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Complex vocalizations, such as human speech and birdsong,
are characterized by their elaborate spectral and temporal
structure. Because auditory neurons of the zebra finch forebrain
nucleus HVc respond extremely selectively to a particular com-
plex sound, the bird’s own song (BOS), we analyzed the spec-
tral and temporal requirements of these neurons by measuring
their responses to systematically degraded versions of the
BOS. These synthetic songs were based exclusively on the set
of amplitude envelopes obtained from a decomposition of the
original sound into frequency bands and preserved the acous-
tical structure present in the original song with varying degrees
of spectral versus temporal resolution, which depended on the
width of the frequency bands. Although both excessive tempo-
ral or spectral degradation eliminated responses, HVc neurons
responded well to degraded synthetic songs with time–
frequency resolutions of ;5 msec or 200 Hz. By comparing this
neuronal time–frequency tuning with the time–frequency scales

that best represented the acoustical structure in zebra finch
song, we concluded that HVc neurons are more sensitive to
temporal than to spectral cues. Furthermore, neuronal re-
sponses to synthetic songs were indistinguishable from those
to the original BOS only when the amplitude envelopes of these
songs were represented with 98% accuracy. That level of pre-
cision was equivalent to preserving the relative time-varying
phase across frequency bands with resolutions finer than 2
msec. Spectral and temporal information are well known to be
extracted by the peripheral auditory system, but this study
demonstrates how precisely these cues must be preserved for
the full response of high-level auditory neurons sensitive to
learned vocalizations.
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Temporal and spectral cues are critical for the identification of
complex vocalizations such as speech, as shown in psychophysical
experiments that use systematic degradations of the speech signal
along these parameters (Liberman et al., 1967; Drullman, 1995;
Drullman et al., 1995; Shannon et al., 1995). Moreover, temporal
processing is thought to be critically involved in disorders of
speech and language learning (Merzenich et al., 1996; Tallal et
al., 1996). Very little is known, however, about the spectral and
temporal sensitivity of the high-level central neurons that must
mediate complex sound processing. In recent studies, researchers
have described the response properties of neurons in the auditory
cortex of cats and primates that are tuned to certain characteris-
tics of natural sounds (Ohlemiller et al., 1994; Schreiner and
Calhoun, 1994; Rauschecker et al., 1995; Wang et al., 1995).
Birdsong provides a particularly useful model for studying the
neural basis of complex vocalizations, however, because, like
speech, song is a learned behavior and depends on auditory
experience (Marler, 1970; Konishi, 1985). Moreover, song acqui-

sition and production are mediated by a specialized set of fore-
brain sensorimotor areas unique to species that learn their vocal-
izations (Nottebohm et al., 1976; Kroodsma and Konishi, 1991).
Electrophysiological experiments have shown that the brain areas
for song contain some of the most complex auditory neurons
known. These “song-selective” neurons respond more strongly to
the sound of the bird’s own song (BOS) than to almost any other
sounds, including simple stimuli such as pure tone or broadband
noise bursts, and complex stimuli such as closely related songs of
other individuals of the same species (conspecifics) (Margoliash,
1983, 1986; Margoliash and Fortune, 1992; Margoliash et al.,
1994; Lewicki, 1996; Volman, 1996). These neurons are also
sensitive to the temporal context of the sounds within the BOS,
because both the BOS played in reverse and isolated sections of
the BOS, which elicit strong responses in their natural context,
are ineffective stimuli (Margoliash, 1983; Margoliash and For-
tune, 1992; Lewicki and Arthur, 1996). Moreover, systematic
modification of some of the parameters of white-crowned sparrow
songs demonstrated the dependence of HVc neural responses on
both spectral and temporal features of song (Margoliash, 1983,
1986). The highly selective auditory properties of these neurons
and the fact that these features emerge during song learning
suggest that these neurons play an important role in vocal learn-
ing and in the discrimination of adult vocalizations (Margoliash,
1983; Margoliash and Fortune, 1992; Volman, 1993; Doupe,
1997).

Although the general importance of spectral and temporal
context for the response of HVc neurons was clear, in this study
we developed a systematic and broadly applicable methodology,
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based on a time–frequency decomposition that is commonly used
in speech analysis (Flanagan, 1980), to describe any song com-
pletely with a relatively simple set of parameters. This parame-
trization allowed us to define explicitly the spectral and temporal
structure of these complex natural sounds. We then systematically
modified the parameters in the decomposition to generate a series
of synthetic versions of the BOS that preserved varying degrees of
the temporal and spectral structure present in the original song.
By comparing the response of HVc song-selective neurons to
these synthetic songs with their response to the original BOS, we
were able to characterize features of the temporal and spectral
structure in the BOS that were essential for HVc neurons, and to
quantify the sensitivity of the neuronal responses to the exact
preservation of these features. This characterization also re-
vealed the striking precision with which the temporal and spectral
structure present in these learned vocalizations needs to be pre-
served from the auditory periphery to higher order auditory
centers.

MATERIALS AND METHODS
Song selection and recording
Two to three days before the experiment, an adult male zebra finch was
placed in a sound-attenuated chamber (Acoustic Systems, Austin, TX) to
obtain clear audio recordings of its mature, crystallized song (this species
usually sings only one song type as adults). An automatically triggered
audio system was used to record ;90 min of bird sounds, containing
many samples of the song of the bird. The tape was scanned, and 10 loud,
clear songs were digitized at 32 kHz and stored on a computer. Those
songs were assessed further by calculating their spectrograms and by
examining them visually. A representative version was then chosen from
those 10 renditions and analyzed by a custom-made computer program to
obtain a parametric representation based on the spectral and temporal
components of the song (see below).

Zebra finch songs are organized into simple elements often called
syllables. These syllables are in turn organized into a set sequence that is
called a song phrase or motif. The motif is repeated multiple times in a
song (Zann, 1996, pp 214–215). We chose songs that varied in length
between 1.1 and 2.3 sec and consisted of two or three motifs. The length
of the song is important because it has been reported that HVc neurons

integrate over long periods of time and that the maximal responses are
not necessarily found in the first motif (Margoliash and Fortune, 1992;
Sutter and Margoliash, 1994).

Parametric representation of song
The analysis consisted of decomposing the original song into a set of
narrowband signals by filtering the song through a bank of overlapping
filters (Fig. 1 A). The narrowband signals could then be represented by
two parameters, one that describes the amplitude envelope and one that
describes the time-varying phase of the carrier frequency. The set of
time-varying amplitude envelopes characterizes the time-varying power
in each frequency band and therefore represents both the spectral and
temporal structure of the song. The time-varying phase carries additional
spectral and temporal information for each band, but as we will describe
in detail in Synthetic songs, this information can become redundant with
the information embedded in the joint consideration of the amplitude
envelopes. In this section, we describe the mathematics involved in the
original decomposition. The next section describes what aspects of the
spectral and temporal structure are actually represented in the amplitude
and phase components, how the two are related, and how we used
variations of these parameters to generate songs with specific spectral
and temporal properties.

The decomposition of each narrowband signal into its amplitude and
phase constituents was obtained using the analytical signal (Cohen,
1995). As will be emphasized below, this particular decomposition gen-
erates an amplitude envelope function that is identical to the one
obtained by calculating the short time Fourier transform of the signal,
just as is done when a spectrogram is generated. In addition, this
operation generates the phase of the short time-window Fourier trans-
form in a form that is continuous with time and that can be interpreted
as an instantaneous frequency modulation. A detailed mathematical
description of this parametric representation can be found in Flanagan
(1980). The decomposition is briefly summarized here.

The original signal s(t) is first divided into n bandpassed component
signals sn(t). To be able to resynthesize the original signal from the
bandpassed components, we must choose the filters in the filter banks so
that the overall filter transform (obtained by summing the transforms
from each filter) is flat over all frequencies occupied by s(t). In addition,
the phase distortion of each filter must be insignificant. If these require-
ments are satisfied, we can recreate the original sound by summing all of
the bandpassed signals:

Figure 1. A, Schematic showing the decomposition of a complex sound into a set of narrowband signals, each described by an amplitude envelope and
a frequency-modulated carrier. The complex sound is the input to a filter bank composed of a set of adjoining, and in this case overlapping, filters that
cover the frequency range of interest. The narrowband output signals of two of the filters in the bank is shown. The envelope that was obtained with
the analytical signal is drawn. The carrier frequency is centered at the frequency corresponding to the peak of the filter and has slow frequency
modulations that are not easily discernible in this figure. B, Overall filter transform (thick line) obtained from a set of overlapping Gaussian filters (thin
lines), the center frequencies of which are separated by one bandwidth (1 SD). The overall filter transform is almost perfectly flat for a large frequency
range. In this example, we used 15 Gaussian filters with a bandwidth of 500 Hz and center frequencies between 500 and 4000 Hz.
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In our decomposition, we used Gaussian filters that were separated
along the frequency axis by exactly 1 SD. It can be shown analytically
(and verified numerically) that the deviations from a flat amplitude
transform in that case are of the order of 1 in 10 9 (Fig. 1 B). Enough
filters were used to cover the frequency range from 500 to 8000 Hz. The
filtering was performed digitally in the frequency domain, resulting in no
phase distortions.

In the next step, to extract the instantaneous amplitude envelope An(t)
and the instantaneous phase u(t) of each narrowband signal, we calcu-
lated the analytical signal of each sn(t):

sn~t! 5 An~t!cos@u ~t!#.

