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Fast Remapping of Sensory Stimuli onto Motor Actions on
the Basis of Contextual Modulation

Emilio Salinas
Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010

Higher organisms can establish complex associations between sensory events and motor responses. More remarkable than their com-
plexity, however, is that the resulting sensory-motor maps can be selectively interchanged. For example, a person who speaks English and
Spanish can read aloud “con once, sin once,” going effortlessly from one language to the other. What is the neural basis of this capacity?
Here, anetwork model is presented in which multiple maps between sensory stimuli and motor actions are possible, but only one of them,
depending on behavioral context, is implemented at any given time. The key is a nonlinear representation in which the gain of sensory
responses is regulated by context information. Neuronal responses can indeed show variations in gain, as has been documented in the
case of proprioceptive signals such as eye and head position, which can modulate visually triggered activity. However, in contrast to these,
the contextual cues used here need not bear any relationship to the physical attributes of the stimuli; in particular, spatial location is
irrelevant. The model thus postulates the existence of sensory neurons that are nonlinearly modulated by arbitrary context signals, a
plausible and testable prediction. The proposed mechanism allows a network of neurons to effectively change the functional connectivity
between its inputs and outputs and may partially explain how animals can quickly adapt their behavior to varying environmental
conditions.

Key words: sensory-motor integration; gain modulation; coordinate transformation; arbitrary visuomotor remapping; neural coding;

basis functions; neural network

Introduction
If somebody suddenly holds your hand, your reaction may vary
dramatically depending on whether the person who touches you
is a nurse taking your pulse, a son grabbing your attention, or a
stranger with unknown intentions. Clearly, the impact of a per-
ceived stimulus depends on other concurrent stimuli, recent and
distant events, and current motivations and goals (Drea, 1998;
Platt and Glimcher, 1999; Handel and Glimcher, 2000; Wise and
Murray, 2000; Hobin et al., 2003). How is all of this context
information combined and used to influence motor behavior?
A generic way by which the nervous system integrates infor-
mation from various modalities or sources is through changes in
gain (Andersen et al., 1997; Salinas and Thier, 2000; Salinas and
Abbott, 2001; Salinas and Sejnowski, 2001). Neurons with so-
called “gain fields” react to certain sensory stimuli, but their over-
all responsiveness varies as a function of some modulatory pa-
rameter, which does not affect their selectivity. Many cases of
gain-modulated (GM) responses have been documented, and
theoretical work has shown that, in general, they are useful for
performing coordinate transformations (Zipser and Andersen,
1988; Andersen et al., 1993; Salinas and Abbott, 1995, 1997;
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Pouget and Sejnowski, 1997; Deneve and Pouget, 2003). For in-
stance, eye-centered visual receptive fields that are gain modu-
lated by the direction of gaze can give rise to body-centered re-
ceptive fields downstream (Zipser and Andersen, 1988; Salinas
and Abbott, 1995, 1997; Pouget and Sejnowski, 1997). However,
previous models and neurophysiological experiments have fo-
cused almost exclusively on modulation by internal or proprio-
ceptive signals, such as gaze direction (Andersen and Mount-
castle, 1983; Andersen et al., 1985, 1990; Brotchie et al., 1995), eye
or head velocity (Snyder et al., 1998; Shenoy et al., 1999), arm
position (Buneo et al., 2002), or attentional location (Connor et
al., 1997; McAdams and Maunsell, 1999; Treue and Martinez-
Trujillo, 1999), which are directly combined with spatial sensory
information to produce a change in reference frame (Andersen et
al., 1993; Pouget and Snyder, 2000; Salinas and Thier, 2000; Sali-
nas and Abbott, 2001).

This study suggests that the nervous system might generalize
this strategy to situations in which the transformation is more
abstract and depends on arbitrary context signals that contain no
intrinsic spatial value. For example, consider a musician who can
play the flute and the violin; the stimulus is the score of a tune.
While playing, the printed notes are translated into finger and
mouth movements that are specific for each instrument. In
switching instruments, the functional connectivity between visual
and motor networks in the brain changes drastically and almost
instantaneously. The contextual input does not shape the sensory-
motor map, however; it simply identifies the correct one. That is,
context indicates which instrument to play but not how to play it.

