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Oscillatory activity is a universal design feature of olfactory sys-
tems (Tank et al., 1994), having been demonstrated by Lord Ad-
rian in the olfactory bulb of the hedgehog �60 years ago (Adrian,
1942). Hints as to the computational role of olfactory oscillations
have only recently begun to emerge (Stopfer et al., 1997; Teyke
and Gelperin, 1999; Nusser et al., 2001) (but see Fletcher et al.,
2005). The effort to understand the role of olfactory oscillations is
aided by insights from computational models of olfactory net-
works incorporating realistic dynamics at the cellular and net-
work levels (Linster and Cleland, 2001; Davison et al., 2003;
Ermentrout et al., 2004; Sivan and Kopell, 2004; Bazhenov et al.,
2005; Galan et al., 2005; Migliore et al., 2005). I will review some
of the major issues we face in attempts to understand the compu-
tational and behavioral roles of olfactory oscillations (Gelperin,
1999), in the context of more general efforts to understand cor-
tical oscillations in a variety of sensory processing and motor
control pathways (Salinas and Sejnowski, 2001; Buzsaki and
Draguhn, 2004; Borgers et al., 2005; Mann and Paulsen, 2005;
Schnitzler and Gross, 2005).

What is being measured?
Coherent oscillatory activity in olfactory networks is expressed in
both periodic transmembrane potential fluctuations (Margrie
and Schaefer, 2003; Balu et al., 2004; Hayar et al., 2004a) and local
field potential (LFP) measurements (Gelperin and Tank, 1990;
Dorries and Kauer, 2000), if permitted by the geometrical and
electrotonic properties of the neurons experiencing rhythmic
transmembrane events (Hubbard et al., 1969; Harris et al., 2000).
A major contributor to the local field potential fluctuations is
coherent synaptic activity within a local population of neurons.
In the case of the olfactory bulb, the reciprocal synaptic connec-
tions between mitral and granule cells give rise to oscillatory local
field potentials in the 40 –100 Hz (gamma) range mainly because
of synaptic currents in granule cells (Neville and Haberly, 2003).
It is now clear that the gamma band is composed of two distinct
components that predominate in different behavioral states (Kay,
2003). Local field potential oscillations in the beta frequency
range (15– 40 Hz) result from reciprocal synaptic interactions
between the olfactory bulb and the piriform cortex (Neville and
Haberly, 2003). The relative prominence of beta and gamma os-
cillations is dramatically altered during the progress of learning
new meanings for an odor cue (Ravel et al., 2003). These studies

also make clear the critical importance of measurements made in
the awake behaving animal during odor-guided decision making
as an essential adjunct to studies in anesthetized animals and
olfactory bulb slice preparations.

A comparative perspective
A comparative perspective on olfactory information processing
has identified a set of 14 design features and circuit properties
found across wide swaths of the phylogenetic tree (Hildebrand
and Shepherd, 1997; Gelperin, 1999). These include a critical role
for local inhibitory interneurons in shaping network dynamics
(Gelperin and Tank, 1990; Lagier et al., 2004; Murphy et al., 2005;
Saghatelyan et al., 2005), spontaneous or odor-induced oscilla-
tory activity (Adrian, 1942; Tank et al., 1994; Delaney and Hall,
1996; Nikonov et al., 2002; Lam et al., 2003; Ravel et al., 2003),
changes in odor representations attributable to learning in the
first stage of central odor processing (Freeman and Schneider,
1982; Kimura et al., 1998; Sandoz et al., 2003; Daly et al., 2004;
Martin et al., 2004; Wilson et al., 2004; Kirino et al., 2005), addi-
tion of new circuit elements during postpartum odor experience
(Mair et al., 1982; Zakharov et al., 1998; Beltz and Sandeman,
2003; Saghatelyan et al., 2005), evidence for spatial segregation of
related odor representations (Friedrich and Korsching, 1997;
Kimura et al., 1998; Mori et al., 1999; Galizia and Menzel, 2000;
Luo and Katz, 2001; Wang et al., 2003; Johnson et al., 2005),
temporal evolution of odor representations (Laurent et al., 2001;
Lei et al., 2004; Szyszka et al., 2005; Zochowski and Cohen, 2005),
role for both chemical and electrical coupling between network
elements (Friedman and Strowbridge, 2003; Zhang and Restrepo,
2003; Ermentrout et al., 2004; Christie et al., 2005), control of
network dynamics and plasticity by nitric oxide (NO) (Kendrick
et al., 1997; Gelperin et al., 2000; Collmann et al., 2004; Fujie et al.,
2005; Korneev et al., 2005), synchronization of odor-responsive
output neurons (Laurent, 2002; Brody and Hopfield, 2003;
Christensen et al., 2003; Friedrich et al., 2004; Hayar et al.,
2004b), use of coupled burster neurons to enhance network re-
sponses (Ermentrout et al., 2001; Hayar et al., 2004b), continual
turnover of receptor cells (Chase and Rieling, 1986; Farbman,
1994), receptor neurons map to glomeruli based on receptor gene
expression (Vosshall et al., 2000; Wang et al., 2003; Buck, 2004;
Zou et al., 2004), afferents interact with relay neurons in glomer-
uli (Chase and Tolloczko, 1986; Galizia et al., 1999; Wachowiak et
al., 2004), and expression of speed–accuracy tradeoff (Ditzen et
al., 2003; Uchida and Mainen, 2003; Abraham et al., 2004; Khan
and Sobel, 2004; Friedrich, 2005). This set of features may be
incomplete but nevertheless serves to highlight the functional
analogies found in a very diverse set of olfactory information
processing systems.