The analytical signal decomposition of sn(t) guarantees that the fre-
quency components of An(t) are all below those of cos[u(t)] (Cohen,
1995). In particular, it can be shown that for a bandpassed signal of
bandwidth sw, all of the frequency components of An(t) 2 are below sw
(Flanagan, 1980). In general, A(t) is what one would intuitively call the
amplitude envelope of the signal. For example, the A(t) calculated for a
beat signal made of two pure tones with amplitudes A1 and A2 , frequen-
cies w1 and w2 , and absolute phases u1 and u2 is given by: A(t) 2 5 A1

2 1
A2

2 1 2 A1 A2 cos[(w1 2 w2 )t 1 (u1 2 u2)]. The calculation of A(t) for a
complex signal is just the extension of this simple vector sum to include
all frequency components of the signal. Finally, it can be shown that An(t)
corresponds to the amplitude at the center frequency wn of the Fourier
transform of s(t) as seen by a window centered around t and with shape
given by the inverse Fourier transform of the filter transform function
expressed in the frequency domain. In other words, An(t) 2 is the running
power at frequency wn calculated with a window centered around t. The
width and shape of the window is related to the shape and width of the
frequency filter. This is exactly the value achieved when one calculates a
spectrogram of a signal.

The part of the signal that is not described by the amplitude envelope
(and therefore not shown explicitly in a spectrogram) is often called the
fine structure of the signal and is given in the analytical signal by an
instantaneous phase, u(t). The instantaneous phase can in turn be ex-
pressed in terms of its derivative and an absolute phase. The derivative
of the instantaneous phase is taken as the instantaneous frequency:

sn~t! 5 An~t!cos@E
0

t

w~t!dt 1 un#.

We further expressed the instantaneous frequency as a modulation
around the center frequency of the band wn:

sn~t! 5 An~t!cos@wnt 1 E
0

t

wFMn~t!dt 1 un#.

In this final form, An(t) will be referred to as the amplitude modulation
or AM component of the signal, wFMn(t) is the frequency modulation or
FM around the center frequency wn, and un is the absolute phase.

Synthetic songs
Four synthetic song families were generated using systematic degrada-
tions of the parametric representation described above. Each family of
songs preserved some aspect of the original signal. In the following
description, the song families are organized approximately in terms of
increasing similarity with the original signal. The first set of songs was
generated by preserving only the AM components in the decomposition.
This resulted in synthetic songs with amplitude envelopes similar to that
in the original song. The second set of songs progressively restored the
relative instantaneous phase across frequency bands, improving both the
FM and AM quality of the synthetic song. The third and fourth set
distorted the FM component by additive FM noise. This distortion was
done in two ways, one that randomized (third set) and one that preserved
(fourth set) the original relative phase. Finally, as a control, we also
created the single synthetic song that preserved all of the original
parameters. This song is referred to as Syn in Results. The Syn song is
identical to the original song filtered by the combined filter transform
function obtained from our filter bank.

Synthetic AM songs and the time–frequency scale. The first set of songs

was generated by preserving the AM components obtained in the de-
composition but by generating a new and random instantaneous phase for
each bandpassed signal. The instantaneous phase was chosen to be
random so that the new component bandpassed signals of song become
effectively noise, band-limited to the same frequency band as the original
bandpassed signal and modulated by the same amplitude envelope. The
full degraded synthetic song is the sum of these narrowband signals. A
family of such AM songs can be generated by increasing or decreasing the
width of the filters in the filter bank used to extract the AM waveforms
of the original song.

When the filter bandwidth is very wide, the entire song will fit in the
band of a single filter, and the resulting AM song will be similar to white
noise modulated by the overall amplitude envelope of the signal (see
Figs. 2, 6, AM-1 panel ). As one narrows the bandwidths of the filters,
more filters are needed to cover the entire song, and the amplitude
envelopes from each filter characterize the spectral structure more pre-
cisely. However, because of the time–frequency resolution trade-off, the
amplitude envelopes in each band will now be limited to coarser time
resolutions [An(t) is band-limited by the width of the filter]. Normally,
when the full song is resynthesized by summing the signals in each band
and by preserving all parameters, the fine temporal aspect of the overall
song envelope is recovered because the phase in each band interacts with
that in the other bands in a specific manner to recreate the overall
temporal structure of the signal. However, by randomizing the phase, we
eliminated this particular relationship between the phases in each band
and affected the overall temporal structure. Because our phase is ran-
dom, the overall time resolution is effectively the time resolution of the
amplitude envelopes in each band. This time resolution is given by the
inverse of the bandwidth of the filters. Just as the songs modified after
filtering through wideband filters have good temporal but poor spectral
resolution, songs created at the very narrowband filter extreme charac-
terize the frequency content of the song well but have poor temporal
resolution; the amplitude envelopes in each band are effectively flat, and
the resulting song is a colored-noise signal with a flat amplitude and
overall frequency spectrum identical to that of the original signal (see
Fig. 6, AM-256 panel ). At intermediate time–frequency resolutions, the
synthetic AM signals can capture both the spectral and temporal struc-
ture of the original signal but always with a particular trade-off between
time and frequency (see Fig. 6, intermediate panels). We subsequently
denote the width of the filters used in generating an AM song as the
time–frequency scale of the synthesized signal. The AM songs are
labeled with “AM scale,” in which the scale is a number specifying the
time scale in milliseconds.

The time–frequency scale trade-off of the AM songs is illustrated (see
both Figs. 2, 6). These figures show spectrograms for synthetic AM songs
generated with progressively narrower frequency filters. In Figure 2, we
also show the spectrograms of the original signal calculated with the same
windows that were used to obtain the AM songs. This allows for direct
comparison between the amplitude envelope of the AM songs and those
of the original song. In Figure 6, the full range of AM songs is displayed
in spectrograms all calculated with the time–frequency scale that was
best at representing the original song. These spectrograms illustrate how,
as one goes from AM-1 to AM-256, spectral resolution is gained at the
cost of temporal resolution.

In our experiments, we used a range of frequency filters by varying
their width from 2 kHz to 2 Hz in logarithmic steps. The corresponding
width of these filters in the time domain ranged from 0.5 to 512 msec. To
cover the frequency range from 500 to 8000 Hz, the number of filters
ranged from 4 for the 2-kHz-wide filters to 3840 for the 2-Hz-wide filters.
For each time–frequency value describing the filter width, we generated
a synthetic AM song.

Mathematically, the synthesis went as follows. The An(t) in the syn-
thesis was calculated from the original song, but the wFMn(t) and un were
random. The random wFMn(t) was generated so that wFM had a Gaussian
distribution of zero mean and SD equal to the bandwidth of the filters in
the filter bank, sw. In addition, we required that wFMn(t) be band-limited
to frequencies below sw. These two requirements guarantee that the
function:

cos@wnt 1 E wFMn~t!dt 1 un#

is the analytical representation of a bandpassed signal centered at wn,
with bandwidth sw and unit amplitude (i.e., flat bandpassed noise).
Finally, these unit amplitude signals from each frequency band were
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Figure 2. Wideband (W-1), middleband (W-16 ), and narrowband (W-256 ) spectrograms generated with different time windows for a representative
section of a zebra finch song motif (BOS) and three synthetic AM songs derived from that particular song (AM-1, AM-16, and AM-256 ). The time
windows used to generate the spectrograms had a Gaussian shape and a width of 1, 16, or 256 msec, respectively. The three AM songs were generated
by preserving the AM waveforms of the frequency decomposition of the original BOS obtained with a bank of Gaussian-shaped frequency filters, as
explained in Materials and Methods. The filters also had widths of 1, 16, or 256 msec expressed in the time domain (1 kHz, 62.5 Hz, or 3.9 Hz,
respectively, in the frequency domain). Therefore, the W-1 (W-16 and W-256 ) spectrogram for the AM-1 (AM-16 and AM-256 ) song approximately
matches the W-1 (W-16 and W-256, respectively) spectrogram for the BOS. At other time–frequency scales, the spectrograms of the AM songs do not
match that of the BOS, illustrating the information that is lost in the AM songs. The AM-1 song preserves the fine temporal modulations but does not
have the frequency resolution of the BOS. The AM-256 has good frequency discrimination calculated at longer time scales (notice the finer frequency
bands for the last harmonic stack in the song) but has smeared the temporal structure present in the BOS. The AM-16 shows good time–frequency
compromise.
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multiplied by the original An(t) and were summed together. The result
was a synthetic song with an amplitude envelope in each band similar to
that in the original song but with significantly different fine structure.

The resulting synthetic songs have an amplitude envelope in each of
their component bands similar to but not exactly the same as that in the
original signal because, in the AM songs, the phase relationship between
each band and its neighboring “overlapping” frequency bands was al-
tered. Just as randomizing the phase altered the overall amplitude
envelope in the AM songs, it will also alter the amplitude envelopes in
each band when all the bands are summed together in the synthesis. In
other words, in fully parameterized song, there exists redundant infor-
mation in the time-varying amplitude envelopes and in the relative phase
across overlapping frequency bands. One cannot therefore be scrambled
without affecting the other. Under certain conditions (of enough overlap
between the frequency bands), the amplitude envelopes can completely
determine the value of the relative phase across frequency bands. In
those cases, one can say that the spectrogram (i.e., the set of amplitude
envelopes) is invertible in the sense that the original signal (except for an
absolute phase) can be recovered solely from the set of amplitude
envelopes. The relative instantaneous phase and therefore the exact
representation of the amplitude envelopes will be restored in the family
of synthetic songs described in the next section.