To establish a clear link with possible neurophysiological ex-
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periments, the results are presented here in terms of a hypothet-
ical remapping task that requires the same type of sensory-motor
flexibility just discussed but is well suited for experimental work
with awake primates. The computer simulations presented here
show that a network with sensory neurons that are gain modu-
lated by context cues can solve this task efficiently.

Materials and Methods

All simulations were performed using Matlab (The Mathworks, Natick,
MA). The code is available on request.

Visuomotor task. The task used to investigate the remapping problem is
schematized in Figure 1. In any trial of this task, 1 of 16 stimuli (Fig. le)
is presented, and the subject has to classify it. There are four possible
response targets, and the chosen class is indicated by an eye movement
made toward one of the targets. Crucially, there are five task conditions,
four that generate unique maps between stimuli and responses plus an
additional no-go condition in which a stimulus is presented but no
movement is made. The condition that applies in each trial is indicated
by a separate nonspatial cue, the color of the fixation spot, which acts as
the context.

Network architecture. The network that simulates the task has two
layers. The first contains GM neurons, and these drive a second layer of
output or motor neurons through a set of connections. Each GM unit
makes contact with all output units. In each trial of the task, the GM
neurons are activated by the sensory and context signals, and a move-
ment is generated by the output neurons. For this, the profile of activity
of the output neurons should have a single peak indicating the location
(or direction) of the movement to be made. Note that the temporal
development of the task is not modeled, just the sensory-motor associa-
tions.

GM responses. The GM neurons respond to the stimuli, but their se-
lectivity for individual features, including length, color, and orientation,
is not modeled explicitly. A particular stimulus is simply a label between
1 and 16 that evokes a certain amount of activity in each GM unit.
Although actual neuronal responses typically vary smoothly as functions
of single sensory features, this is a reasonable simplification when only a
few stimuli are selected from a vast, multidimensional feature space, as in
the present task.

The stimulus is indicated by x, which takes integer values from 1 to 16.
The context or condition is indicated by y, which takes integer values
from 1 to 5. The mean firing rate, r;, of GM unit j depends on x and y, and
is written as follows:

rj = rmaxﬁ(x)[l -D+ Dg](}’)] + B> (1)

where f,(x) and gi( y) are functions that vary between 0 and 1, B is a
baseline rate equal to 4 spikes/sec, r,,,, = 35 spikes/sec, and D is the
modulation depth. Throughout this study, D = 0.5, which produces a
maximum contextual suppression of 50%. To include neuronal variabil-
ity, Gaussian noise is added independently to each GM response in every
trial of the task. The noise is multiplicative: the variance of the noise for
unit j is equal to ar; (see Fig. 4 legend).

The gain functions g( y) take five values, one for each task condition.
These values are gj( ) =11, 0.8, 0.5, 0.3, 0}. Crucially, they are assigned
randomly to each of the five conditions, with a new random permutation
for each GM unit. As a final step, the g y) values are jittered by small
random amounts. In this way, context affects each GM neuron differ-
ently. The tuning functions f;(x) are generated using the same procedure
but different numbers. First, 16 preset values between 0 and 1 are gener-
ated. Second, for each unit j, these are dealt randomly to the 16 stimuli,
with a different permutation for each GM neuron. Finally, random jitter
is added to each f{(x). This guarantees that there is no topography, and
that all neurons have different tuning functions.

