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Low Doses of Ethanol Reduce Evidence for Nonlinear Structure in

Brain Activity
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Recent theories of the effects of ethanol on the brain have
focused on its direct actions on neuronal membrane pro-
teins. However, neuromolecular mechanisms whereby etha-
nol produces its CNS effects in low doses typically used by
social drinkers (e.g., 2-3 drinks, 10-25 mm, 0.05-0.125 gm/
dl) remain less well understood. We propose the hypothesis
that ethanol may act by introducing a level of randomness or
“noise” in brain electrical activity. We investigated the hy-
pothesis by applying a battery of tests originally developed
for nonlinear time series analysis and chaos theory to EEG
data collected from 32 men who had participated in an
ethanol/placebo challenge protocol. Because nonlinearity is
a prerequisite for chaos and because we can detect nonlin-
earity more reliably than chaos, we concentrated on a series
of measures that quantitated different aspects of nonlinear-

ity. For each of these measures the method of surrogate data
was used to assess the significance of evidence for nonlinear
structure. Significant nonlinear structure was found in the
EEG as evidenced by the measures of time asymmetry,
determinism, and redundancy. In addition, the evidence for
nonlinear structure in the placebo condition was found to be
significantly greater than that for ethanol. Nonlinear mea-
sures, but not spectral measures, were found to correlate
with a subject’s overall feeling of intoxication. These findings
are consistent with the notion that ethanol may act by intro-
ducing a level of randomness in neuronal processing as
assessed by EEG nonlinear structure.

Key words: EEG; ethanol; chaos; surrogate data; time series
analysis

The neuromolecular basis of the intoxicating effects of low doses
of ethanol is poorly understood. The lipid theory of the actions of
alcohol is based on the fact that the behavioral potency of ali-
phatic n-alcohols with up to five carbon atoms is correlated with
both their membrane lipid disordering potency and their lipid
solubility (membrane/buffer partition coefficient) (Seeman, 1972;
Trudell, 1977; Goldstein, 1984; Rall, 1990). Recent theories have
shifted from a focus on lipids to include a direct interaction with
receptor proteins (Weight, 1992; Grant, 1994; Li et al., 1994;
Peoples et al., 1996). Although some effects of ethanol on recep-
tor proteins, such as NMDA, have been reported at concentra-
tions produced by pharmacological doses (50-100 mm, 0.25-0.5
gm/dl) (Peoples and Weight, 1995), the effects are yet to be
significant at concentrations produced by doses typically used by
social drinkers (e.g., 2-3 drinks, 10-25 mm, 0.05-0.125 gm/dl).
One explanation for the difficulty in demonstrating signifi-
cant effects of low doses of ethanol on the neuronal level may
be that ethanol affects both proteins and lipids; however, it may
not produce a clear agonist or antagonist effect but, rather,
may introduce an increased level of randomness in neuronal
processing. Several studies provide data that are descriptively
supportive of this idea. For instance, Aston-Jones et al. (1982)
demonstrated that low doses of ethanol, although having no
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effect on the mean spontaneous discharge of rat locus coer-
uleus neurons, significantly increased the variability in the
latency at which those neurons fired in response to sensory
stimuli. In addition, at the level of the EEG it has been found
in both humans and animals that ethanol increases the variance
of EEG and event-related potential signal amplitudes over
time (Ehlers and Havstad, 1982; Ehlers and Reed, 1987;
Ehlers, 1988, 1992; Ehlers et al., 1989).

To assess this hypothesis, we needed to quantitate the effects
of ethanol on brain and behavior, using measures that reflect
aspects of the dynamical behavior of a system. The present
study used a series of statistical measures derived from chaos
theory, including measures of time asymmetry, determinism,
dimension, and redundancy, to evaluate EEG data collected
from 32 subjects participating in an ethanol/placebo challenge
protocol. The method of surrogate data, a recent fundamental
strategy in nonlinear dynamics, was used to assess the evidence
for nonlinearity in these data sets. Using this data set, we
explored the following six questions: (1) Is there evidence for
significant nonlinear structure in the EEG? (2) Do EEGs
collected under a placebo condition differ from those collected
after the ingestion of ethanol? (3) Are nonlinear statistics
better than linear statistics for distinguishing between EEGs
collected under the placebo and ethanol conditions? (4) What
measures of nonlinear structure are better in distinguishing an
EEG from its surrogates or placebo from ethanol? (5) Does
ethanol produce increases or decreases in evidence for non-
linear structure as compared with placebo? (6) Do linear or
nonlinear measures of the actions of alcohol on the EEG
correlate with a person’s subjective report of intoxication?



Ehlers et al. « Ethanol Reduces Nonlinear Structure in Brain Activity

MATERIALS AND METHODS

Subjects

The subjects who participated in this study were 18- to 25-year-old male
students and nonacademic staff from the University of California, San
Diego. Data were available on men who participated in one of two
different ongoing clinical protocols. These subjects met individually with
research staff to complete a screening questionnaire (Schuckit and Gold,
1988) that was used to select individuals who met the eligibility require-
ments for the study. Using this highly structured self-report instrument,
we excluded subjects from further evaluation if they or their first degree
relatives met diagnostic criteria for alcohol or other substance depen-
dence or other major Axis I psychiatric disorders according to the
Diagnostic and Statistical Manual, Volume III. The screening question-
naire also was used to gather information on demography, personal
medical history, usual quantity and frequency of alcohol consumption
over the previous 6 months, and family history of alcohol and other
substance dependence. Individuals also were excluded from further study
if they were taking prescribed medication, had any major medical con-
dition, or had abstained from alcohol over the previous 6 months. An
extensive description of the subject selection process has been described
previously (Schuckit, 1985; Ehlers and Schuckit, 1991; Wall et al., 1992,
1993). Some of these men had participated in other parts of larger studies
(Ehlers et al., 1989; Ehlers and Schuckit, 1990, 1991; Wall et al., 1992,
1993). Men (n = 32) who met the final inclusion criteria then were
invited to participate individually in two test sessions, ~1 week apart,
that consisted of baseline evaluations and subsequent challenges with
placebo and alcohol.

On both test days each man arrived at the laboratory at approximately
8:00 A.M. after fasting overnight and was provided a standardized
low-fat breakfast. Baseline measurements were taken; at approximately
9:00 A.M. a placebo or alcohol beverage was administered in random
order, using a placebo alcohol administration device (Mendelson et al.,
1984). The alcohol beverage was 0.75 ml/kg of 95% alcohol as a 20%-
by-volume solution in a caffeine-free and sugar-free soda. The placebo
beverage was made by using the same mixer with 3 ml of 95% alcohol
floated on top. Subjects were instructed to drink at a steady pace and to
consume the beverage over 7 min. EEG data were collected at 90 min
after placebo and alcohol. Subjective feelings of intoxication were mea-
sured by using a modified version of the Subjective High Assessment
Scale (SHAS), which consists of 13 items rated on Likert scales ranging
from 0 (normal) to 36 (extreme effect) (see Judd et al., 1977). The total
score on this scale was available for each subject and subsequently was
used for statistical analyses. Blood samples also were drawn from a
heparinized lock inserted into an antecubital vein for subsequent deter-
mination of blood alcohol concentrations (BACs), using a modified
alcohol dehydrogenase assay.

