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Abstract

Phytochelatin synthases (PCSs) play pivotal roles in the detoxification of heavy metals and metalloids in plants; how-
ever, little information on the evolution of recently duplicated PCS genes in plant species is available. Here we char-
acterize the evolution and functional differentiation of three PCS genes from the giant reed (Arundo donax L.), a 
biomass/bioenergy crop with remarkable resistance to cadmium and other heavy metals. Phylogenetic reconstruc-
tion with PCS genes from fully sequenced monocotyledonous genomes indicated that the three A.  donax PCSs, 
namely AdPCS1-3, form a monophyletic clade. The AdPCS1-3 genes were expressed at low levels in many A. donax 
organs and displayed different levels of cadmium-responsive expression in roots. Overexpression of AdPCS1-3 in 
Arabidopsis thaliana and yeast reproduced the phenotype of functional PCS genes. Mass spectrometry analyses con-
firmed that AdPCS1-3 are all functional enzymes, but with significant differences in the amount of the phytochelatins 
synthesized. Moreover, heterogeneous evolutionary rates characterized the AdPCS1-3 genes, indicative of relaxed 
natural selection. These results highlight the elevated functional differentiation of A. donax PCS genes from both a 
transcriptional and an enzymatic point of view, providing evidence of the high evolvability of PCS genes and of plant 
responsiveness to heavy metal stress.

Keywords:   Cadmium, divergence, gene duplication, giant reed, phytochelatin synthase, phytochelatins, subfunctionalization.

Introduction

Most transition elements, including the metalloid arsenic, are 
often collectively defined as ‘heavy metals’ (HMs), due to their 
high density (Clemens et  al., 2002). Some of these elements 
(e.g. Cu, Mn, Ni, Zn, Fe) are essential nutrients for the majority 

of organisms, while others, such as Cd, Hg, Pb, and As, lack any 
known biological role and are toxic even at low concentrations 
(Tchounwou et al., 2012). HM pollution represents a threat to 
the environment as well to human populations (Järup, 2003; 
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Thompson and Bannigan, 2008). Usually, HMs occur naturally 
in the environment as trace components of the earth’s crust 
(Fraústo da Silva and Williams 2001). Their presence as pollu-
tants is therefore most often due to anthropogenic activities, 
such as mining, motorized transport, and industry (Nagajyoti 
et  al., 2010; Tchounwou et  al., 2012). The mechanisms 
underlying HM toxicity are still not completely understood. 
What is known is that excessive amounts of essential metals 
and traces of non-essential metals cause at least two major re-
sponses: (i) displacement of the correct cellular cofactors, for 
example, Cd is able to displace fundamental bivalent ions such 
as Zn2+, Fe2+, Cu2+, and Ca2+; and (ii) a cascade of aberrant re-
actions, with protein thiol groups binding the metal ions and 
producing reactive oxygen species (Rea et  al., 2004). In the 
case of plants, toxic HM ions present in the rhizosphere are 
taken up into cells together with essential metal ions by rela-
tively non-specific plasma membrane transporters (Luo et al., 
2016). Among the HMs, possibly the most studied is Cd, given 
its high toxicity and widespread occurrence in soils world-
wide (Tchounwou et  al., 2012; Mahar et  al., 2016). Uptake 
of Cd2+ from the rhizosphere is the result of ‘hitchhiking’ of 
this toxic ion on the plasma membrane transporters neces-
sary for the uptake of essential metal ions, especially Mn and 
possibly Fe in rice (Redjala et  al., 2009; Sasaki et  al., 2012; 
Uraguchi and Fujiwara, 2013). Once in the cytoplasm, Cd has 
to be detoxified as soon as possible to prevent cellular damage. 
The major mechanism of intracellular Cd detoxification is 
based on phytochelatins (PCs), a family of cysteine-rich oligo-
peptides synthesized from glutathione (GSH) by the enzyme 
phytochelatin synthase (PCS), a γ-glutamylcysteine dipeptidyl 
transpeptidase (EC 2.3.2.15) (Grill et  al., 1989; Vatamaniuk 
et al., 2004) belonging to clan CA of the papain-like cysteine 
proteases (Vivares et  al., 2005; Romanyuk et  al., 2006; Rea, 
2012). Elevated HM concentrations in the cytoplasm and the 
presence of reduced GSH activate the PCS enzyme, readily 
starting the biosynthesis of PCs. PCs chelate the HM and 
the HM–PC complex is then transported into the vacuoles, 
where the HM can be detoxified (Song et al., 2014). PC bio-
synthesis carried out by PCSs represent the main mechanism 
for plants to detoxify the HMs present in their rhizosphere. 
PCS and PCS-like genes have been found in a wide range of 
organisms, from prokaryotes, such as cyanobacteria (Bhargava 
et al., 2005; Chaurasia et al., 2008), to eukaryotes, such as yeasts 
(Grill et  al., 1985; Ha et  al. 1999; Shine et  al., 2015), plants, 
and animals (Clemens et  al., 2001; Ray and Williams, 2011; 
Polak et al., 2014). PCSs are evolutionarily conserved in all land 
plants as well as in charophytes (Fontanini et al., 2018), their 
sister group, and recent evidence indicates that PC biosynthesis 
is a plesiomorphic character for plants (Degola et  al., 2014; 
Petraglia et al., 2014). Most of our knowledge of PCS genes 
derives from Arabidopsis thaliana, whose genome encodes two 
different PCS genes, AtPCS1 (Vatamaniuk et  al., 1999) and 
AtPCS2 (Cazalé and Clemens, 2001; Kühnlenz et  al., 2014). 
AtPCS1 is the major PCS isoform, and loss-of-function mu-
tations in the AtPCS1 gene render plants extremely sensitive 
to Cd stress. AtPCS2 is also active, but plays a minor role in 
Cd detoxification, as the phenotype of AtPCS2 mutants be-
comes visible only after AtPCS1 has been knocked out (Lee 

and Kang, 2005; Kühnlenz et  al., 2014). More recently, two 
PCS genes from rice, OsPCS1 and OsPCS2, have been char-
acterized in detail (Li et al., 2007; Das et al., 2017; Hayashi et al., 
2017; Uraguchi et  al., 2017; Yamazaki et  al., 2018). The two 
isoforms have different specificities for Cd and As, and con-
tribute differentially to detoxification of these HMs (Hayashi 
et al., 2017; Yamazaki et al., 2018).