Output responses. The firing rate R; of output unit i is calculated
through a weighted sum of GM rates:

R;= E Wity (2)
J
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where w;; represents the synaptic connection from GM neuron j to out-
put neuron i. This expression is used when the GM neurons drive the
output neurons. However, there is also an intended or desired response
for each output neuron, F;(x,y), which is used only when setting the
connections:

[T(xy) — ol ,
— fy#5
B ify=5

» (3

where y = 5 is the no-go condition, o = 0.35 and c;,, the preferred target
location of unit 7, varies uniformly between —3 and 3. The intended
output profile of activity is obtained by plotting the above expression as a
function of ¢;. In go trials, this corresponds to a Gaussian profile that
peaks at T(x, y), which is the target location (—2, —1, +1, or +2) that
corresponds to the correct classification of stimulus x in condition y (see
Fig. 1). In no-go trials, all output neurons should keep firing at the
baseline rate B. The number of output units is always 30. The center of
mass of the output activity T, is interpreted as the encoded target
location, and is given by:

E,‘(Ri - B)g
Tou = m (4)

The error is equal to T(x, y) — T, and is computed in go trials only.
Synaptic weights. The connections to any given output neuron are
chosen so that they minimize the average squared difference between
intended and driven responses. To simplify the notation, consider only
one output neuron with driven response Ej w; r;and intended response
F(x, y). The row vector w contains all of the connections to this chosen

postsynaptic neuron, and the optimal values are given by:

w=LC", (5)

where
Ci= (1) (6)
L= (F(x, y)ri). (7)

Here, angle brackets indicate an average over all values of xand y and over
multiple trials, and C ~1is the inverse of the correlation matrix C. This
inverse (or the pseudoinverse) is found numerically. To compute the
above averages, all GM rates are evaluated using Equation 1 plus the noise
terms. Because the noise is multiplicative and uncorrelated across neu-
rons, it contributes an amount «(r;) to each diagonal element C;;. The
connections to other output units are computed in the same way, with
different w vectors but the same matrix C .

Additional modifications. The basic model just described is also tested
with four additional manipulations. The first is to make the tuning and
gain functions binary, which restricts the mean GM responses to three
values. That is, the five gain factors for neuron j are now gj( y)=1{L, 1,1,
0, 0}, again with a random permutation for each neuron. Similarly, ﬁ(x)
consists of n ones and 16 — n zeros, randomly permuted. Under these
conditions, Equation 1 can generate only three rates: 7, .. + B, 7,,,..(1 —
D) + B, and B. Performance in the simulations depends on n, which
determines the frequencies of the three rates.

The second manipulation is to use correlated instead of independent
noise. The response of GM unit j is equal to r; + g;y;, which is the sum of
the mean rate plus a noise term; a; is the SD of the response, and Y is
drawn from a Gaussian distribution with zero mean and unit variance,
thatis, (y;) = 0 and (y}) = 1. The key to generating correlated samples is
to determine the matrix of desired correlation coefficients, which has
entries (7y;y;). All elements along the diagonal are equal to 1. Off the
diagonal, when samples are drawn independently, (¥;y,) = 0. When all
pairs are equally correlated, (;y,) = p, and when correlations are pro-
portional to the overlap between response curves:

<(”j - <7’j>)(rk =)
(= )N (e = ()Y

(vive =p (8)
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where p measures the correlation strength and is between 0 and 1. Given
this matrix, correlated samples can be obtained, for instance, by calling
the Matlab function mvnrnd. Although noise correlations can also be
included in the calculation of synaptic weights, this makes little differ-
ence; thus, results are reported using the unmodified method described
above.

In the third manipulation, the GM cells combine sensory and context
signals linearly. In this case, the mean firing rate of GM cell j is given by:

T'max

r= 22150 + g()] + B, (9)

instead of Equation 1.
Finally, an alternative nonlinear interaction between stimulus and
context is implemented by substituting Equation 1 with:

17 = rmu((1 = D) fi(x) + D[ fi(x) + gi(y) — 11,) + B,

where the brackets indicate rectification; that is, [x] . = max{0,x}. In
each case, everything else is as in the original simulations.

Results

The model network performs the visuomotor task shown in Fig-
ure 1. In each trial, the GM neurons respond to the sensory and
context signals and drive a set of output or motor neurons, which
then generate an eye movement.