EEG data were collected from lead P4-02 (right parietal cortex refer-
enced to right occipital cortex), as described previously, because in
several studies we have found that lead to be the most sensitive to the
effects of ethanol (see Ehlers et al., 1989; Wall et al., 1993). Six minutes
of EEG data were collected while the subject was relaxed with eyes closed
and with the filters set at 1-70 Hz. The technician carefully monitored
the subject for any signs of drowsiness. Three minutes of continuous
artifact-free nondrowsy EEG data were computer-analyzed. EEGs were
digitized to 12 bits of resolution at 256 samples per second.

All subjects signed informed consent, and the study was approved by
the Scripps and University of California, San Diego, internal review
boards.

Data analyses
Conceptual approach to the data analyses

Nonlinear structure in the EEG after placebo and ethanol administration
was quantified by computing a series of measures on the EEG. Most
nonlinear measures are sensitive to structure in the data but do not
discriminate explicitly between linear and nonlinear structure. Thus to
quantify nonlinear structure in the EEG, we constructed a “surrogate”
time series from the original EEG signal; the surrogate data mimic the
linear structure in the original data, but are otherwise random. Thus, all
but the linear structure is effectively removed. In comparing data sets
with their associated surrogates, we can identify which have more signif-
icant evidence for nonlinear structure. Although we can choose specific
measures (e.g., estimated correlation dimension, or in-sample root-
mean-square error of a nearest-neighbor prediction algorithm) for quan-
tifying the overall structure in the data, it is difficult to make general
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Figure 1. Slope asymmetry in the EEG. Although the slope asymmetry

is computed as a single average of slope skewness (see Materials and
Methods for equation), this figure illustrates how the slope skewness can
vary over the time series. Two 8 sec segments of EEG are shown in ¢ and
¢, together with the slope skewness as a moving average over the preced-
ing 0.5 sec. In b, EEG and corresponding slope skewness of two brief
sections from a are shown with an expanded time scale, showing episodes
of positive slope asymmetry in each of which a single high-amplitude EEG
wave with very rapid rise, as compared with the preceding and following
fall, produces an abrupt positive shift in slope skewness. A different
pattern is seen in ¢, where positive skewness is more continuous, resulting
from a steeper rise than fall over many EEG waves. These are represen-
tative of several observed patterns, all of which produced predominantly
positive skewness of slope.

quantitative statements about this structure. When we speak informally
about more or less “randomness” in the time series, we generally are
referring to more or less significant evidence for nonlinearity in the data.
The measures used to quantify nonlinear structure in the EEG included
an estimation of correlation dimension, an inverse measure of trajectory
density, a measure of determinism, information redundancy, and time
series slope asymmetry. Linear aspects of the data also were quantified by
using the power spectrum and the autocorrelation function. A brief
conceptual description for these measures is provided below. In the
following section, we will revisit each of the measures with a more
detailed technical description of the methodology.

Time series slope asymmetry. Time series slope asymmetry is one of the
few nonlinear measures that the eye often can detect in a data set such as
the EEG, as seen in Figure 1. The concept of slope asymmetry is derived
from the fact that time series generated from linear processes (such as
sine waves) appear statistically the same whether the data are viewed as
running forward or backward in time. By contrast, nonlinear systems such
as those generated by relaxation oscillators generally have distinct rise
and fall times. For such systems this measure captures the difference
between the rise times (upward part) and fall times (downward part) of
the oscillations in a dynamical system. One of the simplest ways to
measure slope asymmetry is the skewness (third statistical moment) of
slopes, as described below.

Time-delayed embedding. One of the most useful and important tools
in nonlinear time series analysis is the time-delayed embedding (Packard
et al., 1980). A time series data set describes the measurement of a single
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quantity (voltage on a certain electrode, for the case of EEG) as a
function of time, but the underlying system generally requires several
distinct variables to fully describe its state at a given instant in time; this
state can be represented as a (vector-valued) point in an abstract multi-
dimensional “state space,” and the position in this state space evolves
with time to trace out a “trajectory.” The time-delayed embedding
converts the single-quantity measurements into vector-valued quantities
for which the components are time-delayed values of the Scalar time
series. The important property of this embedding is that it preserves the
geometric properties of this trajectory (such as its fractal dimension) and
thus provides information about the dynamical properties of the system
(for a rigorous mathematical justification, see Takens, 1981; Sauer et al.,
1991). Many measures in this study (dimension, 1% radius, redundancy,
Kaplan 8/€) use embedded trajectories as a step toward the quantification
of the behavior of nonlinear systems.

Correlation dimension. One behavior characteristic of deterministic
dynamical systems is that they do not wander uniformly about the entire
dynamical space but, instead, settle down (or “self-organize”) into a
small subspace of the full available dynamical space within which the
system is evolving. This subspace is the “attractor” of the dynamical
system. For chaotic systems the attractor is sometimes fractal or
“strange,” but for deterministic systems it is of lower dimension than the
full-state space. This lower dimension indicates the number of active
degrees of freedom or, approximately, the number of variables required
to model the dynamics on the attractor. The correlation dimension
(Grassberger and Procaccia, 1983) is one of the most popular ways to
estimate the attractor dimension directly from time delay embedded
data. Stochastic systems do not settle onto low-dimensional attractors, so
estimating dimension is a direct way of distinguishing stochastic from
deterministic systems. However, although dimension estimation is ap-
pealing conceptually, it is in practice a method fraught with peril (Thei-
ler, 1990; Rapp, 1993).

The correlation integral is the first step in the estimation of a corre-
lation dimension. Although the dimension is the more physically mean-
ingful quantity, the correlation integral itself provides a more direct and
reliable comparative measure. It is a positive measure, always less than or
equal to one, which counts the fraction of pairs of points for which the
distance between the two members is less than a certain value.

One percent radius. Instead of counting pairs of points that are a
specified distance apart, the 1% radius is the smallest distance that is still
larger than the smallest 1% of pairwise distances. Because points gen-
erally are clustered more closely in the dynamical space of nonrandom
systems, their 1% radius is smaller than that of random systems.

Redundancy. Redundancy measures how much duplication of informa-
tion occurs in a set of measurements. The process of self-organization of
a dynamical system into repeatable and distinct forms produces redun-
dancy. A purely random system that is wandering through dynamical
space only repeats its travels by chance. Subsequent measurements for
such a system always provide fresh information about the state of the
system. For nonrandom systems the measurements made in the past
provide information that permits approximate and/or probabilistic pre-
dictions of the future state of the system. For these systems each mea-
surement adds only partial information to what was already predictable
from the past; the measurements, collectively, exhibit a measure of
redundancy.

Kaplan’s 8/e. The most straightforward way to identify determinism is
to predict the future from information obtained from the past and then
to wait for the future and see how well the prediction worked. For
example, Scott and Schiff (1995) looked at the predictability of interictal
spikes in epileptic EEGs, and Schiff et al. (1996) used mutual nonlinear
prediction to characterize the coupling in neural ensembles. This ap-
proach, however, is highly sensitive to the actual strategy used for making
the predictions in the first place. Thus measures based on prediction
error were not used in this study. However, Kaplan (1994) has described
a measure that produces a relatively direct measure of “determinism”
without invoking actual predictions. This measure is based on the idea
that if two points are close together on a trajectory, the images of the
points at some short time later are more likely to be close together if the
system is deterministic than if it is not.

Technical description of the data analyses

Segmentation of the time series. To reduce the effects of possible nonsta-
tionarity of EEG time series, we divided each 3 min EEG record into 22
8 sec segments, with nominal start times at intervals of 8 sec. This
segment length was chosen as a compromise between the need for short
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segments, within which the EEG is likely to be approximately stationary,
and the need for long enough segments to produce larger sample size for
improved statistics, particularly with respect to adequately populating
embedded system trajectories. The number of samples in each segment
(2048) is a power of two to simplify the implementation of the fast
Fourier transform algorithm.