Since the discovery of the PCS enzymes, the potential of ex-
ploiting them for bioengineering plant detoxification of HMs 
has attracted much attention. Many attempts to increase resist-
ance to HMs in a number of plant species by overexpression 
of PCS genes from different sources resulted in a variety of 
experimental outcomes, ranging from decreased to enhanced 
resistance to HMs, with various types of relationship (positive, 
negative, or no relationship) to the accumulation of different 
HMs. As of 2015, Cd resistance was obtained in roughly one-
quarter of the tested PCS-overexpressing lines, while in another 
quarter of the cases PCS overexpression caused hypersensitivity 
to HMs (Lee and Hwang, 2015). Early attempts to increase HM 
detoxification in Arabidopsis by overexpression of AtPCS1, for 
instance, unexpectedly resulted in higher sensitivity to Cd (Lee, 
2003). Apparently, the overexpression of AtPCS1 might have 
caused as a side effect depletion of the intracellular pool of 
GSH, which, besides PCs, can play a relevant role in HM che-
lation (Jozefczak et al., 2012). Indeed, overexpression of both 
AtPCS and γ-glutamylcysteine synthetase, the enzyme cata-
lyzing the first committed step of GSH biosynthesis, can over-
come the problem, leading to enhanced HM resistance (Guo 
et al., 2008). By contrast, overexpression in Arabidopsis of PCS 
genes from other plant species directly resulted in higher Cd 
resistance (Guo et al., 2008; Liu et al., 2012; Fan et al., 2018), 
indicating that significant functional differences may exist 
among PCS enzymes. Despite these difficulties, the capacity 
to modulate HM detoxification through careful adjustments of 
PC biosynthesis is of extreme relevance for phytoremediation, 
a relatively new branch of science that uses plants and their 
associated microbes to reduce the concentration of HMs in 
soils and freshwaters (Krämer, 2005). Phytoremediation is now 
probably one of the most promising technologies at our dis-
posal for the process of decontamination of water and soil from 
those harmful elements (Oyuela Leguizamo et al., 2017). Good 
candidate plant species for this technology should ideally be 
those with fast growth and remarkable biomass yield, as well as 
high ability to accumulate and inactivate HMs (Salt et al., 1998; 
Suresh and Ravishankar, 2004; Peuke and Rennenberg, 2005). 
Several hyperaccumulators (i.e. plant species that are able to 
accumulate HMs in their aerial parts at concentrations two to 
three orders of magnitude higher than normal plants; van der 
Ent et al., 2013) are highly tolerant to specific HMs, but they 
usually grow relatively slowly (Souza et al., 2013), thus limiting 
their overall effectiveness in phytoremediation. Recently, 
the giant reed (Arundo donax L.), a perennial rhizomatous 
grass of the Poaceae family, has been proposed as a poten-
tial phytoremediation species, as it is able to accumulate and 
tolerate high concentrations of HMs such as Ni, Cd, and As 
without showing major stress symptoms (Papazoglou et  al., 
2005, 2007; Papazoglou, 2007; Sabeen et al., 2013). The poten-
tial use of A. donax for phytoremediation has been confirmed 
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for a variety of HM concentrations and conditions in soil (Guo 
and Miao, 2010; Mirza et al., 2011; Alshaal et al., 2013; Barbosa 
et al., 2015; Fernando et al., 2016; Atma et al., 2017), and es-
pecially for wastewaters and polluted aquatic environments 
(Mirza et al., 2010; Sagehashi et al., 2011; Kausar et al., 2012; 
Sabeen et  al., 2013; Elhawat et  al., 2014; Richveisová et  al., 
2014). Moreover, A. donax is a vigorous perennial plant that is 
capable of the high biomass yields necessary to rapidly remove 
HMs from soils. Although A.  donax represents a promising 
non-crop plant for phytoremediation, to date no molecular 
characterization of the genes involved in HM detoxification 
has been carried out in this species. In this work we studied 
three recently diverged PCS genes of A. donax, and character-
ized them both in the species of provenance and in transgenic 
model organisms, in order to dissect their role in the molecular 
and physiological bases of resistance to Cd. Furthermore, we 
investigated whether functional diversification could be de-
tected among the gene copies, to gain novel insights into the 
evolutionary trajectories and retention of recently duplicated 
PCS genes in plants.

Materials and methods

Plant materials, growth conditions, and stress treatment
Cohorts of Arundo donax L.  cuttings (Sesto Fiorentino, Florence, Italy; 
43°49′01.8ʺN, 11°11′57.0ʺE) and Arabidopsis thaliana L. Heynh. Col-0 
wild-type and transgenic plants were used in this study. The procedures 
for stress treatments in A. donax were the same as those described pre-
viously (Fu et al., 2016; Li et al., 2017). Three biological replicates were 
used for all the treatments at every sampling time point. Sterilized seeds 
from AdPCS1-3 transgenic plants were sown on half-strength Murashige 
& Skoog solid medium supplemented with 1% sucrose, stratified at 4 °C 
for 3 days, and transferred to a growth chamber. After 3.5 days of growth, 
the young seedlings were transferred to square petri dishes containing the 
same medium as above (control), or supplemented with 150 µM CdSO4 
(for HM treatment), and grown vertically for a further 10 days. Ten plants 
for Col-0 and two independent lines from each construct were grown in 
one plate, and at least 80 plants from each line and Col-0 were analyzed. 
All plants were grown in long-day conditions (16 h light/8 h dark) in a 
growth chamber at 23 °C with light intensity 100–120 µmol m–2 s–1 and 
40% relative humidity.

Sequence homology searches for novel PCS genes in A. donax
PCS homologs were mined from the A.  donax transcriptome (Sablok 
et al., 2014) using the BLAST+suite (Camacho et al., 2009). Oryza sativa 
PCS2 homolog (LOC_Os06g01260) was used as query to perform a 
BLASTn search, due to its close evolutionary distance from Arundo. 
Transcripts were aligned using the ClustalW algorithm with the BioEdit7 
suite (Hall, 1999) and manually checked for the presence of the typical 
triad of PCS catalytic residues (based on A. thaliana PCS sequence: Cys56, 
His162, Asp180). Three complete coding DNA sequences (CDSs) were 
identified and classified as putative A.  donax PCS1, PCS2, and PCS3 
(henceforth called AdPCS1, AdPCS2, and AdPCS3).