The responses of two representative GM units are displayed in
Figure 2, a and c. The plots show the firing rates evoked by each
stimulus, with different colors corresponding to different task
conditions or contexts. The cells respond more strongly to some
stimuli than to others, and their preference order is different. In
Figure 2a, the three most effective stimuli are 9, 14, and 10,
whereas in Figure 2b, they are 3, 15, and 2. In the network, the
preference sequences are set randomly, so each cell ends up with
a random stimulus—response curve, or tuning curve, that is
unique. However, note that these tuning curves have the same
shape for the five modulatory conditions. This is crucial and
reflects the key assumption that context influences the sensory
responses by changing their gain; thus, the five curves differ only
in their amplitudes. Indeed, this is achieved by modeling each
GM response as a product of two factors, one that depends only
on the stimulus and another that depends only on the condition
(see Materials and Methods). In this way, context affects the over-

(10)

mn-tll.'b

Visuomotor remapping task. The sequence of events in each trial is as follows: a stimulus (bar) is presented while the
subject stares at a fixation point (colored dot); the stimulus disappears; four targets appear (gray dots), and the subject classifies
the stimulus, indicating his choice with an eye movement (horizontal arrow) toward one of the targets. The stimulus feature being
classified and the correspondence with the targets are cued by the color of the fixation spot. , In condition 1, the fixation spot is
magenta, the classification criterion is orientation, and left and right proximal targets are used for horizontal and vertical bars,
respectively. b, In condition 2, the fixation spot is orange, and stimuli are classified by orientation, as in condition 1( a) but with the
targets reversed. ¢, In condition 3, the fixation spot is cyan, the classification criterion is color, and left and right eccentric targets
are forred and blue bars, respectively. d, In condition 4, the fixation spotis green, and stimuli are classified by color, asin condition
3(¢), but with the targets reversed. Condition 5 is no-go (data not shown; yellow spot); a stimulus is presented but no movement
is made. Arrows indicate correct movements. e, Stimuli, numbered 1-16, that may be used in the task. The model requires 16
items that, like these, are distinct but has no knowledge about their individual features (see Materials and Methods).
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all responsiveness of the neuron but not its
selectivity, which is the defining feature of
gain modulation (Salinas and Thier, 2000;
Salinas and Abbott, 2001; Salinas and Se-
jnowski, 2001). Plotting the GM responses
in the format of Figure 2, b and d, is an
alternative way to reveal gain variations
(Fig. 2 legend) (McAdams and Maunsell,
1999). Another important feature of the
GM units is that the order in which they
prefer the five conditions is set randomly,
so it is also different for each cell (see Ma-
terials and Methods).

The firing rate of each output neuron in
the model is determined by a weighted
sum of GM rates in which the weights rep-
resent synaptic connections. The output
population is meant to encode the location
of a target for an impending movement.
Thus, in every go trial, the evoked profile
of activity should have a single peak indi-
cating the correct target location, which
depends on the stimulus and the context of
that trial. In the no-go condition, however, all output responses
should stay at their low baseline level, so the profile should be flat.
The connections that achieve all of this as best as possible are
found through an optimal algorithm (see Materials and Meth-
ods). This algorithm is run only once; afterward, the synaptic
weights are not adjusted any further.

Having specified the GM tuning curves and the network con-
nections, the model is tested in a series of trials of the task. Each
trial proceeds by (1) choosing a stimulus and a context, (2) gen-
erating all GM responses (Eq. 1), (3) calculating the driven, out-
put firing rates (Eq. 2), and (4) calculating the center of mass of
the output activity (Eq. 4), which is taken as the encoded target
location. Finally, the encoded location is compared with the lo-
cation that should have been reached given the stimulus and the
condition. It is important to note that noise is added to all GM
responses in each trial of the task (see Materials and Methods).
This is to simulate neuronal variability and evaluate the robust-
ness of the model.