Fourier transforms of finite segments of the EEG, used in the forma-
tion of surrogate time series, can introduce spurious high-frequency
content. Because the transform treats the segment as one period of a
periodic time series (i.e., as if the time series were an infinite number of
repetitions of the finite segment), a discontinuity between the ends of the
segment is treated as an instantaneous “jump” in the data, which con-
tributes high-frequency content to the Fourier power spectrum. This high
frequency appears in the surrogate data sets not as a single discontinuity
but as an overall crinkliness that is not present in the original EEG. To
minimize this effect, we adjusted the starting point of each segment so
that the first few samples of the segment most closely match the first few
samples after the segment in the original EEG time series. The discon-
tinuity d; was calculated for each point in the two seconds (512 sample
times) starting with the nominal start point of an 8 sec segment:

4

di= E(XH/ 7x[+/+n)2 i=0,1,...

j=0

, 511, (M

where i is the index of the initial sample of the time series x; relative to
the nominal start point, and n is 2048, the number of samples in an 8 sec
time series. The start point 7 is chosen to minimize this measure d;. Each
8 sec EEG segment was normalized to zero mean and SD of one, with
preservation of the scale factors so that the original EEG amplitudes
could be regenerated. Except for power spectra, all subsequent process-
ing used the normalized time series. Each EEG 8 sec segment also was
low-pass-filtered digitally at 45 Hz to reduce muscle artifact while retain-
ing structure related to the EEG. Because this digital filtering is linear,
it cannot introduce nonlinear structure into data that are not already
nonlinear.

Linear measures

Of the various measures calculated in this study, those that are sensitive
only to linear structure in time series are designated linear measures. The
linear content of a time series is described completely by the power
spectrum or, equivalently, by the autocorrelation function.

Power spectrum. The power spectrum, as opposed to other derived
measures in this study, is based on the full un-normalized EEG signal
and thus reflects differences in EEG amplitude among segments and
subjects. The total power in each power spectrum was calculated by
summing all components, and the powers in 6- and a-bands were calcu-
lated by summing components in bands from 4 to 8 Hz and from 8 to 12
Hz, respectively. a- and 6-bands were selected because they have been
demonstrated in previous studies (see Lukas et al., 1986; Ehlers et al.,
1989) to differentiate most clearly the EEG after placebo from that after
ethanol. The power in each band was divided by the total power to
provide the 6-fraction and a-fraction. For the Fourier transforms used in
the calculation of power spectra and in the preparation of surrogate time
series, rectangular windowing was used.

Autocorrelation function. The autocorrelation function of each EEG
and surrogate time series was calculated as the inverse Fourier transform
of the power spectrum of the time series. Autocorrelation time was
calculated as the autocorrelation lag at which the autocorrelation func-
tion first decreases to 1/e. Coherence time is defined as the lag at which
the envelope of the peaks of the autocorrelation function decreases to 1/e
(that is, to ~37% of its initial amplitude), estimated by a least-squares fit
of a straight line to the logarithm of the magnitude of each positive or
negative peak for lags of not more than 500 msec.

Nonlinear measures

Surrogates. Surrogates were generated by the amplitude-adjusted phase-
randomized algorithm described in Theiler et al. (1992). The generation
of surrogates uses the following steps: (1) An “amplitude-adjusted” copy
of the EEG is prepared by means of a static nonlinear transform so that
the time series has a Gaussian distribution of amplitudes; (2) the Fourier
transform is calculated; (3) the transform is converted to polar form,
phase angles are replaced by random numbers, and the result is con-
verted back to complex form; (4) the inverse Fourier transform is
calculated; and (5) a static nonlinear transform is used to convert to the
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Figure 2. EEG and surrogate data. This figure displays a sample 8 sec
EEG epoch in the fop trace and five surrogate time series generated from
it in the traces below. Because the linear structure of the time series is
preserved in surrogates, the original time series and its surrogates appear
similar by visual inspection. This EEG is representative of the posterior
dominant rhythm of a-activity typical of eyes-closed human EEG. Other
patterns with more or less a-activity also were observed.

original distribution of amplitudes. The result is a surrogate time series
that uses the original EEG samples but in a different sequence, with the
constraint that the power spectrum and therefore the linear structure are
preserved, whereas nonlinear structure in a statistical sense is removed.
Figure 2 shows one such EEG segment and five of its surrogates.

Slope asymmetry. The asymmetry of the distribution of the first time
derivative of each EEG or surrogate time series is estimated by the
skewness of differences between successive samples,

E(xz Xi— l)
(Eu—no)

Embedding. With the use of a standard algorithm (see Packard et al.,
1980) containing an embedding dimension m and a delay time T, the
embedded vector is:

Slope asymmetry =

2

> x1+(mfl)‘r:|' (3)

For a deterministic system the embedding dimension should be larger
than the dimension of the attractor (Takens, 1981; Sauer et al., 1991) to
characterize the deterministic dynamics fully. However, evidence for
determinism is often available with a lower embedding dimension, and in
general the required/optimal embedding dimension is rarely known a
priori. As a consequence, this study uses several values of embedding
dimension. The embedding delay time 7 for this study is five sample
periods (19.53 msec), which is approximately the autocorrelation time of
the EEG. Embedding dimensions m are 1, 4, 8, 16, and 32.

Correlation integral. The order two correlation integral, used in the
calculation of several measures, is:

Calr, m) = E(Eov—x Aw,

for all i, j such that |i —j| > W, (4)

X=Xy Xiims oo

where 7 is a distance, m is the embedding dimension, [x; — x| is the
distance between points x; and x;, N is the number of pairs of points, x;
and x;, used, and O is the Heaviside function, which has the value 1 if the
expression in the inner parentheses has a value greater than zero, and
zero otherwise. Summation of the Heaviside function in this equation
counts the number of point pairs separated by distance less than r, and
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Figure 3. Log of correlation integral C, as a function of log of radius r,
for various values of embedding dimension m. The value of the correla-
tion integral at radius r is the average fraction of all points of the
trajectory lying within an m-dimensional cube of radius r, with the cube
centered on a point on the trajectory. For ideal noise-free stationary
low-dimensional systems, the log correlation integral should decrease
linearly with decreasing log of radius at small radius; the slope of this
scaling region is the correlation dimension, estimated here by the slope of
the dashed straight lines fit to the curves. For curves at embedding
dimension sufficiently greater than the correlation dimension, the slopes
should saturate at a constant estimate of correlation dimension. The
curves shown here, for a single 8 sec segment of EEG, are representative
of many that show little evidence of a low-dimensional attractor but that
nevertheless have slopes less than those for surrogates of the EEG.

division by N produces the correlation integral, the fraction of points
separated by distance less than r at embedding dimension m. To avoid an
error caused by points closely spaced on the same orbit of the trajectory,
the difference in magnitude of i — j must be greater than a fixed value W
(Theiler, 1986) for which 50 sample periods were used. This value,
corresponding to ~200 msec, is greater than the (100 msec) period of the
a-rhythm, which is the main source of trajectory periodicity. The corre-
lation integral at embedding dimension m and for radius 7 is the fraction
of pairs of points not on the same loop of the trajectory for which the
separation is not greater than r.

The solid curves of Figure 3 are an example of correlation integral as
a function of radius, for various values of embedding dimension, calcu-
lated for embedding dimension m = 1, 4, 8, 16, and 32, for 128 values of
radius from 1/64 to 2 SDs of the time series. Maximum (L..) norm is used
for the calculation of distances.