Genomic DNA extraction and cloning
Genomic DNAs from Arundo accessions/species growing in a growth 
chamber were isolated using the hexadecyltrimethylammonium bromide 
method (Doyle and Doyle, 1987). The last intron of AdPCS1, AdPCS2, 
and AdPCS3 was amplified using Phusion High Fidelity DNA Polymerase 
(Thermo Scientific) with the primers listed in Supplementary Table S1 
at JXB online. After A-tailing with Taq polymerase (Sigma), amplicons 

were cloned into the pGEM-T vector and at least three clones were 
bidirectionally sequenced for each amplicon.

Total RNA extraction and real-time PCR analyses
Total RNA extraction and cDNA synthesis were performed as previ-
ously reported (Fu et al., 2016). Semi-quantitative RT–PCR was carried 
out for different organs using the A. donax glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) gene as a reference (Li et al., 2017) and AtAct2 
for transgenic analysis. For stress treatments, qRT–PCR was conducted 
with Platinum® SYBR® Green qPCR SuperMix-UDG (Invitrogen) 
using a putative A. donax actin as a reference gene (Fu et al., 2016) in 
a Bio-Rad C1000 Thermal Cycler detection system. All reactions for 
qRT–PCR analyses were performed in triplicate and the 2−ΔΔCT method 
was used to calculate fold changes. Primers used for PCR are listed in 
Supplementary Table S1.

Phylogenetic reconstruction
A BLASTp search was conducted using AtPCS1 as query against the 
proteome of all Poaceae and Brassicaceae species present in the Phytozome 
v.12 database (Goodstein et  al., 2012). The resulting homologs were 
manually checked for the presence of the canonical catalytic triad (Cys56, 
His162, Asp180) as well as for N- and C-terminal domain integrity. The 
Phragmites australis PCS sequence was additionally retrieved from the nr 
GenBank database (Zhao et al., 2014). Sequences were then aligned using 
the MAFFT program (algorithm E-INS-i, dedicated to proteins with 
two or more conserved domains; Katoh and Standley, 2013) and pro-
cessed using GBlocks (Talavera and Castresana, 2007) with the following 
parameters: minimum number of sequences for a conserved position: 13; 
minimum number of sequences for a flanking position: 13; maximum 
number of contiguous non-conserved positions: 8; minimum length of 
a block: 5; allowed gap positions: with half; use similarity matrices: yes. 
Maximum likelihood (ML) phylogenetic reconstruction was performed 
with the PhyML 3.0 web server (Guindon and Gascuel, 2003; Guindon 
et  al., 2010). The best-fitting evolutionary model for Poaceae ML re-
construction was evaluated using the Smart Model Selection method 
(Lefort et  al., 2017) and the ProtTest 2.4 Server (Abascal et  al., 2005). 
Statistical support was calculated based on the Shimodaira–Hasegawa-like 
Approximate Likelihood-Ratio test (SH-aLRT) for branches (Anisimova 
and Gascuel, 2006). Branches with SH-aLRT<0.05 were collapsed in 
the representation of the final tree. Bayesian inference (BI) phylogenetic 
reconstruction was performed for both alignments with MrBayes v3.2 
(Ronquist et al., 2012), using two independent runs, each with one cold 
and three heated chains over 5 000 000 generations. The program was 
allowed to average over the first 10 amino acid rate matrix models by 
specifying the setting: aamodelpr=mixed. Trees were sampled every 1000 
generations and posterior probabilities of splits were obtained from the 
50% majority rule consensus of the sampled trees, discarding the first 25% 
as burn-in. Poaceae ML and BI trees were combined using the program 
TreeGraph 2 (Stöver and Müller, 2010). The phylogenetic reconstruction 
of the last intron of AdPCS1-3 from different Arundo species/accessions 
was carried out by ML as described above.

Analyses of molecular evolution
Different programs of the HyPhy package (Kosakovsky Pond et al., 2005) 
were used for molecular evolution analyses of the codon-aligned AdPCS 
CDS (502 codons) using the HKY85 model. GARD (Kosakovsky Pond 
et  al., 2006) was used to infer putative recombination sites with no 
site-to-site rate variation and two rate classes. The BUSTED program 
(Murrell et al., 2015) was used for testing gene-wide episodic diversifying 
selection in all branches of the AdPCS1-3 phylogeny inferred with the 
neighbor-joining algorithm. In addition, a total of three branches were 
formally tested for diversifying selection using the aBSREL program 
(Smith et al., 2015). Significance was assessed using the likelihood ratio 
test at a threshold of P≤0.05, after correcting for multiple testing. Analysis 
of selective pressures acting on the single alignment sites was carried 
out with the FUBAR program (Murrell et al., 2013) using a posterior 
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probability of 0.9 as cutoff. Relaxation/intensification of selection on 
specific branches of the tree was assessed with the RELAX program 
(Wertheim et al., 2015).

Molecular dating
Patristic distances (number of substitutions per site) among sequences of 
the last intron of AdPCS1-3 were calculated with T-REX software (Boc 
et al., 2012). Representative sequences for each gene were used to esti-
mate divergence time (T) using the formula T=K/2r, where r is the abso-
lute rate of substitutions per site per year and K is the estimated numbers 
of substitutions per site between homologous sequences. The value of r 
used (9E-09) corresponds to the rate for the third intron of the Adh gene 
(Zhu and Ge, 2005), corrected for lineage-specific evolution of Poaceae 
(Wang et al., 2015).

Yeast complementation assay
Full-length AdPCS1, AdPCS2, and AdPCS3 CDSs were amplified with 
primers listed in Supplementary Table S1, cloned into pENTR/D-Topo, 
recombined into the pYES-DEST52 vector (Invitrogen™), and trans-
formed into Cd-sensitive Saccharomyces cerevisiae strain YK44 (ura3-52 
his3-200, ∆ZRCDCot1, mating type α) using the lithium acetate method 
(Gietz and Schiestl, 2007). The culture for each transformant and spotting 
on YPGAL solid medium supplemented with or without 100 µM CdSO4 
were as previously reported (Zhao et al., 2014). All experiments were in-
dependently repeated four times.