Figure 3 illustrates the behavior of the full model in four single
trials. Here, 30 output neurons are driven by 864 GM units. The
GM responses are color coded and, for graphical purposes, are
ordered according to preferred stimuli. There is no single focus of
intense activity, only a diffuse band. This is because the neurons
preferring, for example, stimulus 8 are clustered together, but the
neurons that have stimulus 8 as their second or third preferred
stimulus are randomly scattered. The output neurons, ordered by
their preferred target locations, are meant to produce a peak of
activity at either of four points, —2, —1, +1, or +2, which cor-
respond to the four response targets in the task (Fig. 1). In some
trials, there is a clear single peak of activity at or very near the
proper target location (Fig. 3a,b). In other trials, secondary peaks
are evident (Fig. 3¢). These arise because of the noise added to the
GM responses; they entirely disappear with zero noise. Their ef-
fect is to shift the center of mass, increasing the error. Overall,
however, the model performs accurately, because the encoded
target location (red vertical line) is typically very close to the
intended one (black vertical line) for all combinations of stimulus
and condition.

The model also performs correctly in the no-go condition; the
profile of output responses is approximately flat, with rates close

T
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Figure 2.  Responses of model GM neurons. a, Mean firing rates evoked by each of the 16

stimuli for one GM unit. Each color corresponds to a task condition. The preferred condition of
this neuronis orange. b, Same data asin a, but plotting the firing rates in the preferred condition
on the x-axis and the firing rates in the nonpreferred conditions for the corresponding stimuli on
the y-axis. Because the rates in preferred and nonpreferred conditions are proportional, the
resulting points lie along straight lines. ¢, d, Asin a and b, but for a different model neuron, the
gain of which is maximal in the green condition. Firing rate units are spikes per second.
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Figure 3.  Network performance in single trials. Left column shows all 864 GM responses,
color coded and sorted (for display purposes only) according to their most effective stimuli.
Right column shows all 30 output responses arranged by their preferred target locations. g, Trial
with stimulus 4in condition 1. Black and red vertical lines indicate intended and encoded target
locations, respectively; error is —0.05 (arbitrary distance units). b, Trial with stimulus 4 in
condition 2; error is 0.02. ¢, Trial with stimulus 12 in condition 3; error is —0.36. d, Trial with
stimulus 12in condition 5 (no-go). The rms error averaged overall stimuliand go conditions was
0.22. Response units are spikes per second.
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to the baseline firing level (Fig. 3d). This can be quantified by
measuring the highest firing rate of all motor neurons in go ver-
sus no-go trials. For the network of 864 GM neurons, in no-go
trials the maximum rate was on average 8.9 * 2.5 (SD) spikes/sec,
whereas in go trials, it was 35.6 * 4.2 spikes/sec. Also, without
noise, the profile of output responses was perfectly flat.

The accuracy of the network in go trials depends on the vari-
ability of the GM neurons. That is, the difference between correct
and encoded target locations (the error) increases with noise. In
the simulations in Figure 3, the variance of the noise of each unit
was equal to the mean response of the unit, and the ensuing root
mean square (rms) error was 0.2 (the average error was practi-
cally 0, because positive and negative deviations were equally
likely); for reference, recall that the maximum separation be-
tween targets is 4 units. One way to measure the robustness of the
model with respect to noise is to plot the rms error as a function
of the number of GM neurons, N, as in Figure 4a. The error
decreases sharply (faster than 1/V/N) indicating that noise is what
limits the performance of the network. In accordance, when no
noise was added, the error was virtually zero. The performance of
the network can also be quantified by considering a trial success-
ful whenever the encoded target location is within a certain fixed
distance from the proper target. In this way, a percentage of
incorrect classifications or incorrect movements can be mea-
sured. This classification error also drops sharply with network
size (Fig. 4b).