The correlation integral also is used in the calculation of the correla-
tion dimension, 1% radius, Kaplan’s §/e, and the order-two redundancy.

Correlation dimension. The correlation dimension is calculated from
the correlation integral (Grassberger and Procaccia, 1983). Although the
correlation dimension D,(m) is defined in terms of a limit as radius goes
to zero, it is estimated by the slope of the log of correlation integral
versus log radius, as shown in Figure 3. The estimated slopes, and the
range over which they are calculated, are shown as dotted lines. Slope is
estimated by a least-squares fit of a straight line to points on the curve
over a range of radius such that the smallest value of radius is that for
which the correlation integral is greater than for the next smaller value of
radius, and the largest value of radius is the smallest value for which the
correlation integral is at least 1000 times its smallest value. Other
methods to estimate this slope have been suggested by Takens (1981),
Ellner (1988), and Theiler and Lookman (1993).

One percent radius, 1,5, (m). The radius at a particular value of corre-
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lation integral and embedding dimension is the size of an m-dimensional
cube containing, on average, the fraction of points given by the correla-
tion integral and is therefore an inverse measure of the density of points
on the embedded trajectory. The measure r(m,C,) for m = 4, 8, 16, and
32, at C, = 0.01, will be called the 1% radius at embedding dimension m,
ri,(m). The trajectories of more obviously deterministic systems are
likely to be more dense, with smaller 1% radius, than those of systems in
which the complexity provides less evidence of determinism.

Redundancy. Information theoretic methods in nonlinear time series
analysis were advocated first by Shaw (1981) and popularized by Fraser
and Swinney (1986) and Fraser (1989) over a decade ago. More recently,
Palus (1995, 1996b) and Palus and colleagues (1993) have promoted
the use of “redundancy” as an information theoretic measure of
determinism.

One may begin with a measure of entropy H(1,r), which is the average
number of bits needed to describe a single value of the time series to a
precision r. For instance, if p, is the fraction of time series values between
x and x + r, then:

>p=1, (5)

and:

H(1,7) = =, p,logp,. (6)

x

Let H(m,r) be the average number of bits needed to describe a sequence
of m values (equivalently, the number of bits in an m-dimensional
embedding x,). In general,

H(m,r)=mH(1,r), (7)

because describing a sequence of m values cannot take more bits than
describing m individual values. In fact, one can usually describe the
sequence with considerably fewer bits, because the time series contains
some redundancy. This redundancy is defined formally by:

R(m,r)=mH(,r) — Him,r). (8)

The definition of entropy in the equation above for H(1,) has many
useful properties, but Prichard and Theiler (1995) argue that a definition
based on the correlation integral has some advantages, particularly from
the viewpoint of computational accuracy from a finite set of points. Here,

HZ(ma r) = _logZ[CZ(m’ r)]s (9)
and redundancy for the embedded trajectory is:
Ry(m, r) = mHy(1, r) — Hy(m, r). (10)

The range of radius over which entropy calculations are valid depends
on embedding dimension, and this range may not overlap at large and
small embedding dimensions. At high embedding dimension and small
radius the correlation integral may be zero, resulting in infinite entropy,
or large radius values at low embedding dimension may approach or
exceed the size of the trajectory so that entropy is not effectively a
function of radius. To avoid these cases, we calculated redundancy at
embedding dimension m by means of entropies at embedding dimensions
m and n, where 7 is less than m, using the variant definition:

Ri(m, r) =" Ha(n, r) = Hlm, 1), (11)

which reduces to the standard definition forn = 1. Form = 16, n = 4 was
used, and for m = 32, n = 8. Results are the measures R',(m,r) for m =
4,8, 16, and 32 and r = 0.5, 1.0, 1.5, and 2.0, of which the results are used
only for those values of r for which there was overlap for the stated
combinations of m and n.

Kaplan’s d/e

Let the distance between two points at time ¢ be:
5 ;= fl; = xj”7 (12)

where the double bars indicate the maximum norm, and let the distance
between the images of the points at k time steps later be:
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Figure 4. Kaplan’s §/e measure of determinism for a representative
segment of EEG. For pairs of point pairs separated by not more than
distance r at time ¢, the mean separation between their images at ¢ + 100
msec is E(r) for various values of embedding dimension m. Straight lines
E = A + Br are fit to the curves, as shown by the dashed lines. For
completely nondeterministic systems (i.e., white noise) the slope B will be
close to zero, and the intercept 4 will be close to the value of E at large
r. Decreasing values of intercept and increasing slope provide increasing
evidence of deterministic structure. An ideal noise-free low-dimensional
deterministic system would be expected to produce an intercept of zero,
at least in the limit of infinite data, and a well defined positive slope.

€= [l — x4l (13)

where k is the number of sample periods in time interval 7. For points
closer together than r, the average separation of their images at time 7°
later is:

1
E.= N 2 €,; foralli,jsuchthat|i—j|>W,and 5, ;<r, (14)

iJ

where N, is the number of point pairs contributing to the average at the
specified value of r. E, is the average separation between all pairs (x;, x;)
of points that, k time steps earlier, were separated by a distance
S pjk=T.

The window W of excluded points is 50, as in the calculation of the
correlation integral, to avoid pairs of points on the same loop of the
trajectory. The average distance E| is calculated from the equation above
for 0 < r < 8, accumulating sums in 256 bins of width 1/32, and k = 26
sample periods (7' = 101.56 msec).

Nondeterministic systems are expected to have values of ¢;; that are
independent of previous separations §;;, so a plot of E, versus r will tend
to be a line with zero slope. For deterministic systems, E, is expected to
be small for small r, increasing with increasing r to a maximum that is
dependent on the size of the trajectory. Figure 4 is an example of this
plot. The part of the curve dependent on r is characterized by a least-
squares fit of a straight line £, ~4 + Br, where A4 is the intercept of the
fit line at » = 0, and B is the slope. Points to be fit by the straight line are
weighted by the number of point pairs N, contributing to the cumulative
average. All sets of consecutive points from the first nonzero point to
from 1/6 to 1/2 of the remaining points then are tested. The set with the
least residual error from the straight line fit is used as the best fit. Results
are the measures identified in Table 1 as e A(m), the intercept of the
function at » = 0, and e B(m), the slope. Dashed lines in Figure 4 show
the estimated slopes B and intercept 4 at r = 0.
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Table 1. Differences between EEG and its surrogates for placebo and for ethanol

Surrogate difference (EEG minus surrogate)

