after lights on (Albers et al., 1990;
Inouye et al., 1993; Krajnak et al., 1997). Thus, it has been
hypothesized that these light-induced changes in VIP may pro-
vide environmental LD information to the pacemaking cells in
the SCN (Albers et al., 1991). However, it is unclear whether the
rise in VIP mRNA at 2300-2400 hr that we observe in young
females serves the same function. If it does, this signal is absent
by the time females reach middle age. Because VIP neurons
receive input from all major afferents to the SCN (Kiss et al.,
1984; Bosler and Beaudet, 1985; Hisano et al., 1988; Ibata et al.,
1989), this decline in mRNA could be in part responsible for the
decreased ability of both photic and nonphotic stimuli to phase
shift rhythms in aged animals (Rosenberg et al., 1991; Penev et
al., 1995; Zhang et al., 1996). Similar changes may also occur in
males. Kawakami et al. (1997) found a slight decrease in VIP
mRNA at night in old males (22-24 months) when they monitored
gene expression at one time during the light phase and one time
during the dark phase. The number of VIP-immunolabeled cells
within the SCN during the light phase of the cycle may also
decline in very old (33-34 months) males (Chee et al., 1988).

Several possible mechanisms may underlie the age-related de-
cline in the rhythm of VIP mRNA in the SCN. First, both photic
input from the retina (Ibata et al., 1989) and serotonin (5-HT)
input from the raphe (Kiss et al., 1984; Bosler and Beaudet, 1985)
regulate the rhythm of VIP gene expression and peptide concen-
trations. Eliminating photic input to the SCN of adult males by
placing animals in persistent darkness (Inouye et al., 1993) or by
enucleation (Okamoto et al., 1990) results in a loss of VIP
rhythmicity and an overall increase in VIP expression. Thus, it is
possible that alterations in the retinal input to the SCN lead to the
loss of rhythmic VIP gene expression by middle age. In aged
animals, light-induced fos expression is attenuated in the SCN
(Sutin et al., 1993; Zhang et al., 1996; Cai et al., 1997), which is
concomitant with a decline in the magnitude of light-induced
phase shifts (Zhang et al., 1996). However, subjecting aged ani-
mals to brighter light pulses partially reverses these dampened
responses (Zhang et al., 1996), suggesting that there may be
age-related affects on the ability of the retina to perceive and
transmit photic information. However, retinal degenerative mice,
whose retina show signs of aging relatively early, do not exhibit
any decline in the ability to respond to phase-shifting light pulses
(Garcia-Fernandez et al., 1995). Together, these observations
suggest that the retinal signal may be maintained with aging, but
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Figure 6. These photomicrographs show AVP mRNA labeling in the SCN of young (A), middle-aged (B), and old (C) females at 1200 hr.
AVP expression was seen primarily within the dorsomedial portion of the SCN in all groups of animals. 3V, Third ventricle; OC, optic chiasm. Scale
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Figure 7. AV P-expressing cells per section (mean = SEM) over time in
young (@), middle-aged (O), and old females (V). The two-way ANOVA
examining the effects of age and time of day on AV P cell number revealed
a significant effect of time (F(g 105y = 11.19; p < 0.001), with the number
of AV P-expressing cells gradually increasing between 0300 and 1600 hr
and then declining to baseline levels by 2300 hr (different letters are
significantly different from each other; p < 0.05). The black bar under the
x-axis represents the dark phase of the cycle, and the white bar represents
the light phase.

that the ability of the SCN to receive this signal may be altered.
Because retinal input appears to synapse directly onto VIP-
producing neurons (Ibata et al., 1989), and light induces fos
expression within VIP neurons (Daikoku et al., 1992; Speh and
Moore, 1996; Rominj et al., 1996), it is possible that age-related
changes in VIP alter the transmission of photic information to
other pacemaking target cells within the SCN or efferent targets
in other regions of the brain. However, the phenotype of neurons
showing reduced fos activation in aged animals needs to be
determined before we know exactly which outputs of the SCN
might be altered.