Discussion

The model presented here achieves drastic, context-dependent
changes in functional connectivity, which is a way of folding
multiple networks, each rendering a specific sensory-motor map,
into one. The underlying mechanism is the same as that proposed
for performing coordinate transformations from one reference
frame to another (Zipser and Andersen, 1988; Andersen et al.,
1993; Salinas and Abbott, 1995, 1997; Pouget and Sejnowski,
1997; Deneve and Pouget, 2003) and has the great advantage that
the output neurons can read out the correct maps using a simple
algorithm, a weighted sum. However, three novel results stand
out. First, previous modeling studies typically aimed to combine
a modulatory quantity with some feature of a stimulus. The clas-
sic example is adding eye position to stimulus position in retinal
coordinates to obtain the location of the stimulus in head-
centered coordinates (Zipser and Andersen, 1988; Salinas and
Abbott, 1995; Pouget and Sejnowski, 1997). In contrast, here, the
stimuli and modulatory cues do not need to be related or com-
bined in any particular way. Second, no sensory topography is
required. Variants of the model in which the GM responses
change smoothly across the population or across stimuli also
work, and this smoothness is important for generalization, that
is, for correctly classifying novel, unseen stimuli (data not
shown). However, it is not strictly necessary for selecting among
previously learned maps, as this model does. Finally, the dramatic
changes in motor activity can be driven by relatively subtle vari-
ations in the firing of the GM cells: the maximum decrease in a
GM rate between two conditions was 50% (see Materials and
Methods), and the average decrease was ~25% (Fig. 3, compare a
and b). These numbers are well inside the range of experimental
values reported for modulatory variables such as attention (Con-
nor et al, 1997; McAdams and Maunsell, 1999; Treue and
Martinez-Trujillo, 1999).
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tional to the overlap between response
curves (Eq. 8), a more plausible situation.

1.6 1 3294 NS S .
& In a real biological circuit, correlations
T could still conspire to limit the accuracy of
0.4 e 247 A
o the maps, but the results suggest that the
o - ® A L .
~ Qc A distributed nature of the network makes it
[0 ® o 16 4 . .
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= =3 84° “ eral, in that it works with many other
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0 locesolasancaibss key is the joint sensory—contextual repre-
0.006 ! 4 i " 4 y ) sentation; the GM neurons act as basis
450 900 1800 3600 7200 450 900 1800 3600 7200 functions from which other, arbitrary
GM neurons GM neurons functions of stimulus and context can be
constructed (Poggio, 1990; Pouget and
Figure 4.  Task performance as a function of network size and response variability. a, rms error versus the number of GM Sejnowski, 1997; Pouget and Snyder, 2000;

neurons in the network; note log scales. For each GM unit, the variance of the noise was equal to « times the mean response (see
Materials and Methods). The three curves correspond to different noise levels: o« = 0.25 (squares); o = 1 (circles); and o = 4
(triangles). Noise was uncorrelated across neurons. Straight lines are fits to the data above 800 GM neurons; slopes are approxi-
mately —1. b, Percentage of incorrect classifications versus the number of GM neurons, for the same simulations in a (note
log-linear scales). A trial was deemed incorrect if the encoded target location was >0.5 U away from the correct target. Filled

symbols correspond to the network used in Figure 3.

Robustness and generality of the model

The behavior of the model is highly insensitive to many details of
its implementation; other parameter choices, tuning curves, and
gain functions produce essentially the same results. For example,
instead of using the full range from 4 to 39 spikes/sec as in Figure
2a, the average GM responses can be restricted to only three
possible rates, 4, 21.5, and 39 spikes/sec (see Materials and Meth-
ods). This apparently harsh manipulation may shift the curves in
Figure 4a up or down by a factor of 2, depending on the relative
frequencies of those rates, but it preserves the inverse relationship
between error and network size (with the same slopes). There-
fore, the qualitative behavior of the network is unchanged.

One aspect of the model that could be refined for achieving
higher accuracy is the output layer. In particular, recurrent con-
nections between output units could be used to reinforce and
smooth the unimodal profile of activity, eliminating secondary
bumps like those in Figure 3, a—c (Salinas and Abbott, 1996;
Deneve et al., 1999). This could be achieved with a simple center-
surround organization and would make the readout performed
by this layer optimal (Deneve et al., 1999). Although significant,
the difference would again be quantitative.