To estimate the degree of distortion of the An components of the AM
synthetic songs, we calculated the normalized cross-correlation between
the An of the original song and the An of the synthetic songs (see below
for the definition of cross-correlation). We found that the average cross-
correlation (6 SEM) was 0.737 6 0.003 (range, 0.634–0.798) for all 74
AM songs used in these experiments. Significantly for the interpretation
of our results, this value was independent of the width of the filters used
in generating the songs. Our AM synthetic songs can therefore be
thought of as the typical signal that would be estimated in a inverting
operation (done, e.g., by the high-level auditory areas) from a noisy
representation of the complex sound by its amplitude envelopes (e.g.,
noisy neural encoding of these envelopes at the auditory periphery). The
amount of noise is equal to ;26% of the signal. The noise in the
representation is more detrimental to temporal information when many
frequency bands are used, because in those cases the temporal informa-
tion is present in the fine differences in amplitude across bands. Similarly,
the noise is more detrimental to spectral resolution when few frequency
bands are used. To eliminate completely the noise in the amplitude
envelopes, we had to restore the relative phase across bands perfectly.
Therefore in our particular decomposition using overlapping Gaussian
frequency bands, the amplitude envelopes can fully characterize the
signal (except for an absolute phase that can shift the phase by the same
amount in each band).

Note that any other mathematical representation of a signal in terms of
sums of amplitude envelopes [including those used in Shannon et al.
(1995)] is also affected by the fact that one cannot independently change
time-varying spectral and temporal information. For example, decreasing
the overlap between the filters would reduce the contamination in the
amplitude envelope attributable to the interaction with the neighboring
bands but would result in an increase in spectral fluctuations caused by a
nonuniform sampling of the frequency range covered by the overall filter
transform of the filter bank (as shown in Fig. 1B). Both errors in the
synthesis could apparently be eliminated by using nonoverlapping boxcar
filters, but in reality the amplitude envelope of a synthetic song made
from such boxcar filters would only match the amplitude envelopes of the
original song extracted with the exact same set of filters that was used to
obtain the An(t) waveforms for the synthesis. The amplitude envelopes of
the synthetic and the original song extracted with differently shaped
filters or with filters of the same shape but shifted along the frequency
axis would be different, again because of different interference terms. For
example, for boxcar filters, the error would be the greatest for amplitudes
extracted when the filters were shifted by exactly one-half the bandwidth.
On the other hand, our formulation, using Gaussian overlapping filters,
would result in similar errors for amplitude envelopes extracted with
filters (of equivalent bandwidth) of any shape and centered at any
arbitrary point along the frequency axis. This uniformity of representa-
tion of the amplitude envelopes is physiologically more realistic, just as
the shape and the overlap of our overlapping Gaussian filters constitute
a better model of the auditory periphery than does a set of nonoverlap-
ping boxcar filters. These were important factors, because we wanted to
analyze our results in light of the encoding occurring at the different
stages of the auditory system. Finally, we wanted to use a formulation
that was completely symmetric along the time and frequency dimensions,

so that we could interchangeably quantify the scale of our AM synthetic
song (given by the width of the filters) in the time domain or in the
frequency domain. The choice of Gaussian filters separated by 1 SD was
the result of all of these considerations.

Songs that preserve the relative instantaneous phase. In the second and
third set of synthetic songs, we progressively restored the fine structure
components of the signal that had been eliminated from the AM songs.
Our starting point was the AM synthetic song generated for the time–
frequency scale of 16 msec or 62.5 Hz (AM-16). This particular time–
frequency scale was chosen both because AM songs generated at this
scale elicited good responses from HVc neurons and because the ampli-
tude waveforms calculated at this scale were the most informative for
discriminating among zebra finch songs from different birds (see
Results).

In the second set of synthetic songs, we progressively restored the
instantaneous relative phase across adjoining frequency bands. In prac-
tice, we generated a set of songs with Gaussian noise added to the values
of the instantaneous phase waveforms un(t), obtained from the original
song. This is different than the situation for the AM songs in which the
instantaneous phase waveforms from the original song were ignored and
new random instantaneous phase waveforms were generated. The
amount of noise was specified to preserve the relative phase across
adjoining frequency bands to within a given temporal resolution. The
temporal resolution was implemented by allowing Gaussian deviations
from the original relative phase at each time point. The value of the
temporal resolution was varied by changing the width of the Gaussian
noise. The width of the Gaussian was expressed in radians, which were
translated into time units by dividing by (2p)62.5. The value of 62.5 Hz
corresponds to the interval between the center of two adjoining fre-
quency bands for the time–frequency scale of 16 msec.

Songs with temporal resolutions in the relative phase ranging from 10
to 0 msec were generated. Gradually restoring the relative instantaneous
phase had two effects; it progressively restored the FM in each band and
improved the quality of the AM component. The FM component is the
derivative of the instantaneous phase, which is independent of the
absolute phase and will therefore be preserved when the relative phase is
preserved. The quality of the AM component also depends on the
relative phase in order to obtain the same interference terms as those of
the original song (see synthetic AM songs and the time–frequency scale).
To indicate the accuracy of the representation of the AM component, we
also calculated for each temporal resolution the cross-correlation value
between the AM component of the synthetic songs and the one of the
original song. The 0 msec temporal resolution resulted in a synthetic song
that was similar to the original song except for an identical shift in
absolute phase in all frequency bands. That particular synthetic song was
called RAP for random absolute phase. The RAP song has the same AM
and the same FM that the BOS has.

Songs that preserve various amounts of the FM component. For the third
and fourth sets of songs, we added noise to the original FM component
in each band. In addition, the fourth set preserved the relative phase
exactly across all bands. To preserve the relative phase, we added the
same FM noise to every frequency band. For the third set, independent
frequency noise was added to the FM component in each band. We
generated a set of songs by varying the SD of the FM Gaussian noise
from 0 to 30 Hz. As in the previous set of songs, the FM noise was
band-limited to frequencies below 62.5 Hz. Recall that an AM-16 song is
generated with random Gaussian FM with 62.5 Hz SD; thus 30 Hz
corresponds to approximately half that amount of noise. For the syn-
thetic songs designed to preserve various amounts of FM, however, the
noise was added to the FM components of the original song. The
absolute phase was also random, one random shift for all absolute phases
for the set that preserved the relative phase and an independent phase
shift in each band for the set that did not preserve the relative phase. The
randomness of the absolute phase is only significant in the 0 Hz case. The
0 Hz noise value corresponds to synthetic songs with the original FM.
For the cases in which the relative phase was preserved (fourth set), the
0 Hz song was identical to the RAP song. For the cases in which we
generated a different absolute phase in each band (third set), the 0 Hz
song will be called RP for random phase.

Measure of song similarity based on the amplitude envelope
We estimated the degree of similarity between zebra finch songs from
different birds or between our synthetic songs and the original song by
calculating the normalized cross-correlation coefficient of their respec-
tive AM components:
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CA 5
^On A1n~t! A2n~t!&2

^On A1n~t!2&^On A2n~t!2&
.

The ^& indicate averages over the length of the song. CA was calculated for
a range of time delays between the two signals, and the largest correla-
tion was taken as the measure of song similarity. Because different songs
could vary in duration, the time averages were performed only for the
duration of the shortest song.

The correlation measures were repeated for a range of time–frequency
scales to allow the study of the effect of time–frequency scale on the
discriminability of songs based on their amplitude waveforms. We also
performed this calculation on a syllable-by-syllable basis by comparing
syllables from one song with syllables from the other songs. By looking
only at syllables, we could separate the effect of the temporal scale given
by the rhythmic succession of silences and syllables from the temporal
scale of the sounds within a syllable. The syllable cross-correlation
reported in this work was limited to the pair of syllables that were the
most similar between the two songs. These particular pairs are presum-
ably the most difficult to differentiate.

The syllable decomposition was done by a computer program that
automatically divided the song into sections of sounds and silences based
on the waveform profile of the overall power envelope calculated with an
8 msec hanning window. The peaks and troughs of this amplitude
envelope that were a factor of 10 apart were used to define sections of
silence and sections of sound in the song. The sections of sound could be
separated by very short silences (one point or 4 msec) and vice-versa. The
temporally discrete sections of sounds obtained with this algorithm are a
particular implementation of what is usually defined somewhat subjec-
tively as a syllable in the zebra finch song by human experts (Sutter and
Margoliash, 1994; Zann, 1996, pp 214–215). Figure 3 shows the syllable
decomposition obtained for one of the songs used in this work. Our
algorithm efficiently divides the song into syllables, with the limitation
that for syllables separated by longer periods of silence, the boundaries
between sound and silence are not necessarily at the same threshold
levels of sound intensity that would be used by a human expert. Because
the measurement of the length of the syllables or of the interval between
syllables was not part of our work, these differences are not important.

The cross-correlation analysis was performed for 16 songs from our
zebra finch colony, including the songs from the seven birds used in this
experiment. The songs belonged to birds from different families and had

different temporal and spectral structure. This ensemble of songs was not
necessarily representative of all song sounds that zebra finches can
produce but was more than sufficient to characterize the time–frequency
scale of zebra finch sounds, as evidenced by the small error bars that we
obtained for the CA measure.

Electrophysiology
All physiological recordings were done in anesthetized adult male zebra
finches in acute experiments. Two days before the recording session, a
small surgical procedure was performed to prepare the bird for the
recording session. The bird was anesthetized with 20–30 ml of Equithesin
intramuscularly (0.85 gm of chloral hydrate, 0.21 gm of pentobarbital,
0.42 gm of MgS04 , 2.2 ml of 100% ethanol, and 8.6 ml of propylene glycol
to a total volume of 20 ml with H20), and a small patch of skin on the
head was removed to expose the skull. The top bony layer of the skull was
removed around the dorsal part of the midsagittal sinus and in an area a
few millimeters lateral of the sinus. A ink mark was made 2.4 mm lateral
from the dorsal bifurcation point of the sinus to be used as a reference
point for electrode penetration. Finally, a metallic stereotaxic pin was
glued to the skull with dental cement.