Mean number of significantly nonlinear

segments, p < 0.05

Mean = SEM t p t test Rank test
Measure Placebo Ethanol Placebo  Ethanol  Placebo  Ethanol  Placebo  Ethanol  Placebo  Ethanol
Slope asymmetry 0.139 = 0.023 0.075 = 0.022 6.010 3434 <0.001 <0.001 10.156 7.125 9.875 6.938
Correlation dimension at embedding dimension m
m =4 0.004 = 0.013 —0.035 = 0.011 0.282 —3.128 n.s. <0.005 0.812 1.375 0.781 1.375
m =38 —0.068 = 0.043 —0.100 = 0.041 —1.583 —2.448 n.s. <0.02 1.312 1.094 1.500 1.219
m =16 —0.218 = 0.091 —0.225 = 0.072 —2.390 -3.120 <0.05 <0.005 1.062 1.250 1.344 1.344
m = 32 —0.594 = 0.172 —0.576 = 0.146 —3.454 —3.932  <0.002 <0.001 1.000 1.188 1.531 1.094
One percent radius at embedding dimension m
m =4 —0.112 = 0.006 —0.108 = 0.007 —18.632 —16.507 <0.001 <0.001 8.562 7.344 6.812 5.750
m =8 —0.125 = 0.007 —0.120 = 0.008 —18.632 —15916 <0.001 <0.001 11.656 10.250 9.969 8.594
m =16 —0.136 = 0.008 —0.128 = 0.009 —18.075 —14.710 <0.001 <0.001 13.906 12.500 12.531 10.969
m = 32 —0.140 = 0.008 —0.133 = 0.011 —16.771 —12.283  <0.001 <0.001 14.219 12.219 12.562 11.188
Redundancy at embedding dimension m and radius r
m=4r=05 0.203 = 0.011 0.174 = 0.014 19.270 12.741  <0.001 <0.001 11.750 9.500 11.250 9.031
m=4,r=10 0.113 = 0.006 0.098 = 0.009 18.197 11.110  <0.001 <0.001 9.312 8.656 10.250 8.344
m=28,r=10 0.414 = 0.020 0.370 = 0.025 20.376 15.065  <0.001 <0.001 11.688 10.594 12.125 10.312
m=_8,r=15 0.204 = 0.012 0.188 = 0.016 16.840 11.588  <0.001 <0.001 8.188 8.219 9.438 9.031
m=16,r =15 0.204 = 0.013 0.201 £ 0.014 15.316 14.498  <0.001 <0.001 8.062 7.250 7.469 6.656
m=16,r = 2.0 0.094 = 0.007 0.093 = 0.009 14.038 10.695  <0.001 <0.001 6.188 5.875 6.656 6.156
m=32,r=15 0.420 = 0.036 0.403 = 0.034 11.656 12.038  <0.001 <0.001 3.781 3.031 3.906 3.219
m=32,r=20 0.192 = 0.017 0.193 = 0.018 11.138 10.892  <0.001 <0.001 4.906 4.406 4.656 3.969
Cumulative € intercept 4 at embedding dimension m
m =4 —0.158 = 0.008 —0.154 = 0.010 -19.799 —15.214 <0.001 <0.001 12.906 11.250 12.156 10.719
m =38 —0.208 = 0.012 —0.209 = 0.014 —17.174 —14.936 <0.001 <0.001 9.906 8.906 10.406 9.562
m =16 —0.220 = 0.014 —0.214 = 0.017 —15301 —12.647 <0.001 <0.001 9.562 7.312 8.438 7.781
m =32 —0.197 = 0.013 —0.196 = 0.016 —14.825 —12.170 <0.001 <0.001 7.000 6.094 5.031 4.438
Cumulative € slope B at embedding dimension m
m =4 0.047 = 0.003 0.046 = 0.003 14.071 18.000  <0.001 <0.001 7.250 6.906 7.750 6.594
m =8 0.060 = 0.004 0.061 = 0.003 13.751 18.358  <0.001 <0.001 4.625 4.375 7.188 6.125
m =16 0.058 = 0.004 0.054 = 0.004 13.687 13.261  <0.001 <0.001 5.281 4.219 5.656 4.906
m = 32 0.039 = 0.003 0.040 = 0.004 11.857 11.115  <0.001 <0.001 3.781 3.938 3.031 2.656

The three statistical tests summarized in this table are described under Statistical Analyses in Materials and Methods. For two-tailed ¢ tests of surrogate difference (that is,
the EEG value for a measure minus the mean value of its surrogates) based on variance among subjects, the mean surrogate difference over subjects and the SEM are shown,
with the corresponding ¢ value and resulting probability p of accepting the null hypothesis that the surrogate difference is zero. For tests based on variance among surrogates
within 8 sec segments, the mean number of segments with significant nonlinearity, that is, the mean number of segments for which p < 0.05 from two-tailed ¢ tests and the
mean number of segments with EEG rank of 1 or 40, summarizes parametric and nonparametric tests, respectively. The mean number of segments showing significant
nonlinearity has a possible range of 0-22; the value expected under the null is 1.1, and values larger than 1.55 are significant at p < 0.01, and larger than 1.7 at p < 0.001.
These results show that EEG differs from its surrogates and therefore contains nonlinear structure for placebo and for ethanol, with high significance provided by all nonlinear
measures except correlation dimension. The sign of mean surrogate differences indicates that slope asymmetry is positive for EEG; dimension estimates for EEG are less than
for its surrogates; 1% radius for EEG is less than for its surrogates (EEG trajectories are more dense than those of its surrogates); redundancy is greater for EEG than for
its surrogates; and Kaplan’s cumulative e results suggest that EEG is more deterministic than its surrogates. Differences in magnitude between placebo and ethanol for mean
surrogate difference and mean number of segments meeting criterion suggest that EEG nonlinear structure is greater for placebo than for ethanol.

Statistical analyses

Statistical tests are described with respect to questions that they are
intended to examine.

(1) Is there evidence for significant nonlinear structure in the EEG?
This question was examined by comparing EEG data and their surro-
gates, using parametric and nonparametric tests. Because surrogates lack
nonlinear structure that may be present in the EEG from which the
surrogates are created, statistical tests for comparison of EEG values
with those of its surrogates, for measures sensitive to nonlinear structure,
serve as indicators of nonlinear structure in the EEG. Such tests require
special consideration because variation among subjects, variation among
8 sec EEG segments for each subject, and variation among surrogates for
each 8 sec segment provide separate contributions to the total variance.
To avoid the pooling of these variances, we conducted three tests: two
(one nonparametric and one parametric) based on variance among
surrogates and one (parametric) based on variance among subjects.

The nonparametric rank-based test calculates the rank of the EEG
value for each measure with respect to the combined EEG and its 39

surrogate values for each of 22 8 sec segments for each subject and
condition. The rank is a number in the range 1-40. The null hypothesis
that there is no difference between the EEG and its surrogates can be
rejected with a confidence level of 95% if the EEG rank is 1 or 40 (see
Barnard, 1963; Hope, 1968). A corresponding parametric test uses the
mean difference between the EEG and its surrogates, and the SD of this
mean difference, over the 39 surrogates of the EEG to calculate a  value
and corresponding probability in a two-tailed Student’s ¢ test for the same
null hypothesis as for the nonparametric test. For each test the number
of 8 sec segments meeting the criterion p < 0.05 is counted and averaged
over subjects, yielding the mean number of “significantly nonlinear”
segments per subject, with a range of 0-22. The third test provides an
overall probability value for each measure and condition by calculating
an overall mean surrogate difference and the SE of this mean difference,
from which the ¢ statistic and its corresponding two-tailed p value are
calculated. The overall mean surrogate difference is the mean over
subjects of the subject mean surrogate differences, which are averages of
the 22 8 sec segment mean surrogate differences for each subject. Be-
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cause this test uses only the variance among subjects, it has 31 degrees of
freedom.

(2) Do EEGs collected under a placebo condition differ from those
collected after ingestion of alcohol? To test this hypothesis, we used
paired ¢ tests to compare data from the ethanol condition with the
placebo condition for each of the measures in each subject.

(3) Are nonlinear statistics better than linear statistics for distinguish-
ing between EEGs collected under the placebo and ethanol conditions?
Discriminant function analyses were used to test this hypothesis.

(4) What measures of nonlinear structure are better in distinguishing
an EEG from its surrogates or in distinguishing placebo from ethanol?
Discriminant function analyses were used for this purpose, predicting
membership in two mutually exclusive groups (ethanol vs placebo, or
EEG vs surrogates) from a set of linear and nonlinear measures that were
used as predictors.