Expression of recombinant protein and PCS activity assay
The coding sequences of full-length AdPCS1, AdPCS2, and AdPCS3 pro-
teins were amplified from cDNA using primers listed in Supplementary 
Table S1 and cloned into the expression vector pET28b in-frame with 
an N-terminal 6xHis-tag. The expression plasmids were transformed 
into Escherichia coli Rosetta (DE3) cells, which were induced with 
0.5 mM isopropyl ß-D-thiogalactopyranoside and cultured overnight at 
room temperature. The cells were collected by centrifugation and the 
soluble fraction of recombinant protein was purified as previously de-
scribed (Pilati et al., 2014), quantified with the Quant-iT Protein Assay 
Kit (Thermo Fisher Scientific), and verified on 10% SDS-PAGE. The 
PCS activity assay was performed in 100  µl reaction buffer (200 mM 
HEPES-NaOH pH 8.0, 10 mM β-mercaptoethanol, 12.5 mM GSH, and 
100 μM CdSO4) containing recombinant protein (500 ng ml−1) at 35 °C 
for 60 min, then stopped by adding 25 µl 10% (v/v) trifluoroacetic acid 
and immediately analyzed for production of PCs with high-performance 
liquid chromatography–electrospray ionization tandem mass spectrom-
etry (HPLC-ESI-MS-MS; Bellini et al., 2019).

Mass spectrometry analyses of production of PCs by 
AdPCS1-3 in yeast and in vitro
Single colonies from each yeast transformant line were precultured over-
night in YSD-U selective medium. A  500  μl aliquot (OD600=0.5) of 
each line was inoculated into YPGAL containing 100 μM CdSO4 and 
1  mM GSH, and cultured for 24  h. Afterwards, 2  ml of each culture 
(OD600=2) was pelleted, washed once with sterile water, and resuspended 
with 200 μl 5% (w/v) sulfosalicylic acid. Cells were ground using glass 
beads with a tissue lyser, the recovered supernatant was rapidly frozen in 
liquid nitrogen, and a 10 μl aliquot was used for mass spectrometry (MS) 
analysis as previously described (Petraglia et al., 2014). For recombinant 
AdPCS1-3 enzymes, thiol-peptides were characterized and quantified 
by HPLC-ESI-MS-MS using an Agilent 1290 Infinity UHPLC (Santa 
Clara, CA, USA) with a thermostated autosampler, a binary pump, and a 
column oven, coupled to an AB Sciex API 4000 triple quadrupole mass 
spectrometer (Concord, ON, Canada) equipped with a Turbo-V ion spray 
source (Concord, ON, Canada). Chromatographic separation was per-
formed by using a reverse-phase Waters (Milford, MA, USA) X-Select® 
HSS T3 2.5  µm XP-C18, 100×3 mm HPLC column, protected by a 

guard cartridge. Separation was achieved using a gradient solvent system 
(solvent A, acetonitrile with 0.1% v/v formic acid; solvent B, water with 
0.1% v/v FA) as follows (Bellini et al., 2019): solvent A was set at 2% for 
5 min, raised with a linear gradient to 44% in 4.5 min, and then raised 
with a linear gradient to 95% in 1 min. Solvent A was maintained at 95% 
for 1 min before column re-equilibration (2.5 min). The flow rate and 
column oven temperature were set to 300 μl min−1 and 30 °C, respect-
ively. The identification and quantification of thiol-peptides (GSH and 
PCn) was performed by tandem mass spectrometry (MS/MS) using cer-
tified standards (GSH, PC2-4; AnaSpec Inc., Fremont, CA, USA) to build 
external calibration curves and certified glycine-13C2,

15N-labelled GSH 
(Sigma-Aldrich, Saint Louis, MO, USA) and glycine-13C2,

15N-labelled 
PC2 (AnaSpec Inc., Fremont, CA, USA) as internal standards. The cali-
bration curves were built by plotting the peak area ratio (analyte/internal 
standard) against the concentration ratio (analyte/internal standard). For 
accurate quantification of thiol-peptides using the present HPLC-ESI-
MS-MS method, each sample was run at dilutions of 100, 10−1, and 10−2. 
System control and data acquisition and processing were carried out by 
using AB Sciex Analyst® version 1.6.3 software.

Growth kinetic analyses of yeast transformed with AdPCS1-3
Single colonies from each transformant were grown overnight in YSD-U 
medium and each aliquot with OD600=0.5 was inoculated for further 
growth in YPGAL medium. During the following 48 h culture at 30 °C, 
1 ml aliquots were taken at fixed time intervals (0, 4, 8, 12, 16, 20, 24, 
36, and 48 h) and their OD600 measured. All experiments were done in 
quadruplicate.

Overexpression of AdPCS1-3 in Arabidopsis thaliana
The same pENTR clones mentioned above for the yeast analyses were 
individually recombined into the pK7WG2 vector by the GATEWAY 
LR (attL and attR recombination sites) reaction and transformed into 
Agrobacterium tumefaciens strain GV3101-pMP90, then transformed into 
A. thaliana by the floral dip method (Clough and Bent, 1998). T4 homo-
zygote seeds from two independent single-copy lines for each construct 
were used for all downstream analyses.

Statistical analyses
Unless otherwise stated, for each statistical test a threshold of P<0.05 was 
applied to determine statistical significance. The data were analyzed using 
the PAST3 statistical package (Hammer et al., 2001). For statistical analysis 
of differences in total PC production among yeast strains overexpressing 
the three AdPCS enzymes, the sum of PC2 to PC5 products was used. In 
the case of recombinant enzymes, the sum of PC2 to PC4 products was 
used. One-way ANOVA with Tukey’s pairwise correction was applied to 
the net PC2–PC5 or PC2–PC4 quantities to test for the statistical signifi-
cance of mean differences.