For the recordings, the bird was slowly anesthetized with urethane (75
ml of a 20% solution administered in three doses over a 1.5 hr period)
and immobilized with the stereotaxic pin. A very small patch of the lower
layer of the skull and the dura was removed at the marked location
exposing the brain. Extracellular electrodes were inserted through this
opening at and around the location originally marked by the ink dot. The
stimuli were presented inside a sound-attenuated chamber (Acoustic
Systems) with a calibrated speaker 20 cm away from the bird. The volume
of the speaker was adjusted to deliver peak levels of ;85 dB. The
rate-intensity function of HVc neurons quickly plateaus above threshold
values. The 85 dB value was chosen so that the sound level of the song
was in the range at which the rate-intensity function of the neurons is flat
(Margoliash and Fortune, 1992). We did not investigate what effect low
sound levels would have on our results. Data were collected when the
base line activity and auditory responses were characteristic of the
nucleus HVc. As reported in other studies both for zebra finches (Mar-
goliash and Fortune, 1992) and for white-crowned sparrows (Margoliash,
1986), HVc responses, in both the urethane-anesthetized and the awake-
restrained animal, are characterized by bursting spontaneous activity and
by auditory responses that show a strong preference for the BOS in
comparison with the responses to other complex auditory stimuli, such as
the BOS played in reverse or the song of conspecifics. These character-
istic properties can be used to distinguish the neural responses of HVc
neurons proper from those of the neighboring neostriatal areas. Our
experience is in complete agreement with this phenomenology. The
exact location of the recording sites was also verified postmortem by
finding the electrode tracks and lesion reference points in Nissl-stained
sections of the brain of the bird [for detailed histological methods, see
Doupe (1997)]. The data from this paper consist solely of recordings
from within the nucleus HVc [for a detailed anatomical description of
the HVc, see Fortune and Margoliash (1995)].

The data consisted of neural responses obtained in 77 distinct record-
ing sites in seven birds. In any particular bird, the recording sites were at
least 75 mm apart. This distance was sufficient to guarantee that the
neural activity recorded from two successive sites originated from dif-
ferent units. A window discriminator was used to translate the neural
activity at each recording site into spike arrival times of small clusters of
one to five neurons. The single-cell spike arrival times were obtained
when a stereotyped spike shape was easily selected with a window
discriminator. The multiunit recordings consisted of spikes of various
shapes that could easily be discriminated from the background activity
with a window discriminator but not from each other. We assessed that
responses from small clusters of two to five neurons were obtained in
such recordings. Additional single units were isolated from the clusters of
neurons using the spike-sorting algorithm of Lewicki (1994) and showed
very similar results to the small clusters of neurons and to the single units
isolated with a window discriminator but were not used in the analysis
presented here.

Stimulus repertoire and presentation
Stimulus repertoire consisted of the BOS, all of the synthetic versions of
the BOS, the BOS played in reverse, the BOS played in reverse order,
two conspecific songs, and broadband noise bursts. In addition, in some
experiments, we used pieces of songs to test for temporal combination-
sensitive neurons. The BOS, the BOS played in reverse, the broadband

Figure 3. Spectrogram (top) and overall power envelope (bottom) of one
of the representative songs used in these experiments. The vertical lines
are the divisions obtained from a computer program that automatically
divides the song into syllable-like elements based on the peaks and
troughs of the overall power (see Materials and Methods). Syllables 9–14
were chosen for the color spectrograms (see Figs. 2, 6).
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noise bursts, and the conspecific songs were used both as search stimuli
and to initially characterize the selectivity of the recording sites for the
BOS. The synthetic stimuli were then presented in subgroups that con-
sisted of most of the synthetic songs from one of the four families and the
BOS. Ten interleaved trials were collected for all of the stimuli in the
subgroup. The stimulus presentation order was randomized for each trial
number. The interstimulus interval was between 7 and 8 sec. Two
seconds of background activity was recorded before each stimulus, and
between 4 and 5 sec was recorded after the stimulus. An additional time
interval between 1 and 3 sec (uniform random distribution) was added
between collections. When a single stimulus such as the BOS was pre-
sented with this interstimulus interval, no measurable adaptation in the
responses was found.

In the analysis, the response to the synthetic songs was compared with
the response to the BOS obtained during the same collection trials. This
was a precaution used in case the response properties were not stationary
during the long period of time that was required for the presentation of
all synthetic stimuli. Because the set of collection trials was repeated for
a subgroup of stimuli to assess stationarity, we obtained between 10 and
40 trials for each stimulus. However, 10 trials were used most of the time
to be able to record the responses to the largest ensemble of synthetic
stimuli at each recording site. This small number of trials was sufficient
to characterize single recording sites in terms of their classic selectivity
properties (i.e., BOS vs conspecific song) because the magnitude of the
response is clearly different in those cases. For stimuli that gave similar
responses (such as AM-16 vs AM-8), more trials would be required in
particular cases to obtain significant differences for single recording sites
(although some neurons showed statistically significant differences). Our
conclusions for those stimuli are based on the population study.

Not all synthetic stimuli were presented at each recording site. The
total number of recording sites for each stimulus is specified in each of
the figure legends when the results are presented. Table 1 summarizes
the number of recording sites per bird and the number of sites where data
were obtained for each of the four synthetic stimuli ensembles.

Neural response characterization
The neural response to any given stimulus was expressed as a Z score.
The Z score is given by the difference between the firing rate during the
stimulus and that during the background divided by the SD of this
difference quantity:

Z 5
mS 2 mBG

ÎVar~S! 1 Var~BG! 2 2Covar~S, BG!
,

where mS is the mean response during the stimulus (S) and mBG is the
mean response during the background (BG). The denominator is the
equation for the SD of S 2 BG. The background was estimated by
averaging the firing rate during the 2 sec period before the stimulus. For
each unit, the Z score for the response to any stimulus was then compared
with the Z score for the response to the BOS by calculating the ratio of
these two values. The Z score was in most cases larger for the BOS than
for any other stimuli, so that the fraction of the BOS Z score is also an
estimate of the response relative to the maximal response. The fractions
for different units were then averaged to generate a result for the entire
data set.

We also used the psychophysical measure d9 (Green and Swets, 1966)
to estimate the strength of the selectivity of the recorded neurons. The
selectivity of HVc neurons is determined by their response to the BOS
in comparison with their response to conspecific songs or to the BOS
played in reverse. We calculated the d9 to estimate the difference be-
tween such responses. The d9 value for the discriminability between
stimuli i and j is calculated as:

d9 5
2~R# i 2 R# j!

Îs i
2 1 s j

2 ,

where R is the response to a given stimulus. R# is the mean value of R, and
s is its SD. We took R to be S 2 BG. The d9 value for neuronal responses
can be compared with psychophysical or behavioral responses in a
forced-choice paradigm [see, for example, Delgutte (1996)]. For our
purposes, d9 is the simplest measure of selectivity that takes into account
not only the estimate of mean responses but also their variance.

RESULTS
Song selectivity
In this paper, we were interested in quantifying the selectivity
seen in HVc neurons. Our goal was to find what aspects of the
acoustical structure inherent to all songs are essential to obtain
neural responses and to measure the sensitivity of the neurons to
systematic degradation of the necessary structure. The first step in
our analysis involved measuring the classic song selectivity of the
auditory neurons recorded in the experiments. A rigorous quan-
tification of the selectivity was needed to compare our responses
with those found in previous work and to select a group of
neurons from our data set that we determined to be highly song
selective. The song selectivity in HVc neurons has been charac-
terized by a much stronger mean response to the BOS than to
songs from conspecifics or to the BOS played in reverse (Margo-
liash, 1986; Margoliash et al., 1994; Lewicki and Arthur, 1996;
Volman, 1996). To also take into account the variance seen in the
responses, we chose to quantify the degree of selectivity by
calculating the psychophysical measure of discrimination d9 (see
Materials and Methods).

Figure 4A shows the cumulative probability distribution of the
d9 measure for BOS versus conspecific song for all the recording
sites in our data set. The mean d9 value is 2.3 with 86% of the
recording sites showing a selectivity greater than d9 5 1.0. These
values are not necessarily representative of all auditory neurons
in HVc because we did not attempt to map the nucleus in a
systematic manner. For certain recording sites, the responses to
conspecific songs were missing, but we had data to characterize
the selectivity of BOS versus BOS played in reverse. In either

Table 1. Distribution of recording sites per bird and per stimulus ensemble

Bird
# recording
sites (selective)

AM
songs

Relative
phase

FM random
phase

FM relative
phase

Song duration
(motifs)

Zfa_14 11 (9) 11 (9) 0 10 (9) 0 1.48/sec (2)
Zfa_16 9 (7) 8 (6) 0 6 (5) 0 1.44/sec (2)
Zfa_18 12 (10) 8 (8) 0 10 (8) 10 (8) 1.04/sec (2)
Zfa_20 13 (8) 6 (5) 7 (6) 0 5 (5) 2.07/sec (2)
Zfa_21 7 (6) 4 (3) 5 (5) 0 2 (2) 1.18/sec (2)
Zfa_23 15 (14) 7 (6) 9 (9) 0 5 (5) 2.31/sec (3)
Zfa_25 10 (9) 6 (5) 8 (7) 9 (8) 9 (8) 1.78/sec (2)
Total 77 (63) 50 (42) 29 (27) 35 (30) 31 (28)

The table shows the number of recording sites inside the nucleus HVc from which data were acquired. The number in parenthesis is the number of recording sites that were
selective for the BOS (d9 . 1 as explained in Materials and Methods and Results). The first column shows the distribution per bird. The second to fifth columns show the
number of sites in which stimuli from each of the four families of synthetic songs were presented. The last column shows the length and the number of motifs for each song.
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case, all neural recordings for which d9 was .1 were classified as
song selective.

Figure 4B shows the mean relative Z score of all song-selective
responses to conspecific songs and to the BOS played in reverse.
The response to these stimuli was close to zero. Figure 4B also
shows the mean response to the synthesized BOS in which all
parameters in the decomposition have been preserved (Syn). As
expected, the response to Syn is statistically indistinguishable
from the response to the BOS because the two stimuli are iden-
tical except for the overall bandpass filtering from 500 to 8000 Hz.
Figure 5 shows the peristimulus spike time histogram (PSTH)
and the single-spike train records from a single-unit recording for
these four stimuli.