(5) Does ethanol produce increases or decreases in evidence for
nonlinear structure as compared with placebo? For this test the variable
analyzed for each measure was the number for each subject of 8 sec
segments meeting the criterion that the EEG rank with respect to
combined values of the EEG and its surrogates was 1 or 40. The values
for this variable were used in paired Wilcoxon signed rank tests, with the
pairing of placebo and ethanol values for each subject. This nonpara-
metric procedure avoids assumptions regarding the distribution of
variables.

(6) Do linear or nonlinear measures of the actions of alcohol on the
EEG correlate with a person’s subjective report of intoxication? Forward
selection stepwise regression was used to compare values obtained on the
SHAS to linear and nonlinear EEG measures concurrently obtained
during the alcohol session. Significance on this test was set at p < 0.01.

RESULTS

The EEG contains significant evidence of

nonlinear structure

The results from the three statistical tests for differences between
the EEG and its surrogates are shown in Table 1. For surrogate
differences (EEG values minus those of its surrogates), the p
values indicate that both placebo and ethanol EEGs differ with
high confidence from surrogates for all nonlinear measures except
correlation dimension. Because the difference between the EEG
and its phase-randomized amplitude-adjusted surrogates is that
the latter lack nonlinear structure, it is concluded that the EEG
must contain such structure. The null hypothesis underlying the
use of this type of surrogates is that the EEG is linearly filtered
Gaussian noise to which a nonlinear static transform may have
been applied. Results from these tests indicate, therefore, that the
EEG is not modeled effectively as linearly filtered Gaussian
noise.

Under the null hypothesis the expected number per subject of
significantly nonlinear (using the traditional p < 0.05 criterion) 8
sec segments is 0.05 X 22 = 1.1, and one-sided critical values for
p < 0.01 and p < 0.001 are 1.55 and 1.7, respectively. It is shown
in Table 1 that the mean number of significantly nonlinear seg-
ments corresponds to p < 0.001 for all nonlinear measures except
correlation dimension; this holds for both parametric and non-
parametric tests and for both placebo and for ethanol. Correla-
tion dimension fails to achieve significance at any embedding
dimension for placebo or for ethanol. These tests, based on
variation among surrogates, are consistent with the test on the
basis of variance among subjects in providing evidence for non-
linear EEG structure.

Mean numbers of significantly nonlinear segments with the
conservative nonparametric test are only slightly smaller than for
the parametric test. This indicates that distributions among sur-
rogates are not unusual and that the assumptions of the ¢ test are
reasonable for these data. Interestingly, the mean number of
significantly nonlinear segments provides inconsistent advice re-
garding the difficult question of optimum embedding dimension.
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For 1% radius the greatest evidence for nonlinear structure is
seen at the highest embedding dimension, but for redundancy and
Kaplan’s cumulative € measures the evidence is greatest at the
lowest embedding dimension.

Slope asymmetry

Mean surrogate difference for slope asymmetry is shown in Table
1. It was found to be significant and positive for both placebo and
ethanol. Figure 1 shows representative EEG waveforms and cor-
responding slope asymmetry in which asymmetry is seen to be
dominantly positive. Slope asymmetry values for surrogates were
found to be consistently near zero, providing confirmation of
negligible nonlinear structure in surrogates.

Correlation dimension

The mean number of significantly nonlinear segments for corre-
lation dimension, in Table 1, are not notably greater than ex-
pected if the surrogate difference were zero but are sufficient to
provide statistical significance of the mean surrogate difference
for ethanol and for placebo at high embedding dimension. The
negative values of surrogate difference indicate that estimates of
trajectory dimension for surrogates are greater than for the EEG.
The slopes of correlation integral curves, in Figure 3, are consis-
tent with these results in not providing evidence for low-
dimensional attractors.

One percent radius

The radius of cubes containing 1% of points is seen from surro-
gate difference to be greater for surrogates than for the EEG at all
values of embedding dimension, indicating that EEG trajectories
are denser than those of its surrogates.

Redundancy

The mean surrogate difference for redundancy was found to be
positive at all values of embedding dimension and radius for both
placebo and for ethanol, indicating that redundancy for the EEG
is greater than for its surrogates. The mean number of signifi-
cantly nonlinear segments was found to be the greatest at smallest
radius at each value of embedding dimension.

Kaplan’s d/e

The surrogate difference for cumulative e intercept 4 is negative
and for slope B is positive at all embedding dimension values,
indicating that the EEG is more deterministic than its surrogates
for both placebo and ethanol.

The effects of ethanol can be distinguished from
placebo by many measures

The EEG after placebo could be distinguished from that after the
ingestion of a low dose of ethanol by most of the EEG measures,
with and without surrogates. The measures that significantly
differentiated ethanol from placebo are illustrated in Figure 5. Of
five linear measures the coherence time, o-fraction, and
O-fraction, but not autocorrelation time or total power, were
found to differentiate ethanol significantly from placebo. Among
the nonlinear measures 16 of 25 were significant, with correlation
dimension at any embedding dimension and redundancy at em-
bedding dimension of 4 and 8§ failing to make the differentiation.
In the matter of optimum embedding dimension, on the basis of
the significance of these tests, the choice among those used would
probably be m = 16.
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Figure 5. The effects of ethanol on the EEG. The EEG that follows placebo could be distinguished clearly from that after the ingestion of a low dose
of alcohol by most of the measures. The measures that significantly differentiated ethanol from placebo are illustrated in this figure. White bars, Placebo;
black bars, ethanol; lined white bars, placebo surrogates; lined black bars, ethanol surrogates. Three of five linear measures were able to distinguish ethanol
from placebo. Among the nonlinear measures, 16 of 25 were significant. *p < 0.01; **p < 0.001; ***p < 0.0001; paired ¢ tests.
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Table 2. Discriminant function analysis: EEG versus surrogate:
nonlinear measures model (jackknifed classification matrix)

Table 3. Discriminant function model for ethanol versus placebo:
nonlinear measures model (jackknifed classification matrix)

EEG Surrogate  Total correctly Ethanol Placebo Total correctly
(n=32) (n=32) classified (%) (n=232) (n=32) Cclassified (%)
Number classified as EEG 28 0 Number classified as ethanol 19 9
Number classified as sur- Number classified as placebo 13 23
rogate 4 32 Correctly classified (%) 59 72 66
Correctly classified (%) 88 100 94 Spectral measures model (jackknifed classification matrix)

A discriminant function analysis was performed to determine if a combination of
nonlinear measures could describe most of the variance in nonlinear structure in the
EEG. The model selected: slope asymmetry, Kaplan’s 8 € slope at embedding 16,
Kaplan’s & € slope at embedding 4, and 1% radius at embedding dimension m = 4
as the best combination to discriminate EEG from its surrogates. The classification
matrix is provided in this figure; the model was found to be significant (Wilks A F =
32.2, df = 1.59; p < 0.00001).

Multivariate analysis identifies measures of
asymmetry, trajectory density, and determinism as the
most able to detect nonlinear structure in the EEG

A discriminant function analysis was used to determine whether
a combination of nonlinear measures could account for most of
the variance in nonlinear structure in the EEG. Mean values for
each of the nonlinear measures for surrogates and the EEG were
entered by using a forward selection procedure, and the model
selected slope asymmetry, Kaplan’s /e slope at embedding 16,
Kaplan’s 6/e slope at embedding 4, and 1% radius at embedding
dimension m = 4 as the best combination to discriminate the
EEG from its surrogates. This model was found to be significant
(Wilks A F = 32.2; df = 1, 59; p < 0.00001). The jackknifed
classification matrix indicates that the model was 94% correct in
classifying the EEG from its surrogates. The model classified four
EEG segments as surrogates but classified 0 surrogates as EEG,
as seen in Table 2.