Results

The A. donax genome encodes at least three different 
PCS gene copies

All three putative AdPCS full-length CDSs isolated contained 
a single open reading frame, encoding a protein of 502 residues 
and a predicted molecular weight of ~55 kDa. Once translated, 
the three proteins showed an average identity with A. thaliana 
PCS1 (NCBI accession number NP_199220) of 55% and an 
average similarity of 70%. This level of divergence was higher 
than those usually observed among alleles of single genetic 
loci in plants (e.g. Brown et al., 2004; Tatarinova et al., 2016; 
Zhao et al., 2017). Phylogenetic analyses of the last intron of 
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AdPCS1-3 isolated from four different Arundo species clearly 
showed that divergence among sequences predated the evo-
lutionary split among species and ruled out recombination 
(Supplementary Fig. S1). It is thus almost certain that the iso-
lated CDSs are not alleles of a single gene, but different genes 
encoded in the A. donax genome. In line with previous reports 
(Matsumoto et  al., 2004), the N-terminal of the AdPCS1-3 
proteins was more conserved than the C-terminal; this was 
also the case for the rice paralogs OsPCS1 (Os05g0415200) 
and OsPCS2 (Os06g0102300) (Fig. 1). AdPCS1-3 proteins are 
significantly less divergent than other duplicated PCSs from 
previous studies (Supplementary Table S2), displaying only 
25–29 substitutions. All the canonical features of PCSs were 
present, namely the catalytic triad Cys56, His162, and Asp180, and 
the lengths of both N- and C-terminal domains were compar-
able to those of previously validated PCSs (Fig. 1). In addition, 
in the Brassicaceae, we detected a PCS duplication present 
in the genomes of all species that have been fully sequenced 
to date (Supplementary Fig. S2), suggesting that retention of 
PCS duplicates for long evolutionary time spans is a relatively 
common phenomenon in angiosperms.

Two different statistical methods suggested JTT+G+I 
(Jones et al, 1992) as the best-fitting evolutionary model for 
the alignment used for the phylogenetic reconstruction of 
monocots and Amborella trichopoda PCS proteins shown in 
Fig. 2. Accession numbers for all sequences used are reported 
in Supplementary Table S3. Using A.  trichopoda PCS as an 
outgroup to polarize the tree, P.  australis PCS was basal to 
the Panicoideae clade. With the exception of Zea mays, which 
has only one PCS gene (which could be the result of mis-
annotation), all other Panicoideae species had at least two PCS 
genes, always present in two distinct clades, clearly indicating 
an early duplication event predating the Panicoideae radiation 
(Fig. 2). A further species-specific duplication was evident in 
Panicum virgatum. The A. donax sequences characterized in this 
study grouped together at the base of only one of the two 
Panicoideae clades, indicating that the three gene copies ori-
ginated after the split of A. donax from the other members of 
the PACMAD clade. The two PCS copies present in O. sativa 
(Yamazaki et al., 2018) clustered together, indicating a lineage-
specific duplication independent from the major duplication 
event in the Panicoideae.

Fig. 1.  Multiple sequence alignment of A. donax and O. sativa PCS proteins. Dashes indicate gaps; dots indicate residues identical to those in the 
sequence of AdPCS1. The amino acids of the catalytic triad (Cys56, His162, and Asp180 in A. thaliana, corresponding to positions 57, 163, and 181 in the 
AdPCS1-3 proteins) are highlighted. (This figure is available in colour at JXB online.)

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
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Expression of the AdPCS 1-3 genes is responsive to 
HM stress

AdPCS1-3 transcript expression levels were analyzed in both 
physiological and stressed conditions. In normal conditions, 
AdPCS1-3 were expressed in all organs analyzed, as indicated 
by semi-quantitative RT-PCR analyses (Fig. 3). In response 
to treatment with a concentration of 500  μM CdSO4, the 
three transcripts reacted independently and in a tissue-specific 
manner. In the shoot, expression of the three genes did not 
change in response to CdSO4, with the exception of a very 
modest, although statistically significant, decrease of AdPCS1 
expression in the first 90 min of stress application (Fig. 4). By 

contrast, in root, all three genes showed significant increases of 
expression at various time points, with a general trend towards 
up-regulation, especially after 6 h after stress onset. AdPCS1 
was the most reactive gene in root, with its expression level 
reaching 3-fold higher than in the absence of stress. Notably, 
AdPCS1 transcriptional up-regulation was most prominent 
in root between 11 and 24 h after stress application, whereas 
in shoot the gene was either unresponsive or mildly down-
regulated by the presence of Cd2+ at these time points (Fig. 
4). AdPCS3 responded so little to CdSO4 treatment in abso-
lute terms (maximal fold change 1.5) that its expression can be 
considered practically not inducible by HM.

Fig. 2.  Phylogenetic reconstruction of monocotyledonous PCS proteins. (A) Cladogram representing the taxonomy of the species used for phylogenetic 
reconstruction. Internal nodes indicate high-order taxonomic groups corresponding to NCBI taxonomy. The PACMAD clade is indicated with an arrow. 
The taxonomic node at the root of the tree is Spermatophyta. (B) Cladogram of the relationships among PCS protein sequences from fully sequenced 
plant genomes of monocotyledonous species (plus A. trichopoda, the most basal angiosperm species known to date, used here to root the tree) from 
the Phytozome 12 database. The PCS protein of Phragmites australis, the closest relative of A. donax for which a PCS gene has been functionally 
characterized, is also included. Phylogenetic reconstruction was carried out with both the BI (MrBayes) and ML (PhyML) methods. The tree reports 
the BI topology and it is rooted in correspondence of A. trichopoda. Numbers above the branches are Bayesian posterior probabilities (first value) and 
approximate likelihood ratio test bootstrap supports (second value). Values in square brackets indicate topological differences between methods. The 
duplication in the PACMAD clade (arrow) is represented by the two vertical bars to the right of the cladogram, each corresponding to a different clade 
of the duplication. Species with duplicated PCSs in the PACMAD clade are color-coded to simplify identification of duplicates in the tree. The analyzed 
organisms and the relative abbreviations used in the tree are reported in Supplementary Table S3. (This figure is available in colour at JXB online.)

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
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Overexpression of AdPCS genes in A. thaliana 
enhances Cd sensitivity

Expression of AdPCS1-3 was confirmed by semi-
quantitative RT–PCR in two A.  thaliana transgenic 
lines per construct representing independent transform-
ation events (Supplementary Fig. S3). No differences in 
growth could be detected in the absence of Cd among 
A.  thaliana Col-0 untransformed controls and transgenic 
lines transformed with AdPCS1-3 CDSs. Independent 
lines overexpressing either the AdPCS2 or AdPCS3 CDS 
exhibited a significant reduction in growth (measured as 
the fresh weight of the aerial part) compared with Col-0 
when treated with 150 µM CdSO4 in the growth medium 
(Fig. 5A, B). In addition, chlorosis of transgenic plants 
overexpressing AdPCS2 or AdPCS3 was clearly visible 
(Fig. 5B). By contrast, the transgenic plants overexpressing 
AdPCS1 closely resembled the Col-0 ecotype and did not 
display any discernible phenotype in terms of fresh weight 
or pigmentation.