Time–frequency scale tuning
To investigate the spectral and temporal requirements of the
song-selective neurons, we first generated synthetic songs that,
when decomposed into defined frequency bands, had amplitude
envelopes similar to that of the BOS in each frequency band.
However, the time-varying phase of the signal in each band
(which can also be expressed as a frequency modulation and

absolute phase) was set to be different from the one in the original
BOS and was randomized. By varying the width (and correspond-
ingly the number) of the frequency bands, we generated a set of
AM songs with systematically varying degradations of temporal
versus spectral resolution (see Materials and Methods for more
details). Figure 6 shows the spectrograms for a set of such AM
songs, illustrating the trade-off between synthetic songs that pre-
serve the time structure of the original song (AM-1 to AM-16)
and synthetic songs that preserve the spectral structure of the
original song (AM-16 to AM-256). Based on visual inspection, the
synthetic songs in the middle values of the time–frequency scale
(AM-16 or AM-32) show a good compromise, achieving seem-
ingly minimal temporal and spectral degradation. We will come
back to this issue in the next section.

Figure 7 shows the PSTHs for a representative single unit
obtained in response to eight AM songs generated with time
windows ranging from 0.5 to 64 msec. The PSTHs in this figure
can be compared with the ones obtained from the same unit in
response to the original BOS and other songs shown in Figure 5.
As the time window was increased, the responses of this partic-

Figure 4. A, Cumulative probability distribution of the measure d9 from signal detection theory for the discriminability between the BOS and conspecific
songs (Con), calculated from the neural responses obtained at 54 recording sites. B, Response, measured as a percent of the response to the BOS, for
the synthetic song that preserved all of the parameters obtained in our decomposition (Syn), for the song played in reverse (Rev), and for conspecific songs
(Con). The data are obtained from n 5 30 for Syn, n 5 39 for Rev, and n 5 47 for Con (n refers to the number of recording sites). The error bars show
1 SEM.

Figure 5. Individual spike rasters and peristimulus time histograms (top) for the response of a particular single unit in the HVc to the BOS, Syn, Rev,
and Con stimuli (see Fig. 4). Oscillograms (waveform representations of the sound pressure) of the stimuli are shown below each histogram. The d9 for
this particular single unit was 1.5. As shown in Figure 4, ;75% of the recording sites showed greater selectivity than did this particular neuron, and this
neuron, despite its evident selectivity, is among the less selective members of the population that was used for the studies involving the synthetic stimuli
(d9 . 1).
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ular neuron to the AM songs increased, peaked at ;16 msec, and
then decreased. The response to AM songs synthesized with time
windows of ,2 or .32 msec was indistinguishable from back-
ground activity. The maximal response obtained at 16 msec was
slightly less than was the response to the BOS. Thus, this neuron
showed good responses to synthetic songs based only on the
amplitude envelopes, as long as these were obtained in a partic-
ular time–frequency range. This time–frequency scale included
songs that, by visual inspection of the spectrograms of Figure
6, were good at representing both the spectral and temporal
structure in song (AM-16 in Figs. 6, 7) but also included songs
that showed substantial spectral degradation (AM-4 and AM-8
in Figs. 6, 7).

The mean relative Z score of all song-selective neuronal re-
sponses in our data set for the entire range of AM songs is shown
in Figure 8A. All individual song-selective recording sites exhib-

ited similar tuning, with responses that peaked at time–frequency
scales between 2 and 16 msec. The exact location of the peak as
well as the width of the tuning curve varied slightly across units,
as exemplified in the three single-unit response traces shown in
Figure 8B and in the example shown in Figure 7. This variability
was present both in neuronal responses from the same bird (as
shown here) or across birds.

In all cases, the response at the extreme time–frequency scales
was similar to or below background. The stimulus at the extreme
time scale of 0.5 msec is similar to a broadband white noise
stimulus modulated by the overall amplitude envelope of the BOS
calculated with a 0.5 msec window. This stimulus is analogous to
the noise stimulus defined in Margoliash and Fortune (1992). For
that particular stimulus, our results are similar to theirs; they
reported a weak response to noise syllables, and we found a weak
or inhibitory response for the AM-0.5 synthetic song. At the other

Figure 6. Spectrograms of a representative section of an original song and its corresponding degraded AM synthetic songs. The spectrograms of the
AM-1 to AM-256 songs are shown. The songs generated with small time windows (1–4 msec) preserve the temporal modulations seen in the original song
but have poor frequency resolution. For long time windows (such as 256 msec), the spectral resolution calculated at longer time scales is good, but the
temporal structure present in the original signal is smeared. The symbols (*, l) indicate the time–frequency scale that gave the best neural response
(*) and the best discrimination among songs (l) (see Fig. 10 and the corresponding text). The same symbols are also used below (see Figs. 7, 8). All
spectrograms displayed in this figure were generated with 16 msec Gaussian windows.
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end of time–frequency scale, the synthetic song preserves
the overall spectrum of the BOS, but because we randomized the
phase of its frequency components, it has lost almost all of
the original temporal modulations (Figs. 2, 6); such a stimulus is

often referred to as colored noise, as opposed to white noise that
is characterized by a flat spectrum. As seen in Figure 8, this
stimulus also elicited a weak or inhibitory response. The song
played in reverse is another example of a synthetic stimulus that

Figure 7. Peristimulus histograms for a single-unit recording in response to the set of AM songs spanning the range of time–frequency scales between
0.5 and 64 msec. The responses to AM songs generated with time windows of .64 msec were similar to those obtained at 64 msec. The stimuli started
at t 5 2 sec and lasted ;1 sec. This single unit and song were from bird zfa_18. This neuron is the same as that of Figure 5. The symbols (*, l) indicate
the time–frequency scale that gave the best neural response (*) and the best discrimination among songs (l) (see Figs. 6, 8, 10).

Figure 8. A, Time–frequency tuning curve of HVc in response to AM song stimuli. The x-axis shows the time (bottom) or frequency (top) scale that
was used to generate the AM song stimuli. The response is measured as a percent of the response to the BOS. The error bars show 1 SEM. The number
of recording sites for each stimulus was n 5 31 for t 5 0.5 msec, n 5 31 for t 5 1.0 msec, n 5 42 for t 5 2.0 msec, n 5 35 for t 5 4.0 msec, n 5 41 for
t 5 8.0 msec, n 5 37 for t 5 16 msec, n 5 42 for t 5 32 msec, n 5 33 for t 5 64 msec, n 5 40 for t 5 128 msec, and n 5 25 for t 5 256 msec. The symbols
(*, l) indicate the time–frequency scale that gave the best neural response (*) and the best discrimination among songs (l) (see Figs. 6, 7, 10). B,
Time–frequency tuning curves for three different single units from an individual bird. The x- and y-axes are identical to those in A.
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preserves the spectral quality of the song on the time scale of the
song duration but distorts the temporal structure. In the song
played in reverse, the temporal distortion is a very particular one,
whereas the distortion from the random phase in the AM songs
generates a systematically degraded version of the original tem-
poral envelope (see Materials and Methods).

Neither AM song with a very precise temporal profile nor AM
song with a highly precise spectral profile elicited a positive
response, and in some cases these stimuli even inhibited the cells.
However, as we moved from one time–frequency extreme to the
other, the response to the AM synthetic songs traced a smooth
tuning curve, reflecting a graded sensitivity to the temporal–
spectral precision trade-off inherent in these synthetic AM songs.
The responses were the largest for time–frequency scales be-
tween 4 and 16 msec. The mean response at the peak time–
frequency scale of 4 msec was on average 77 6 13% (6 SEM) of
the response to the BOS. Most individual neuronal responses also
showed a response at the peak of their tuning that was high but
still below that of the BOS; 83% of the recording sites had Z
scores below the value of their Z score to the BOS. A one-tail
paired t test comparing the mean Z score obtained for the AM-4
songs and the mean Z score for the BOS shows that the mean for
AM-4 is clearly below the mean for BOS (n 5 34; t 5 24.264; p 5
0.0001).

In summary, HVc neurons show a strong response to synthetic
songs that preserve only the amplitude envelopes of a filter bank
decomposition of the original song, but only do so for a range of
time–frequency scales between 4 and 16 msec (250–62 Hz). On
visual inspection, it appears that some of the synthetic songs that
gave the best neural responses were also the ones that were in
some sense most like the original signal. On the other hand, we
also found large responses to synthetic songs that apparently had
large amounts of spectral degradation. In the next section, we will
attempt to quantify these observations about how the different
AM songs characterize the acoustical structure in the song and
how this compares with neural responses. It is also true that even
the responses for the optimal time–frequency scales were still
below those of the original song, reflecting the fact that HVc
song-selective neurons are sensitive to additional temporal and
spectral structure of the original song that was not reflected in
these AM songs (see Materials and Methods). The nature of the
missing structure and the sensitivity of the neurons to the gradual
restoration of this structure will be addressed in a subsequent
section.

Relative preference for temporal cues
The next goal in our analysis was therefore to compare the
time–frequency scale tuning of HVc neurons with the time–
frequency scale that would best characterize the acoustical struc-
ture in song obtained in an independent manner. For instance, it
is well known that a given sound is best represented in a spec-
trogram when this spectrogram is calculated at a particular time–
frequency scale. For example, on visual inspection, the acoustical
structure of the zebra finch song shown in Figure 2 seems best
represented by the spectrogram calculated with a 16 msec win-
dow. Similarly, when we look at the spectrograms of the synthetic
songs generated from amplitude envelopes of the BOS obtained
from a range of time windows such as those shown in Figure 6, we
can visually decide on a time window that seems to be the best at
characterizing the structure present in the original song. In gen-
eral, the optimal time window depends on the properties both of
the acoustical signal and of the particular acoustical features that

are of interest. Optimally, we would like to base our criteria for
the “best representation” not necessarily on all the information
that could be extracted from the spectrogram (or the set of
amplitude envelopes), but on the aspects of that information that
represent the behaviorally relevant bioacoustical structure of ze-
bra finch song. To do so, one might want to evaluate the quality
of AM songs generated at different time–frequency scales by
testing the efficacy of the songs in eliciting the appropriate natural
behaviors.