VIP concentrations (Kawakami et al., 1985) and gene expres-
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Figure 8. AVP mRNA levels per cell (mean = SEM) over time in young
(@), middle-aged (O), and old females (V). The 3 (age) X 7 (time of day)
ANOVA revealed a main effect of time on AVP mRNA levels (F 105y =
18.73; p < 0.001), with AVP mRNA levels increasing between 0300 and
1600 hr and then declining to baseline levels by 2300 hr (different letters
are significantly different from each other; p < 0.05). The black bar under
the x-axis represents the dark phase of the cycle, and the white bar
represents the light phase.

sion (Okamura et al., 1995) are also modulated by 5-HT. 5-HT
terminals from the raphe synapse directly on VIP-producing
neurons in the SCN (Kiss et al., 1984), and lesioning this input
results in a loss of VIP and a dramatic decline in VIP expression
within the SCN rhythmicity (Kawakami et al., 1985, 1994; Oka-
mura et al., 1995). Studies have shown that the rhythm in 5-HT
turnover is altered by the time females reach middle age (Cohen
and Wise, 1988) and that 5-HT projections to the SCN are
diminished (Van Luijtelaar et al., 1989). The ability of 5-HT to
cause phase shifts in activity rhythms is also reduced in aged
animals (Penev et al., 1995). Thus, the age-related changes in
5-HT input to the SCN may have dramatic effects on both the
rhythmic expression of VIP and the amount of VIP expressed.
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The most surprising finding of this study is that the AVP
rhythm remains completely intact in the same animals in which
the rhythmic expression of VIP was absent. The rhythm in gene
expression, the number of cells expressing AVP, and the amount
of AVP mRNA per cell were unaltered, even in the oldest group
of females. These results are consistent with data collected from
aged males showing that the number of AV P-immunopositive
neurons in the SCN was not altered in males 16—18 months of age
(Roozendaal et al., 1987; Lucassen et al., 1995). These findings
are remarkable in that most entrained rhythms that have been
examined show age-related alterations in rhythmic expression
(Wise et al., 1987, 1997; Satinoff et al., 1993; Sutin et al., 1993;
Zhang et al., 1996; Cai et al., 1997).

AVP projections from the SCN serve as an output, carrying
timing information to a number of target areas, including regions
involved in generation of the LH surge (Watson and Langub,
1996) and generation of the rhythm in corticosteroid release
(Buijs, 1997). Our findings showing that neither the rhythmic
expression of AVP nor the amount of AVP expressed per cell
changes during aging helps explain the maintenance of the daily
rhythm in corticosterone despite the absence of a rhythm in
corticotropin-releasing hormone (CRH) mRNA in the PVN of
aged animals (Cai and Wise, 1996). Buijs (1997) has reported a
multisynaptic pathway between SCN AV P neurons and the ad-
renal that bypasses PVN CRH. In addition, our data lead us to
conclude that changes in the timing or amplitude of the LH surge
seen in middle-aged animals are unlikely attributable to changes
in the AVP signal. However, it is possible that changes in the
ability of target sites to recognize the AV P signal occur in aging
females.

The rhythm in AV P synthesis and release is endogenous and
driven by the SCN (Gillette and Reppert, 1987; Inouye et al.,
1993). Thus, these rhythms are maintained in constant conditions.
However, under LD conditions, the AVP rhythm is also tightly
coupled to the LD cycle (Burbach et al., 1988; Inouye et al., 1993).
Our findings show that this rhythm remains tightly coupled to the
LD cycle throughout aging. However, other entrained rhythms
regulated by the SCN and synchronized to the LD cycle, such as
glucose utilization (Wise et al., 1987), Fos induction by the LD
cycle (Sutin et al., 1993; Zhang et al., 1996; Cai et al., 1997), and
activity rhythms (Satinoff et al., 1993), lose their tight coupling to
the LD cycle during aging. In fact, when temperature, activity,
and drinking rhythms are monitored in the same elderly animal,
a deterioration in the entrainment and amplitude of one rhythm
is not necessarily correlated with a deterioration in the other
rhythms (Satinoff et al., 1993). Together these studies support the
hypothesis that age-related changes in the expression of rhythmic
processes are the result of the uncoupling of various oscillators
within the SCN and not necessarily attributable to complete
deterioration of the ability of the SCN to generate rhythms.

In summary, our results show that the rhythmic expression of
VIP in the SCN is undetectable by the time females reach middle
age, but AVP expression in these same animals is unaltered.
Based on these findings, we suggest that the differential effects of
age on these two outputs may explain why certain rhythms are
altered with age, whereas others remain intact. Future studies
should concentrate on changes in the inputs to the SCN to
determine how age-related alterations in these inputs may affect
the ability of the SCN to entrain rhythms to the environment.
Other studies, concentrating on how individual oscillators are
coupled and how this coupling is altered by aging, will also help
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us determine why some rhythms are more resistant to the effect of
aging than others.
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