Fig. 3.  Expression pattern of AdPCS1-3 in different organs/tissues of 
A. donax as demonstrated by semi-quantitative RT–PCR. Expression 
levels of AdPCS1-3 transcripts were measured in physiological, 
unstressed conditions. The AdGAPDH gene was used as a normalization 
reference, using 26 PCR cycles, while 33 cycles were used for 
AdPCS1-3.

Fig. 4.  Responsivity of AdPCS1, AdPCS2, and AdPCS3 to Cd stress. Time-course variation by real-time PCR of AdPCS1-3 expression 
in A. donax roots (A) and shoots (B) in response to HM stress resulting from treatment of the root system with 500 µM CdSO4. The Y-axis 
reports variations in transcript level compared with the non-stressed condition (0 h, indicated by the continuous line at Y=1). Bars indicate 
SD (n=3 biological replicates); asterisks indicate statistically significant differences from untreated controls (P<0.05, t-test corrected with false 
discovery rate).

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
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Expression of AdPCS1-3 in yeast confers Cd 
resistance

AdPCS1-3 CDSs subcloned in the pYES-DEST52 vector were 
transformed into the S. cerevisiae YK44 highly Cd sensitive strain, 
previously used for the same purpose by Zhao et al. (2014). We 
observed that the growth of AdPCS1 transformants was delayed 
compared with AdPCS2-3 transformants. To further investigate 
the basis of this difference, a growth analysis was conducted on 
YPGAL media without any HM stress (Supplementary Fig. S4). 
The results clearly showed that the AdPCS1 transformant had 
a longer lag phase, resulting in slower initial growth. This dif-
ference was rescued after 24 h, with the growth kinetics of the 
AdPCS1 transformant becoming normal, indicating that the 
difference resulted from decreased translational efficiency in the 

Fig. 6.  Growth of yeast cells expressing AdPCS1-3 CDSs. The four yeast 
strains, transformed with AdPCS1-3 CDSs or the empty vector, were 
plated in serial dilutions (dilution factors are indicated above the image) 
in either the absence or presence of 100 µM CdSO4. Four independent 
replicates were performed; the picture shows a representative example of 
one replicate.

Fig. 5.  Phenotype of A. thaliana plants overexpressing AdPCS1-3 in the presence of Cd. (A) Phenotype of two independent transgenic lines 
per construct and the control untransformed line (Col-0) grown on vertical plates for 10 days without (top) or with (bottom) the addition of 
150 µM CdSO4. (B) Fresh weight of the plants shown in A. Bars indicate the SD of n=3 biological replicates; asterisks indicate statistically 
significant differences from the untreated controls (P<0.05, t-test corrected with false discovery rate). (This figure is available in colour at 
JXB online.)

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
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yeast heterologous system. Comparison of OD-normalized cul-
tures showed that AdPCS1-3 transformants acquired equivalent 
levels of Cd resistance in the presence of 100 µM CdSO4 (Fig. 
6). This result indicates that the three different CDSs code for 
functional PCSs and that A. donax possesses at least three dif-
ferent genes for PCS enzymes.

AdPCS1-3 produce phytochelatins in yeast and in vitro

To prove that Cd resistance was due to PC synthesis, MS ana-
lyses were carried out. As expected, all three PCS enzymes pro-
duced detectable amounts of PCs in yeast (Supplementary Fig. 
S5). There was significant heterogeneity in the mean quantities 
of the major PC polymerization forms (PC2 to PC5) produced 
by the strains overexpressing different AdPCS genes (one-way 
ANOVA, F2, 6=5.149, P=0.042). We attempted, without suc-
cess, to normalize the amounts of enzyme in the AdPCS1-
3 transformants by western blotting using an antibody raised 
against Arabidopsis PCS1 (data not shown). We thus could not 
rule out the possibility that the cause of the differences in total 
PCs among yeast transformants could lie in differences in the 
translational efficiency of the AdPCS transgenes in the yeast 
heterologous system (see above).

Recombinant AdPCS1-3 proteins purified from E.  coli 
(Supplementary Fig. S6) were further assayed in vitro to com-
pare their enzymatic activity in the absence of confounding 
effects due to in vivo differences in expression. The specific ac-
tivities of AdPCS1-3 enzymes for the major PC polymerization 
forms (PC2 to PC4, either as gross total or individually) were 
significantly heterogeneous (one-way ANOVA; for total PCs: 
F2, 12=98.35, P=3.62E-05; for PC2: F2, 12=49.2, P=1.65E-06; 
for PC3: F2, 12=46.6, P=2.34E-03; for PC4: F2, 12=98.39, 
P=3.61E-05). Significant differences were detected among the 
amounts of both total PCs and single polymerization forms 
produced in all pairwise comparisons among enzymes (Tukey’s 
post-hoc test; total PCs: P<0.00024; PC2: P<0.00304; PC3: 
P<0.00234; PC4: P<0.01109 for all comparisons; Fig. 7). The 

total PCs produced ranged (mean ±SD) from 10.43±0.29 to 
15.47±0.73 nmol mg protein−1 min−1. The rank in terms of 
total production was AdPCS1>AdPCS2>AdPCS3 (Fig. 7). 
Only minor differences in the spectrum of PCs produced (as 
referred to PC1 for each enzyme) were detected.

AdPCS1-3 genes evolve at different evolutionary rates

To shed additional light on the functional differences observed 
among the AdPCS1-3 genes and reconstruct their evolutionary 
history, we carried out a series of analyses on the patterns of 
molecular evolution of their sequences. The three genes did 
not show significant evidence of either gene-wide (likelihood 
ratio test, P =0.859) or branch-specific (likelihood ratio test, 
P=1.00 for AdPCS1, 1.00 for AdPCS2, 0.15 for AdPCS3) epi-
sodic diversifying selection.