Short of this, we estimated the time window at which a simple
measure of discrimination based on the spectrogram would give
us the most information and enable us to distinguish songs from
different zebra finches. Our measure of discrimination was based
on the cross-correlation between the amplitude envelopes of the
different songs (i.e., CA). We calculated the pairwise correlations
between 16 zebra finch songs from our colony (120 comparisons)
and between the syllables in each of the songs that were the most
similar (n 5 2031). The correlations were calculated for a range
of time scales from 1 to 256 msec and are shown in Figure 9.

The cross-correlation measure shows a tuning with a minimum
at 32 msec. This minimum point corresponds to the time–
frequency scale at which the amplitude envelopes of the two songs
are the most different according to the cross-correlation measure
(other measures based on higher order statistics might give
slightly different answers). This quantitative measure matches our
visual estimates of the “best” spectrograms in Figures 2 and 6.
Note that, in contrast to the AM songs used in the physiology, in
this calculation the amplitude envelopes are not distorted because
new synthetic songs were not generated in the process. Moreover,

Figure 9. Cross-correlation between amplitude envelopes calculated at
different time–frequency scales for songs (Song) and syllables (Syll ) from
different birds. Sixteen different songs were used, resulting in 120 pair-
wise correlation measures for songs and over 2000 pairwise comparisons
for syllables. Low values of cross-correlation indicate large differences
between signals and therefore show the time–frequency scales that are
best at discriminating among zebra finch songs. The error bars showing 1
SEM are smaller than the size of the markers.
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the amplitude envelopes (or the spectrogram) obtained from the
original decomposition using our overlapping filters completely
characterize the original songs, except for an absolute phase. The
same information about the identity of each song is therefore
present in the amplitude envelopes at any time–frequency scale
but in a different form. At particular (optimal) time–frequency
scales, the temporal and spectral structure that is most useful in
distinguishing between songs is encoded in large fluctuations in
each of the envelopes. At other time–frequency scales, the same
temporal and spectral structure can only be recovered by exam-
ining the joint small fluctuations in the envelopes from multiple
bands (see Materials and Methods). This is the effect that we are
quantifying with the measure of cross-correlation between am-
plitude envelopes. For the same reason, the noise added to the
amplitude envelopes of the AM songs at those optimal time–
frequency scales by randomizing the phase has the smallest effect
in altering the time–frequency structure of the signal, as illus-
trated in Figures 2 and 6.

One might expect the time–frequency scale of individual syl-
lables to be different from that of an entire song, because a large
fraction of the temporal complexity of a full song is attributable
to the more or less precise sequence of syllables and silences. In
fact, the curves for song and syllable shown in Figure 9 peak at
around the same point. The effect of the overall temporal pattern
in the entire song is nevertheless reflected in the relatively larger
width of the curve for discriminations based on the entire song,
particularly at finer time resolutions; there the overall temporal
pattern given by the sequence of syllables still allows one to
discriminate across songs. In contrast, as the time resolution is
made finer, all individual syllables begin to resemble each other,
being described by a few Gaussian-shaped amplitude envelopes.

The time–frequency tuning of the correlation measure can now
be compared with the time–frequency tuning of HVc neurons to
the AM songs shown in Figure 8. The two curves are plotted
together in Figure 10 to facilitate the comparison. The symbols
(*, l) in Figures 6–8 and 10 indicate the time-scales for the peak
of the averaged neural responses (*) and for the peak of the
average discrimination based on the cross-correlation measure
(l). The symbols are used to facilitate further the comparison
between all of the figures, but note that the strength of the neural
response at the 4 msec peak is not significantly different from
those at 8 and 16 msec. However, it is clear that the two curves are
shifted along the time–frequency axis. To test whether this shift
was significant, we compared the distribution of peaks in neuronal
responses with the distribution of minima in the cross-correlation
values. The distribution of neural sites with peak responses at the
different time scales was as follows: 4, 13, 16, and 8 sites at 2, 4, 8,
and 16 msec, respectively (total 5 41 neurons). The distribution
of minima in the cross-correlation was 5, 42, 66, 6, and 1 song
pairs at 8, 16, 32, 64, and 128 msec, respectively (total 5 120). A
Kolmogorov–Smirnov test (insensitive to the logarithmic scale)
shows that these two distributions are different from each other
with high statistical significance ( p , 0.0001). The mean time–
frequency value for neuronal peak is 7.7 msec, whereas the mean
time–frequency value for minimum cross-correlation is 27.8
msec. A one-tail t test done both with and without a log transform
shows that these two means are statistically different ( p , 0.0001
in both cases). The difference is striking when one compares the
spectrograms for the AM-4 song that elicited a maximal response
in 13 of 41 recording sites with the spectrogram for the AM-32
song that elicited no peak responses and small average responses
overall (Fig. 6).

Note, however, that the curves showing discriminability as a
function of time–frequency scale (Figs. 9, 10) reflect the average
time–frequency scale of the entire song and of all types of
syllables. Individual syllables, or different parts of the entire song,
might be best characterized at different time–frequency scales,
and the neurons might be more tuned to such segments of songs.
If so, we might expect that these segments of songs are best
characterized by time resolutions finer than the average. Despite
the significant shift toward finer temporal resolution of the neural
responses, the large overlap between the two curves in Figure 10
also suggests that the spectral and temporal requirements of the
neurons make them effective encoders of the specific acoustical
structure present in the song.

Relative phase and fine tuning
To investigate further the absolute sensitivity of the neurons to
the precise spectral–temporal quality of the BOS, we generated a
second set of synthetic songs that preserved greater temporal–
spectral information than did the AM songs. The AM songs
deviate from the original BOS in two ways. Their amplitude
envelopes calculated at any time scale are slightly different (CA 5
0.737 6 0.003), and they have different fine structure, which is
reflected by a different FM and a different and random absolute
phase. In these experiments, we generated synthetic songs that
had amplitude envelopes that were progressively closer to those
of the BOS. We restored the quality of the amplitude envelopes
by restoring the relative instantaneous phase across frequency
bands with various degrees of precision. Restoring the relative
phase will, at the same time, restore the FM. When the relative
phase is preserved exactly, only a single absolute phase remains
arbitrary and in these stimuli is random (RAP song). The other
synthetic songs in this set are characterized by the precision with
which the relative instantaneous phase is preserved, which can be
expressed in time units (see Materials and Methods for details).

Figure 10. Comparison of the cross-correlation measure for song simi-
larity and of the response of HVc neurons as a function of the time–
frequency scale. The data in Figures 8A and 9 are plotted together to
facilitate the comparison. Note that the right y-axis for the neural response
has been inverted and that the lef t y-axis for the cross-correlation among
songs has been expanded. The symbols (*, l) indicate the time–fre-
quency scale that gave the best neural response (*) and the best discrim-
ination among songs (l). The same symbols are used in Figures 6–8.
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The effect of preserving the relative phase on the representation
of the amplitude envelopes was estimated by calculating CA

between the synthetic and the original BOS.
The average neuronal response of our data set to these stimuli

is shown in Figure 11. The relative phase in the synthetic songs
was progressively restored by decreasing the phase resolution
toward zero (reading the curve on the graph from right to lef t). As
the relative phase was restored from being almost completely
random at 10 msec to being exactly preserved at 0 msec, the
response increased almost linearly, approaching 100% for phase
resolution values finer than 2.0 msec. A paired t test was used to
compare the differences in means between the Z scores obtained
for the synthetic songs and the corresponding Z scores obtained
for the BOS. For 95% confidence, the mean in the responses for
phase resolutions finer than 2 msec is not statistically different
from the mean in the responses for the BOS ( p 5 0.03, p 5 0.06,
and p 5 0.14 for t 5 2, t 5 1, and t 5 0 msec, respectively).

At 2 msec phase resolution, there was high fidelity in the
representation of the overlapping amplitude envelopes of the
BOS, expressed by a CA of 0.976 6 0.002. This extreme sensitivity
of the neurons is also evident in the spectrographic representa-
tions of the songs for 5 and 1 msec shown in Figure 11, which
illustrate how subtle the differences between these songs are,
although these stimuli elicit very different levels of response.

As an extension of these results, we found that the absolute
phase has no detectable effect on the response of the neurons; the
response to the RAP stimulus (the 0 msec point on the graph in
Fig. 11, lef t) is statistically similar to the one obtained in response
to the BOS.

FM tuning
In this third series of neuronal experiments, we tested the effect
on the response of the neurons of the preservation of various
amounts of the original FM, independent of the restoration of the
relative instantaneous phase. With a first set of synthetic FM
songs, we examined the effect of perturbing the FM component
while preserving the relative phase across frequency bands and
therefore also preserving the high level of accuracy in the ampli-
tude envelopes. To do so, we added the same FM noise to all

frequency bands (see Materials and Methods). As shown in
Figure 12 (solid curve), the response of the neurons is remarkably
unaffected by the addition of correlated FM noise. We could not
detect any significant differences in the response to the synthetic
song and to the BOS for FM noise values up to 30 Hz. Note that
the stimulus for 0 Hz noise is again the RAP song. Also note that
none of these synthetic FM songs, irrespective of their FM noise,
preserved the absolute phase of the original signal. Therefore,
these data also constitute more evidence that these auditory
neurons are not sensitive to the absolute phase of the signal.