Multivariate analysis identifies those linear and
nonlinear measures best at discriminating between
ethanol and placebo

Discriminant function analyses also were used to determine
which measures could account for the largest part of the variance
between EEGs collected during alcohol and placebo conditions in
separate tests that used linear and nonlinear measures. Among
nonlinear measures the model chose only two, both measures of
redundancy: at radius of 2 and embedding 16 and at radius of 1
and embedding 4. The model was significant (Wilks A F = 5.11;
df =2, 61; p < 0.009), with a jackknifed classification rate of 66%
correct. Of linear measures the model selected only 6 fraction,
which was also significant (Wilks A F = 6.87; df = 1, 62; p < 0.01),
and correctly classified 66% of the variance. When both linear (6
fraction) and nonlinear measures (redundancy) were combined,
the resultant model was not significant at the p < 0.01 level (Wilks
A F = 356; df = 3, 60; p < 0.02) although it classified 64%
correctly, as seen in Table 3. Although both of these models are,
strictly speaking, significant, the classification rates are only
slightly better than the 50% that would be expected by chance.

Ethanol reduces evidence for nonlinear structure in
the EEG

To test whether ethanol produced an increase or a decrease in
nonlinear structure in the EEG, we compared the evidence for
nonlinearity under the placebo condition with that for the alcohol
condition. This was accomplished by comparing the results for the
nonparametric rank test of EEG-surrogate differences for the
ethanol and placebo condition, using the Wilcoxon paired sam-

Ethanol Placebo  Total correctly
(n=32) (n=232) classified (%)
Number classified as ethanol 17 7
Number classified as placebo 15 25
Correctly classified (%) 53 78 66

Combined nonlinear/spectral (jackknifed classification matrix)

Ethanol Placebo  Total correctly
(n=132) (n=232) classified (%)
Number classified as ethanol 17 8
Number classified as placebo 15 24
Correctly classified (%) 53 75 64

Discriminant function analyses were applied to determine which EEG variables
(nonlinear, linear, combination) could be combined to describe a significant portion
of the variance between the ethanol and placebo EEGs. The upper portion of the
figure presents the resultant classification matrix for nonlinear variables. This model
chose only two measures, both measures of redundancy, and the model was signif-
icant (Wilks A F = 5.11; df = 2,61; p < 0.009). A model also was sought to explain
the variance between ethanol and placebo, using only linear measures. This model
is presented in the middle part of the table. Only 6 fraction was selected, and this
model was also significant (Wilks A F = 6.87; df = 1,62; p < 0.01). When both linear
(0 fraction) and nonlinear measures (redundancy) were combined, the resultant
model was not significant; the resultant classification matrix is presented in the
bottom portion of the table.

ples signed rank test. As shown in Figure 6, the placebo condition
contained significantly more evidence for nonlinear structure,
when compared with ethanol, as determined by this test for the
following measures: slope asymmetry (7' = 90; p < 0.002), cor-
relation dimension at embedding 4 (T = —106; p < 0.004),
redundancy at embedding 4 and radius of 0.5 (T = 106; p < 0.004)
and 1.0 (T = 125; p < 0.01), and redundancy at embedding 32 and
radius of 1.5 (T = 115; p < 0.01). That ethanol reduces evidence
for nonlinear structure is also evident by an inspection of the last
four columns of Table 1. The mean number of significantly
nonlinear segments is larger for placebo than for ethanol for 20 of
25 measures for the ¢ tests and for 23 of 25 measures for the rank
tests. (Neglecting the four correlation dimension tests, none of
which identified a significant number of nonlinear segments, these
numbers become 19 of 21 for the ¢ tests and 21 of 21 for the rank
tests.)

Nonlinear measures of the actions of alcohol on the

EEG correlate with subjective reports of intoxication

The total score from the SHAS for the alcohol session was
compared with the EEG measures obtained at that same time
period (90 min after alcohol consumption) in a forward selection
stepwise manner, using regression analyses. A model that com-
pared all of the spectral-based measures (6-fraction, a-fraction,
total power, autocorrelation) found no significant correlations at
the p < 0.01 or p < 0.05 levels. None of the nonlinear measures
showed a correlation that was significant at the p < 0.01 level; the
most nearly significant result was for the Kaplan /e measure of
intercept at embedding 4 and 32 (F = 5.164; p < 0.013). However,
in testing specifically whether the nonlinear structure could ac-
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Figure 6. Ethanol reduces evidence for nonlinearity. To test whether ethanol produced an increase or a decrease in nonlinear structure in the EEG,
we compared the evidence for nonlinearity under the placebo condition with that for the ethanol condition. This was accomplished by using a
nonparametric rank test for each of the 8 sec segments of EEG for each subject and comparing, for each of the nonlinear measures, the values obtained
from EEG with those from its surrogates for both the placebo and ethanol conditions. Then the number of segments for which a rank of 1 or 40 was
obtained for the ethanol and placebo conditions was compared, using the Wilcoxon paired samples signed rank test. The placebo condition contained
significantly more evidence for nonlinear structure, as measured by slope asymmetry (7" = 90; p < 0.002), correlation dimension at embedding 4 (T =
—106; p < 0.004), redundancy at embedding 4 and radius of 0.5 (7T = 106; p < 0.004) and 1.0 (T = 125; p < 0.01), and redundancy at embedding 32

and radius of 1.5 (T = 115; p < 0.01). *p < 0.01; **p < 0.001.

count for a correlation between the EEG and the SHAS by using
surrogate—EEG differences, we found several of the nonlinear
measures to correlate significantly with the SHAS: 1% radius at
embedding dimension m = 1 and 4 (F = 5.2; p < 0.01); Kaplan’s
8/e intercept at embedding 4 (F = 7.1; p < 0.01), and redundancy
at embedding 4 and 16 (F = 6.7; p < 0.002).

DISCUSSION

There has been considerable interest, over at least the last 15
years, in exploiting techniques developed from nonlinear dynam-
ics for characterizing biological systems (see Mackey and Glass,
1977, Mandell, 1984; Goldberger et al., 1990; Kaplan and Cohen,
1990; Garfinkel et al., 1992; Glass and Kaplan, 1993; Lopes da
Silva et al., 1994; Schiff et al., 1994a; Gottschalk et al., 1995;
Kaplan and Glass, 1995; Glass, 1997). A large number of studies
have focused on the evaluation of the EEG (see Rapp et al., 1989;
Ehlers et al., 1991, 1995; Pijn et al., 1991; Roschke, 1992; Mann et
al., 1993; Pradhan and Narayana-Dutt, 1993; Ferri et al., 1996;
Stam et al., 1996) (for review, see Jansen, 1991; Pritchard and
Duke, 1992). A number of authors have suggested that chaotic
behavior may be present in brain electrical activity (Babloyantz et
al., 1985; Rapp et al.,, 1985; Babloyantz and Destexhe, 1986;
Skarda and Freeman, 1987; Mayer-Kress et al., 1988; Roschke
and Basar, 1988; Pezard et al., 1992; Roschke and Aldenhoft,
1992, 1993; Fell et al., 1993, 1996a,b; Achermann et al., 1994a;
Meyer-Lindenberg, 1996; Roschke et al., 1997), although some of
these results recently have come under scrutiny (see Havstad and
Ehlers, 1989; Rapp, 1993; Rapp et al., 1993; Achermann et al.,
1994b; Theiler, 1995; Pritchard et al., 1996; Theiler and Rapp,
1996).