Therefore, there is no evidence that any sites have ex-
perienced diversifying selection along the test branch(es). 
A  putative break-point, indicative of either rate variation 
or topological incongruence due to recombination, was 
identified (position 296 of the alignment; corrected Akaike 
Information Criterion score of the best fitting GARD model: 
5362.96; AICc score of null model: 5365.01). The Kishino–
Hasegawa topological incongruence test resulted negative 
(Shimodaira–Hasegawa test applied to the left partition, 
P=0.997; applied to the right partition, P=1.000), suggesting 
that the different domains of AdPCS genes underwent evo-
lutionary rate variation rather than recombination. Two 
additional findings support evolutionary rate heterogeneity 
among AdPCS sequences. First, episodic positive/diversifying 
selection was detected at four sites, all of them located at 
the C-terminus of the proteins (Supplementary Table S4), 
while the 29 sites under episodic negative/purifying selec-
tion were distributed throughout the alignment. Second, the 
sequences of AdPCS1 and AdPCS2 displayed statistically sig-
nificant relaxation (K=0.10, P=0.030, likelihood ratio=4.72) 
compared with AdPCS3 (Fig. 8). Given such evolutionary 
rate variation, CDS could not be reliably used for estima-
tion of duplication time. Theoretically more reliable estima-
tions of divergence times from nucleotide divergence of 
the AdPCS1-3 last introns varied depending on the pairs of 
genes used (Supplementary Tables S5 and S6), providing an 
approximate time range for AdPCS1-3 duplications. These 
and the results described above (i.e. phylogeny, transcriptional 
responsiveness to Cd) allowed reconstruction of the plaus-
ible events leading to evolution of the three homeologous 
PCS genes characterized in this study. According to the 
evolutionary model shown in Fig. 9A, we propose that two 
rounds of polyploidization happened in rapid succession, in 
a time range between ~8.5±0.1 and ~11.3±0.1 million years 
ago. The first duplication generated PCS ancestral copies A 
and B. While PCS B evolved by mutation/drift into present-
day AdPCS3, the second duplication of PCS A gave rise to 
AdPCS1 and AdPCS2. During the whole process, functional 
divergence among the resulting copies involved the changes 
in gene transcription, enzyme activity, and evolutionary rates 
that characterize the present-day AdPCS1-3 genes (Fig. 9B).

Fig. 7.  Spectra of phytochelatins (PCs) produced by recombinant 
AdPCS1-3 proteins in vitro. Average amounts of PCs (PC2 to PC4, either 
individually or as gross total) produced by AdPCS1-3 enzymes purified 
from E. coli. Five independent replicates were performed. For each 
construct, bars marked with the same letter do not significantly differ from 
each other (Tukey–Kramer test, P>0.05). Bars represent the SD.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
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Fig. 9.  Evolutionary model and summary of functional diversification among AdPCS1-3. (A) Scheme of the two rounds of duplication giving rise to 
AdPCS1-3. (B) Functional features of AdPCS1-3 with respect to transcriptional up-regulation by Cd, total amount of PCs produced, and the presence of 
reduced growth and a chlorotic phenotype when overexpressed in A. thaliana, and relaxation of the evolutionary constraints of purifying selection acting 
on the single genes. – indicates (near) absence and + indicates presence, with more + indicating more pronounced features. (This figure is available in 
colour at JXB online.)

Fig. 8.   Relaxation of selective pressure acting on AdPCS1 and AdPCS2. The distribution of ω (omega ratio of non-synonymous to synonymous 
substitution rates) across alignment sites is shown by the black bars for the null model in which the same ω distribution is assumed for the AdPCS3 
(reference) and AdPCS1-2 (test) branches. The grey bars represent the ω distribution for the alternative model in which different ω distributions are 
assumed for the reference and test branches. The arrows indicate the direction of ω classes variation from the null model to the alternative model 
distribution. The shift observed towards ω values closer to neutrality (ω=1, vertical dotted line) indicates relaxation of the selective pressure acting on 
AdPCS1 and AdPCS2 compared with AdPCS3.
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Discussion

Given the reported high resistance of A. donax to Cd and other 
HMs (e.g. Papazoglou et al., 2007; Mirza et al., 2011) and its 
relevance as a biomass/bioenergy crop (Angelini et al., 2009), 
this species has been repeatedly suggested as a strong candidate 
for phytoremediation (Fernando et  al., 2016). To date, how-
ever, the molecular bases for the high resistance of A. donax 
to HMs has not been functionally investigated in detail. The 
fundamental role of the PCS genes in HM detoxification is 
well established in a number of higher plants (Clemens, 2006; 
Yadav, 2010); thus, the characterization of the transcriptional 
and enzymatic activity of the three putative PCS genes car-
ried out in this study constitute an important step towards 
the dissection of the mechanisms underlying the resistance of 
A. donax to HMs. The results obtained demonstrate that all the 
AdPCS isoforms characterized are fully functional, as they are 
transcribed in various A. donax organs (Fig. 3), can confer en-
hanced resistance to Cd in yeast (Fig. 6), and they all synthesize 
PCs (Fig. 7, Supplementary Fig. S5). However, they also display 
marked functional differences in the amount and, to a lower 
extent, levels of polymerization of PCs they produce, as well as 
in their transcriptional regulation upon exposure to HM stress 
(Figs 4 and 7). In addition, PCS paralogs previously charac-
terized in other species (Lotus japonicus, O. sativa, A. thaliana, 
and Morus notabilis) were found to display functional differ-
entiation in terms of the amount of PCs produced and the 
specificity of metal-mediated activation, as well as differential 
regulation of transcription in response to HMs (Lee and Kang, 
2005; Blum et al., 2007; Ramos et al., 2008; Moudouma et al., 
2012; Kühnlenz et al., 2014; Fan et al., 2018; Yamazaki et al., 
2018). In particular, the recent work carried out in O. sativa 
var. japonica clearly demonstrates that OsPCS1 and OsPCS2 
have specialized roles in Cd and As resistance. OsPCS2 is the 
major isozyme for biosynthesis of PCs and is the most respon-
sive to Cd (Hayashi et al., 2017; Yamazaki et al., 2018), while 
OsPCS1 plays a major role in allowing the accumulation of 
As in rice grains but is also important in resistance to both As 
and Cd (Li et  al., 2007; Hayashi et  al., 2017; Uraguchi et  al., 
2017). This high level of functional divergence parallels the 
medium to high sequence divergence of PCS paralogs from 
these species (52–54% identity between LjPCS1 and LjPCS2/
LjPCS3; 72% identity between OsPCS1 and OsPCS2; 84% 
identity between AtPCS1 and AtPCS2) compared with that 
among AdPCS1-3 (94–95%), indicating that they originated 
from more ancient duplication events than AdPCS1-3. For in-
stance, two PCS paralogs were found in the genomes of all 
Brassicaeae analyzed in our study (Supplementary Fig. S1), and 
functional AtPCS1 and AtPCS2 orthologs have been charac-
terized in Arabidopsis halleri and Noccaea caerulescens (formerly 
named Thlaspi caerulescens; Meyer et  al., 2011). The AtPCS1 
and AtPCS2 paralogs thus originated from a duplication pre-
dating the divergence between the Arabidopsis and Noccaea 
genera, which has been estimated to have taken place in the 
Oligocene about 27 million years ago (Huang et  al., 2016). 
Unfortunately, the lack of a reference genome makes it difficult 
to infer the timing and mechanism of the AdPCS1-3 duplica-
tion. The best estimates we could obtain place both duplication 