Figure 12. Mean HVc response curves to synthetic songs that had
various amounts of FM noise added to each frequency band. The x-axis
shows the amount of noise expressed as 1 SD of the additive Gaussian
noise. The RAP stimuli were generated by adding the same FM noise to
each band and therefore preserving the relative instantaneous phase (n 5
43 for FM 5 0, n 5 22 for FM 5 1, n 5 23 for FM 5 5, n 5 23 for FM 5
15, and n 5 25 for FM 5 30). The RP stimuli had different FM noise
added in each band (n 5 28 for FM 5 0, n 5 24 for FM 5 1, n 5 25 for
FM 5 5, n 5 15 for FM 5 15, and n 5 26 for FM 5 30). For both cases,
the absolute phase was random. The error bars show 1 SEM.

Figure 11. Lef t, Mean HVc response curve to the synthetic songs that preserved the instantaneous relative phase across frequency bands with different
degrees of accuracy. The bottom x-axis shows the resolution expressed as 1 SD of relative phase noise (in units of milliseconds) that was added to each
band. The top x-axis shows the normalized cross-correlation between the amplitude envelope of the synthetic songs and that of the original song. The
error bars show 1 SEM. The number of recording sites for each point was n 5 43 for t 5 0.0 msec, n 5 25 for t 5 1.0 msec, n 5 25 for t 5 2.0 msec,
n 5 23 for t 5 3.0 msec, n 5 27 for t 5 5.0 msec, and n 5 26 for t 5 10 msec. Middle, Right, Spectrograms of sections of a typical synthetic song with
1 msec (middle) and 5 msec (right) relative phase precision. The song shown is the same as that in Figures 2 and 6. The symbols are used to indicate the
corresponding points in the lef t curve.
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The second question was whether restoring the FM in the AM
songs without restoring the relative phase would improve the
neural response. To answer this question, we effectively reduced
the randomness of the FM by varying the amount of FM noise
that was added to the actual FM profile of the song from a large
amount (30 Hz) to zero (reading the graph from right to lef t). The
relative phase across bands was not preserved because different
FM noise and a different absolute phase were used for each
frequency band (see Materials and Methods). As shown in Figure
12 (dotted curve), restoring the FM component had no effect on
improving the response of the neurons; there were no changes in
the response in going from the completely random FM of the AM
songs to synthetic songs for which, in the synthesis, we used the
actual FM from the BOS but ignored the relative phase (the RP
song). Note that, here again, when the synthetic stimulus is
generated by summing the signals from the complete set of
overlapping frequency bands, the AM and FM components will
be slightly distorted. However, the distortion in the AM compo-
nent as measured with the cross-correlation decreased as the FM
noise decreased. The CA for the synthetic song generated with 0
Hz FM noise and random relative phase is 0.8 6 0.02 compared
with 0.7 6 0.01 for the AM song at 16 msec. In this case, the slight
improvement in the AM representation did not lead to an in-
crease in the neural response.

Because the FM variations described above had no effect on the
neural response, we can summarize the effect of preserving var-
ious aspects of the instantaneous phase by looking at the re-
sponses to four stimuli. The AM-16 (called RFM) song yielded a
response that was on average half of that of the BOS. A synthetic
stimulus generated with the actual FM component but a random
phase in each band (RP) yielded the same response as the AM-16
song. Restoring the relative phase but leaving an absolute phase
random (RAP) yielded identical responses to the synthetic song
that also preserved the absolute phase (Syn), and these responses
were indistinguishable from the response to the original BOS.
The mean responses to these four stimuli are shown in Figure 13.

DISCUSSION
Using systematically perturbed versions of the optimal song stim-
ulus, we studied the song-selective properties of HVc neurons by
quantifying the sensitivity of the neurons to parameters that
describe the spectral and temporal structure present in the BOS.
Such quantitative investigations of the tuning of HVc neurons are
necessary to understand the form and amount of information that
must be preserved from the auditory periphery to this high-level
brain area, to constrain the mechanisms that give rise to song-
selectivity, and ultimately to begin to explore possible roles of
these neurons in perceptual tasks.

Parametric representation of a song
In addition to the use of ethologically based stimuli such as
conspecific songs, simple temporal or spectral manipulations of
song, such as reversing its order and breaking it into its compo-
nent syllables, originally determined the importance of both spec-
tral and temporal cues for the response of HVc neurons (cf.
McCasland and Konishi, 1981; Margoliash, 1983, 1986). Ulti-
mately, however, greater understanding of these complex sensory
neurons also requires more systematic decomposition of acoustic
signals, including graded manipulation of different parameters of
these signals to assess their importance. Margoliash first showed
the importance and power of this approach in his original char-
acterization of the properties of HVc neurons in the white-
crowned sparrow (Margoliash, 1983, 1986). In that work he used
a parametric representation for the relatively tonal white-
crowned song that was based on a single time-varying amplitude
envelope and instantaneous frequency. Using this representation,
he manufactured synthetic songs that preserved the amplitude
envelope of the original song but had different time-varying
frequency profiles. He showed that the neurons were sensitive to
the actual frequency profiles of the song because they had much
weaker responses to synthetic songs that used a constant fre-
quency profile or in which the frequency profile was randomized
within sections of the songs. He also showed that progressively
increasing the frequency of the synthetic song would also result in
a smaller response.

Our approach to parameterizing the song was to use a time–
frequency grid to represent the original song. We then developed
a methodology that allowed us to quantify precisely the amount
of spectral and temporal distortion of any synthetic stimulus
relative to the BOS. Moreover, we used this approach to sample
the spectral and temporal resolutions in a systematic manner.
Similar approaches have also been used in studies of speech
psychophysics but only to study restricted ranges of temporal and
spectral distortions (cf. Drullman, 1995; Shannon et al., 1995).

Our parametric representation of song was based on a decom-
position of the song into its constituent signals obtained through
a bank of frequency filters. Each narrowband signal could then be
fully described by a relatively simple and mathematically tracta-
ble set of parameters: the time-varying amplitude envelope, the
center frequency of the carrier signal, the frequency modulation
of this signal, and its absolute phase (the latter three parameters
constituting the instantaneous phase). By summing the narrow-
band signals to recreate song while systematically preserving or
altering these parameters, we could generate a variety of synthetic
songs that preserved the amplitude envelope of the entire song
with various degrees of precision and use these to test HVc
neurons. When all of the parameters were preserved, the synthetic
song (Syn) was virtually identical to the original signal and elicited

Figure 13. Summary response values for four synthetic songs that pre-
served various amounts of information embedded in the instantaneous
phase. From right to lef t, the bars represent the average neural response to
the following songs: RFM (random FM) is the AM song at 16 msec that
has both random FM and absolute phase; RP song preserves the FM in
each band but does not preserve the relative phase; RAP song has the
correct FM and relative phase but random absolute phase; and Syn is the
synthetic song in which all of the parameters are preserved. The error bars
show 1 SEM. The number of recording sites for each stimulus was n 5 37
for RFM, n 5 28 for RP, n 5 43 for RAP, and n 5 30 for Syn.
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responses from the song-selective HVc neurons that were indistin-
guishable from those obtained in response to the original BOS.

Amplitude envelopes and temporal–spectral
scale tuning
The amplitude envelopes of the narrowband signals in the differ-
ent overlapping frequency bands carry both temporal and spectral
information. The scale at which the amplitude envelopes are
extracted determines the efficiency with which either the spectral
or temporal structure is represented, with a trade-off between
efficient spectral and efficient temporal representation. We char-
acterized the tuning of HVc neurons to this temporal–spectral
scale by measuring the response to synthetic songs that had
amplitude envelopes similar to those of the original song in their
gross detail, but the fine structure of which had been degraded.
The neurons were tuned to the time–frequency scale parameter,
showing no responses at time–frequency scale extremes and
relatively large responses for values of ;5 msec or 200 Hz.

The fact that the time–frequency response curve is bell-shaped
confirms previous experimental studies showing that HVc neu-
rons are sensitive to both the spectral and temporal content of the
song. The importance of the temporal structure of song was
demonstrated either with coarse manipulations of the stimulus
such as playing the song in reverse or in reverse order (Margo-
liash, 1986; Volman, 1993; Margoliash et al., 1994; Lewicki, 1996;
Lewicki and Arthur, 1996) or with finer manipulations that ex-
amined the effect of increasing the time between syllables in the
song (Margoliash, 1983; Margoliash and Fortune, 1992). Margo-
liash and colleagues further characterized the importance of the
spectral quality both in the white-crowned sparrow (as described
above) and in the zebra finch (Margoliash and Fortune, 1992). In
the work here, our systematic analysis also shows the full range of
time–frequency scales that are needed to get appropriate neural
responses. Moreover, as discussed below, our method allowed us
to evaluate the relative importance of temporal versus spectral
cues and to measure the absolute spectral and temporal sensitivity
of the neurons.

At the peak of the tuning curve, the response to the AM song
approached the response to the original BOS, showing that, as
long as it is extracted at an optimal time scale, the coarse detail in
the amplitude envelopes alone can carry a large fraction of the
significant structure embedded in song and required by song-
selective neurons.