However, there is one factor that can potentially generate a
minimum rms error that cannot be eliminated: the presence of
noise correlations (Zohary et al., 1994). These arise when the
firing rates of pairs of neurons tend to fluctuate together across
identical trials. Their impact depends not only on their strength
and distribution across a population but also on how the neuro-
nal responses are combined postsynaptically (Abbott and Dayan,
1999; Romo et al., 2003). In the best-case scenario, the common
noise is cancelled, producing an increase in performance. In the
worst-case scenario, part of the common variability remains, re-
gardless of network size, and thus a hard limit is imposed. In the
model, introducing a constant correlation coefficient of 0.15 (see
Materials and Methods) (Zohary et al., 1994; Romo et al., 2003)
between all pairs of GM neurons resulted in slightly smaller rms
errors. This is because each postsynaptic neuron combines many
GM rates with positive and negative weights, so the fluctuations
tend to average out. Stronger correlations and mixtures of posi-
tive and negative values led to similar results. Smaller errors were
observed even when each correlation coefficient was propor-

Ben Hamed et al., 2003). There are two
important aspects to this: the GM array
must span all relevant combinations of
sensory stimuli and modulatory signals,
and the joint encoding of sensory and
modulatory influences must be nonlinear
(Salinas and Abbott, 1995, 1997; Pouget
and Sejnowski, 1997; Deneve and Pouget, 2003). This last condi-
tion was verified in two ways. When the multiplication of
sensory- and context-dependent terms that determines the GM
firing rates was substituted with a simple addition (Eq. 9), all
mappings failed miserably. For the network in Figure 3, the rms
error went from 0.22 to 1.6, and the classification error increased
from 3 to 94%. In contrast, when the multiplication was substi-
tuted with a rectification of the sum (Eq. 10), the rms and classi-
fication errors decreased slightly, to 0.19 and 1.5%, respectively.
Therefore, a perfect multiplication is not necessary. Interestingly,
however, experiments have reported neuronal interactions that
seem to approximate an exact multiplication (Brotchie et al.,
1995; McAdams and Maunsell, 1999; Treue and Martinez-
Trujillo, 1999; Pena and Konishi, 2001). This may be useful for
learning the connections between GM and motor units using
simple Hebbian mechanisms (Salinas and Abbott, 1995, 1997), so
the optimal nonlinearity may also depend on the available pro-
cedures for synaptic modification.

Experimental predictions

Various neurophysiological studies have explored changes in
neuronal properties as functions of multiple sensory cues in the
spirit of the task proposed here (White and Wise, 1999; Lauw-
ereyns etal., 2001; Wallis and Miller, 2003). Some of those results
are consistent with context-dependent variations in gain but, be-
cause the paradigms were not designed to assess this, confound-
ing factors are inevitable. To test the network model, the present
task was somewhat more complex than in actual primate exper-
iments, but it may be simplified considerably by using fewer stim-
uli and conditions as long as plots like those of Figure 2 are still
possible. Regardless of the specifics of the behavioral task, the
cleanest demonstration of the proposed mechanism would be a
pure gain effect, which would show up as a context-dependent
variation in firing intensity that leaves stimulus selectivity intact,
as in Figure 2.

However, other nonlinear interactions are certainly possible,
as documented with sensory responses that are modulated by eye
position, hand position, or eye velocity (Jay and Sparks, 1987;
Buneo et al., 2002; Ben Hamed et al., 2003). The most general
prediction of the remapping model is that neuronal responses in
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one or more cortical areas should behave as basis functions (Ben
Hamed et al., 2003), meaning that (1) most of them should mix
sensory and context signals, (2) the mixing should be nonlinear,
and (3) alinear combination of responses (Eq. 2) should perform
extremely well at reading out an arbitrary function of stimulus
and context. Whether purely multiplicative or not, such nonlin-
ear responses would extend the generality of gain modulation
and basis—function expansion as a computational strategy in the
brain (Poggio, 1990; Salinas and Thier, 2000; Pouget and Snyder,
2000) and would partly explain the great flexibility with which
higher organisms adapt their actions to current environmental
conditions.
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