events at roughly 9–12 million years ago, corroborating the 
notion that the AdPCS1-3 duplications are more recent than 
those of previously characterized PCS genes. The increased re-
laxation of selective pressure, closer phylogenetic relationship 
of AdPCS1 and AdPCS2 compared with AdPCS3, and the 
overall low sequence divergence among AdPCS1-3 proteins 
together suggest that two rounds of duplication took place in 
close succession: the first duplication gave rise to two ancestral 
PCS copies (PCS A and B in Fig. 9), followed relatively soon 
after by a second duplication responsible for the evolution of 
AdPCS1 and AdPCS2 from the ancestral PCS A copy. Another 
example of such an evolutionary pattern has been reported 
for LjPCS1-3, but in this case the second duplications hap-
pened much later than the first (Ramos et al., 2007). Given the 
transcriptional responsiveness of PCS genes to HMs in other 
species (e.g. Moudouma et al., 2012; Yamazaki et al., 2018), the 
ancestral PCS existing before both duplications may have been 
up-regulated by Cd stress, like the present-day AdPCS1 and 
AdPCS2 genes; thus, we propose that the PCS B ancestral copy 
underwent subfunctionalization of regulatory promoter elem-
ents after divergence. This scenario is corroborated by the fact 
that stress-responsive genes tend to be over-represented among 
paralogous pairs with different expression levels and reduced 
conservation of cis-acting regulatory elements (Hoffmann and 
Palmgren, 2016). Interestingly, transcriptional differences, with 
one copy dominant over the other, seem to be a relatively 
common feature of duplicated PCS genes across different plant 
families and originating from independent duplication events 
(e.g. Lee and Kang, 2005; Fan et al., 2018; Yamazaki et al., 2018), 
suggesting that transcriptional divergence may be a relevant 
mechanism for long-term retention of multiple PCSs. In add-
ition to non-coding regulatory regions, subfunctionalization is 
known to be a common outcome for protein-coding sequences 
of retained duplicates (Hoffmann and Palmgren, 2016). Even 
in the absence of pseudogenization, duplicated genes can 
undergo functional decay for millions of years simply due to 
genetic drift (Panchy et al., 2016). The presence of several sites 
under purifying selection and some under intensified/positive 
selection (Supplementary Table S4), however, indicates that this 
is not the case for the AdPCS1-3 genes, further suggesting that 
loss of any of the three gene copies, including AdPCS1, would 
have a detrimental effect on plant fitness (Panchy et al., 2016). 
It is noteworthy that the relatively large functional variation 
among AdPCS isoforms required a limited number of amino 
acid substitutions (<30) to take place (Supplementary Table 
S2). The fact that the majority of the substitutions took place 
in the C-terminal domain of the protein suggests that regula-
tion rather than core catalytic activity is affected, in agreement 
with previous reports demonstrating that this fast-evolving 
domain is responsible for metal sensing and enzyme stability 
(Cobbett and Goldsbrough, 2002; Ruotolo et al., 2004).

Taken together, these results strongly suggest that AdPCS1, 
ADPCS2, and AdPCS3 most likely contribute to Cd detoxi-
fication in A.  donax. The presence of multiple PCS copies 
seems to be advantageous as on the one hand redundancy pro-
vides higher overall levels of PC biosynthesis, while on the 
other hand functional specialization provides increased flexi-
bility in HM resistance (Panchy et al., 2016). According to the 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz266#supplementary-data
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ubiquitous and conserved level of constitutive expression of 
the three isozymes in all A. donax organs/tissues but the lower 
PC biosynthetic activity of AdPCS3, it seems that AdPCS1 and 
AdPCS2 play a major role in basal detoxification of Cd and 
possibly other HMs. Transcriptional inducibility by Cd further 
suggests that AdPCS1 and AdPCS2 provide the most relevant 
contribution to HM detoxification in roots at high metal con-
centrations (Fig. 4). A. donax accumulates the majority of ab-
sorbed Cd in the roots and rhizomes (Sagehashi et al., 2011; 
Yu et al., 2018), implying that below-ground organs act as the 
main centers of bioaccumulation (Bonanno, 2012). AdPCS1 
and AdPCS2 thus likely contribute to avoidance of metal tox-
icity by preventing Cd sequestration in non-photosynthetic 
tissues. While the reduced growth observed for AdPCS2- and 
AdPCS3-overexpressing plants in Arabidopsis is in line with 
former reports (Lee, 2003), the reason why overexpression of 
AdPCS1 does not cause any visible phenotype under the con-
ditions tested is currently not clear. Although the transcrip-
tional levels of the AdPCS1 transgene were similar to those of 
AdPCS2 and AdPCS3, the amount of AdPCS1 protein expres-
sion in this heterologous system may be limited by translational 
efficiency, analogous to what was detected in yeast. Further 
studies will be needed to investigate this point.

More generally, the AdPCS1-3 triplication is, to the best of 
our knowledge, by far the most recent set of paralogs func-
tionally characterized in plants until now. The results obtained 
therefore provide novel insights into the mechanisms of 
functional diversification that, ultimately, are responsible for 
long-term retention of PCS duplicates in plants. In fact, they 
demonstrate that functional diversification happens relatively 
early after duplication and entails a small number of amino acid 
changes in the C-terminal domain of PCS, suggesting a mech-
anism underlying the flexibility of species with multiple PCSs 
to adapt to HM stress.
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