Time–frequency tuning of HVc neurons and
speech psychophysics
The effectiveness of a set of amplitude envelopes in representing
the structure in complex acoustical signals, as seen here in the
neural responses, is also evident in psychophysical experiments in
speech intelligibility (Drullman, 1995; Drullman et al., 1995;
Shannon et al., 1995) and in the common use of spectrograms to
represent pictorially the structure of both human speech and
animal sounds. In both cases, however, one has to decide on a
time–frequency scale at which to calculate the amplitude enve-
lopes. In psychophysical experiments, the scale is often chosen by
using filters with a one-fourth octave bandwidth because this
value matches the measured critical band of audition in humans
(Flanagan and Christensen, 1980; Drullman, 1995). Shannon and
colleagues have also shown that speech comprehension increases
rapidly as the number of frequency bands is increased from one
very wide band to a small number of still relatively wide bands,
emphasizing the relative importance of temporal structure over

spectral structure in speech comprehension (Shannon et al.,
1995). For one-fourth octave bandwidth, speech comprehension
is excellent and robust to large noise distortions (Drullman,
1995). We have found a correlate of these human perceptual
results in the response of song-selective neurons of the HVc; their
response increased rapidly from none to significant when we
increased the number of frequency bands (and simultaneously
decreased their bandwidth), and neurons responded well to spec-
trally degraded sounds generated with wide bandwidths (50% of
maximum response at 500 Hz).

Moreover, we found that additional spectral information from
frequency bands finer than 500 Hz could further increase neural
responses, but that this increase was limited when the cost of
temporal degradation overran the improvement in spectral reso-
lution. From our experience with these synthetic songs, we would
expect that in speech studies as well, if the widths of the frequency
bands used were decreased even further, speech comprehension
would showed a tuned response, improving at first and then
deteriorating. A full characterization of the time–frequency
trade-off has not yet been done in a speech intelligibility experi-
ment. The optimal time–frequency scale for other species (in-
cluding other songbirds or humans) might also be different from
the peak tuning that we measured for zebra finches, reflecting
differences both in the natural properties of the relevant vocal-
izations and possibly in sound processing by the respective audi-
tory systems.

Neural preference for temporal cues
We also began to examine the natural spectral and temporal
properties of zebra finch vocalizations to compare them with the
spectral and temporal tuning of neural responses. We did so by
calculating a measure of discriminability among a set of unrelated
zebra finch songs, using only the amplitude envelopes describing
each song. By calculating this measure for amplitude envelopes
extracted at a range of time–frequency scales, we found that, just
as there was an optimal scale for neural responses, there was a
time–frequency scale for amplitude envelope extraction that gave
the best discrimination between songs. Although the range of
good time–frequency scales for song overlapped with the range
that gave the best neuronal responses, the neurons showed sig-
nificantly more sensitivity to temporal structure relative to spec-
tral structure than did the song discrimination. This confirms the
impression from the neurophysiology that songs with striking
amounts of spectral degradation but good preservation of tem-
poral cues still elicited neural responses. As proposed by Margo-
liash (1983) and in a different form by Lewicki and Konishi
(1995), one of the mechanisms leading to song selectivity could
involve the temporal interaction of excitatory and inhibitory re-
sponses to individual song syllables. Such mechanisms would be
dependent on the precise timing of a succession of syllables.
Although it is clear from our results and those of others (see
above) that the song recognition mechanism also involves detect-
ing the characteristic spectral structure of the individual syllables,
the data here suggest that, on average, precise timing plays a more
important role than precise spectral recognition.

We also examined the spectral sensitivity of HVc neurons in a
different way, by testing their responses to synthetic songs to
which various degrees of frequency modulation noise had been
added. We found that, despite the high sensitivity of HVc neu-
rons to the accurate representation of the amplitude envelopes,
their response was remarkably unaffected by the addition of FM
noise values of up to 30 Hz, regardless of whether the relative
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phase was preserved or not. The insensitivity to FM noise may
have a correlate in the variability seen in the production of
individual songs or in the degradations of sound propagation in
natural environments (Wiley and Richards, 1982). Note that these
large FM perturbations will undoubtedly be encoded at the au-
ditory periphery and therefore must be filtered out in the auditory
processing leading to the HVc.

Absolute spectral and temporal requirements
The responses of HVc neurons to AM songs at the best time–
frequency scale were large but still significantly less than was the
response obtained from the presentation of the BOS. The ampli-
tude envelopes of the synthetic AM songs, however, were not
exactly identical to those of the original BOS, because only the
gross detail in the amplitude waveform was preserved. The char-
acterization of the fine structure in the amplitude envelope also
requires preservation of the relative phase across adjoining fre-
quency bands. The relative phase had to be restored with an
accuracy finer than 2 msec to obtain neuronal responses to syn-
thetic songs that were identical to those to the BOS. At this
spectral–temporal resolution, the amplitude envelope is pre-
served with high fidelity, as shown by cross-correlations of .98%.
Our measures quantitatively characterize the threshold of the
temporal–spectral resolution that needs to be preserved at all
levels of auditory processing, from the auditory periphery to the
nucleus HVc. This high spectral and temporal resolution implies
that HVc neurons are sensitive to information that must be
extracted at the temporal scales with better than 2 msec precision,
while at the same time integrating over long periods of time to
achieve the measured spectral resolution. Moreover, these neu-
rons have very context-dependent responses and actually inte-
grate over much longer periods of time, on the order of several
hundreds of milliseconds (Margoliash, 1983; Margoliash and For-
tune, 1992; Lewicki and Arthur, 1996). It is remarkable that these
long integration times coexist with the requirement for fine
temporal precision described here.

Studies of high-level cortical areas that could be potentially
involved in representing and distinguishing among complex nat-
ural sounds such as speech or animal calls have described single
neurons that, despite showing preferences for complex character-
istics of natural sounds, are still relatively broad in their tuning
and correspondingly somewhat insensitive to their precise spec-
tral and temporal structure (Langner et al., 1981; Rauschecker et
al., 1995; Wang et al., 1995). In such areas, the precise acoustical
structure is presumably represented in the joint responses of
many neurons, which makes the determination of absolute spec-
tral and temporal requirements difficult. In contrast, our system-
atic characterization of very specialized auditory neurons re-
vealed the high degree of temporal–spectral information needed
for neural recognition of complex vocalizations. This high neural
sensitivity is reminiscent of high-order cortical neurons that are
specialists at other specific auditory tasks: the phase delay neu-
rons involved in sound localization (Brugge and Merzenich, 1973;
Reale and Brugge, 1990) and the echo delay neurons involved in
bat echolocation (Suga, 1988; Dear et al., 1993). It seems likely
that, if highly specialized cortical auditory neurons involved in
processing the identity of complex animal vocalizations were to
be found, they might have similar spectral–temporal sensitivity to
those found in song-selective neurons.

Representation of time-frequency structure at
the periphery
The efficient representation of the acoustical structure in song by
amplitude envelopes may reflect the fact that, to a first approxi-
mation, simple linear filters are responsible both for producing
complex vocalizations and for the initial processing of acoustical
information by the auditory periphery. The peripheral auditory
system, acting in part as a filter bank, extracts and neurally
encodes a set of amplitude envelopes (Ruggero, 1992). The tuned
responses of the high-level HVc neurons indicate that there is a
time–frequency scale at which the amplitude envelopes carry the
most information about the structure of song. The critical band-
width of zebra finches measured behaviorally and the Q values of
auditory nerve fibers of other birds imply auditory filter widths of
;500 Hz at 2 kHz (Sachs et al., 1980; Okanoya and Dooling,
1987). The approximate match between the time–frequency scale
tuning of HVc neurons and that of the auditory filters suggests
that song is efficiently represented in the encoding of the ampli-
tude envelopes generated at the periphery. Moreover, the best
scale for distinguishing different zebra finch songs can be thought
of as the time–frequency scale of the motor vocal output. The
similarity between this vocal output time scale, that of the audi-
tory periphery, and that of HVc neurons may reflect a coevolu-
tion in the perceptual and motor structures of the songbird.

The absolute fine spectral and temporal requirements of HVc
neurons that we measured suggest further predictions about the
form and quality of the representation of complex acoustical
signals at the auditory periphery. In particular, because auditory
filters overlap, as did our analysis filters, our results raise the
possibility that the actual fine structure encoded by the phase-
locked response to the carrier frequency of auditory nerves is not
necessary to represent the significant structure in the BOS; the
relative phase needs to be preserved with a certain degree of
accuracy, but this information is present in redundant form in the
precise representation of the amplitude envelopes. On the other
hand, enough temporal precision must be preserved to be able to
encode these time-varying envelopes with 98% accuracy or with
finer than 2 msec resolution (with 62 Hz bandwidth filters).

As a caveat, we want to emphasize that we only characterized
the average time–frequency scale of the auditory signals and
therefore of the HVc responses. To understand further the im-
plications of the time–frequency scale tuning of HVc neurons for
processing in the auditory periphery, a more detailed character-
ization of the song based on a more realistic model would be
required. Such a model would take into account the fact that
multiple time–frequency scales are involved in auditory process-
ing. The bandwidth of peripheral auditory filters varies approxi-
mately logarithmically with center frequency, such that, on aver-
age, different time–frequency scales are used for different
frequency ranges (Moore and Patterson, 1986). Also, a range of
time–frequency scales can be encoded at each center frequency
by combining information from different neurons or by combining
the encoding of the fine temporal information with that of the
amplitude envelope. Finally, mechanisms such as adaptation and
amplitude compression can lead to time–frequency scales that
vary in time. Models of auditory processing that take into account
some of the complexity observed in the auditory system have been
proposed elsewhere (Lyon and Shamma, 1996).

It would also be interesting to investigate the level of temporal
precision in the response of auditory nerve fibers that actually
needs to be preserved in order to reconstruct the amplitude
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envelope of a complex signal with the degree of accuracy shown
here to be necessary. The 2 msec resolution required for central
responses is much longer that the precision needed to phase lock
to high-frequency carrier signals but might be greater than the
precision with which the mean firing rates of the ensemble of
auditory nerve fibers encode amplitude envelopes. If so, one
would have definitive proof that precise phase-locking informa-
tion present at the auditory periphery is used not only for binau-
ral sound localization (Konishi et al., 1988; Yin and Chan, 1988)
but also in the monaural processing of complex sounds.
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