Although even simple dimension algorithms usually can esti-
mate the dimensions of actual low-dimensional nonlinear systems,
these algorithms also often report spurious low dimensions for
data sets that arise from systems that are linear and/or stochastic.
This difficulty has led to a renewed interest in the simpler prob-
lem of distinguishing linear from nonlinear dynamical systems.
There are several aspects of nonlinear systems that can be quan-
tified (see Theiler, 1990, 1994; Grassberger et al., 1991; Casdagli,
1992; Kantz and Schreiber, 1997). The method of surrogate data
(see Kaplan and Cohen, 1990; Theiler et al., 1992; Prichard and
Theiler, 1994; Rapp et al., 1994; Schreiber and Schmitz, 1996;
Theiler and Prichard, 1996, 1997; Chan, 1997; Kantz and Schre-
iber, 1997; Schreiber, 1998) is a relatively new approach. This
method compares a data set of interest with a series of surrogate
data sets that are constructed in such a way as to be as “random”
as possible; however, they “contain” all of the linear properties of
the original data set. A comparison of original and surrogate
times series, using several measures of nonlinear structure, can
help to determine whether a system contains nonlinear determin-
istic structure rather than being simply linearly correlated noise.
Using this technique, some investigators have reported no signif-
icant differences between the EEG and its surrogates (Kaplan
and Cohen, 1990; Kaplan and Glass, 1992; Glass et al., 1993;
Palus et al., 1993) or only small differences (Soong and Stuart,
1989; Theiler et al., 1992; Achermann et al., 1994b; Prichard and
Theiler, 1994; Casdagli et al., 1997). Recently, in three studies the
EEG times series was able to be distinguished from linearly
filtered noise with high significance (Pritchard et al., 1995; Rom-
bouts et al., 1995; Theiler and Rapp, 1996). However, those
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investigators also found no evidence for a low-dimensional attrac-
tor in the EEG. The present investigation confirms these findings.

Estimation of dimension was found to be one of the least
sensitive measures of nonlinear structure in the EEG. The cor-
relation integral, however, was still found to be useful for dis-
crimination between the EEG and its surrogates as well as for
several measures (trajectory density, redundancy) derived from it.
The 1% radius, a measure that estimates how the points in an
attractor are distributed over a section of phase space by estimat-
ing characteristic lengths or distances between points, was much
more sensitive in distinguishing between the EEG and surrogates
than dimension. Because many investigators rely on the estima-
tion of dimension as a primary variable in investigating whether
the EEG can be distinguished from linear filtered noise, this may
be one reason that some of the early results were less than
convincing. Palus (1996a) also has scrutinized the use of dimen-
sional estimates and Lyapunov exponents in this regard.

Several measures to estimate nonlinearity that have been ap-
plied less routinely to neurophysiological systems were investi-
gated. Kaplan’s /e method (1994) with cumulative e measure E is
based on the idea that, if two points are close together on a
trajectory, their images at some time later are more likely to be
close if the system is deterministic than if it is not. This measure
was found to discriminate quite clearly between the EEG and its
surrogates. Other authors have used measures of determinism to
test whether simple neuronal circuits such as monosynaptic spinal
cord reflexes in the cat or rat hippocampal brain slices (Chang et
al., 1994; Schiff et al., 1994b; Aitken et al., 1995) display deter-
ministic structure. Interestingly, in those studies (see Chang et al.,
1994) it was found that variability in spinal cord reflexes was
stochastic in an isolated spinal segment but was more determin-
istic if the segment was not isolated. The authors argue in their
interpretation of these results that determinism in brain function
may result from the integrative activity of a very large number of
neurons and that the process of isolating brain parts into seg-
ments or slices may destroy, rather than enhance, determinism
(see also Aitken et al., 1995; Chang et al., 1995).

Slope asymmetry provides another strikingly sensitive measure
of nonlinearity (see Rothman, 1992; Tsay, 1992; van der Heyden
et al., 1996). The time symmetry of linear systems is unaffected by
static nonlinear transforms. Nonlinear systems can produce sym-
metrical waves, but according to Tong (1990), “Time irreversibil-
ity is the rule rather than the exception when it comes to nonlin-
earity.” Slope asymmetry was found to give the strongest
evidence of nonlinear structure in the EEG. Of particular interest
is the finding that the eyes-closed resting EEG, which contains
mainly a-activity, in general has a positive slope asymmetry,
whereas surrogates do not. Spontaneous oscillatory activity such
as the spindle activity observed during barbiturate anesthesia in
cats is attributed to alternating excitatory and inhibitory postsyn-
aptic potentials (Jasper and Stefanis, 1965; Creutzfeldt et al,
1966). Episodes of nonlinear structure as measured by slope
asymmetry could result from a change in relative phase between
IPSPs and EPSPs.

It has been suggested that the same basic ionic systems are
responsible for the emergence of all oscillations in the midfre-
quency range of the EEG (e.g., 7-14 Hz), including human
a-activity (Lopes da Silva et al., 1997). In in vitro studies of
thalamocortical relay neurons, a 10 Hz oscillatory mode appears
to be regulated by the level of hyperpolarization induced by
synapses formed by the GABAergic neurons of the reticular
nucleus and T-type calcium currents (Jahnsen and Llinds, 1984).

Ehlers et al. « Ethanol Reduces Nonlinear Structure in Brain Activity

Wang (1994) has developed a comprehensive model of the dy-
namics of these thalamocortical relay neurons that is also criti-
cally dependent on the level of hyperpolarization. In addition, in
a model provided by Babloyantz and Lourenco (1994), the vari-
ous behavioral states of the cerebral cortex are seen as spatio-
temporal “chaotic” cortical activity of increasing coherence gen-
erated by the nature of the input from the thalamus. How such
models may relate to such measures of slope asymmetry or
determinism as measured at the cortical surface is not known and
requires further research.

Several of the measures used in this study were effective in
demonstrating that EEG data collected during mild alcohol in-
toxication have less nonlinear structure than EEG data collected
after placebo consumption. Measures of slope asymmetry and
redundancy were the most sensitive to the effects of ethanol on
nonlinear structure. Measures of EEG determinism, space-filling
properties of the attractor, and redundancy were also predictive
of the level of intoxication as reported by the subject. Linear
measures of the EEG, on the other hand, failed to be predictive
of the behavioral measures of intoxication. This suggests that
these nonlinear EEG measures are a better measure of the effects
of behaviorally relevant doses of alcohol than simple shifts in the
power spectrum or autocorrelation function.

The finding that ethanol can decrease the evidence for nonlin-
ear structure in the EEG invites speculation as to how such
findings might relate to theories of the actions of ethanol on brain
and behavior. Recent theories suggest that ethanol may act on
both proteins and lipids in neuronal membranes (Mander et al.,
1985; Besson et al., 1989; Chiou et al.,, 1990; Klemm, 1990;
Weight, 1992; Yurttas et al., 1992; Grant, 1994; Isobe et al., 1994;
Li et al., 1994; Peoples et al., 1996). How such physical changes in
the cellular milieu lead to intoxication at the behavioral and
electrophysiological level, especially at lower doses, has not yet
been elaborated. Our finding that ethanol produces a reduction in
nonlinear structure is arguably consistent with the hypothesis that
ethanol may increase randomness in neuronal processing at the
level of the EEG.
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