The comparative approach reflected above takes seriously the
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notion that not only olfactory information processing but also
human diseases, learning, and other cognitive functions can be
fruitfully studied in both mammalian and nonmammalian spe-
cies (Kazemi-Esfarjani and Benzer, 2002; Barco et al., 2003; Bo-
nini and Fortini, 2003; Greenspan and van Swinderen, 2004).
Given this perspective, it is now useful to look at a particular set of
molluscan olfactory systems and see in more detail how they
illuminate general issues of the functions of olfactory oscillations.

Molluscan model systems
“For many problems there is an animal on which it can be most
conveniently studied.” —August Krogh

The terrestrial pulmonate mollusks epitomize Krogh’s princi-
ple (Krebs, 1975) for the study of olfactory information process-
ing and in particular the computational role of cellular and net-
work oscillations in olfaction (Gelperin, 1999; Chase, 2002;
Kirino et al., 2005). The terrestrial slugs and snails are dominated
by olfaction for orientation, nutrition, and reproduction. This
macrosmatic lifestyle is reflected in the dedication of most of the
neurons in the CNS (�10 4) to the processing of olfactory infor-
mation (Chase, 2000). There are two major olfactory processing
structures: the digitate ganglion at the superior tentacle tip right
behind the nose (Ito et al., 2000) and the procerebral (PC) lobe in
the CNS. The PC lobe receives both first-order input from olfac-
tory receptors and second-order input from the digitate ganglion
(Chase and Kamil, 1983; Murakami et al., 2004).

Oscillatory LFPs are recorded from both the digitate ganglion
(Ito et al., 2004) and the PC lobe (Gelperin and Tank, 1990;
Kawahara et al., 1997; Nikitin and Balaban, 2000). In the PC lobe,
activity waves are initiated at the apical pole and propagate to the
base at 1.1 mm/s (Delaney et al., 1994; Toda et al., 2000; Wa-
tanabe et al., 2004). At a stationary LFP recording site, the re-
corded oscillation (0.7 Hz in vitro) corresponds to the passing
front of the activity wave. Recordings of PC lobe activity in intact
behaving slugs implanted with fine-wire electrodes show periods
of 0.7 Hz oscillation interspersed with periods of complex multi-
component activity (Cooke and Gelperin, 2001). Optical record-
ings of the PC lobe wave activity during odor stimulation of the
nose show a momentary collapse of the activity wave (Kleinfeld et
al., 1994), which is hypothesized to allow nearest-neighbor inter-
actions suppressed by the traveling wave activity (Ermentrout
and Kleinfeld, 2001). Activity waves have also been recorded
from an in vitro preparation of the ferret thalamus (Kim et al.,
1995) and from turtle visual cortex (Prechtl et al., 2000; Robbins
and Senseman, 2004).

The LFP oscillations and activity wave in the Limax PC lobe
arise from intrinsic neuronal properties and network connec-
tions among a population of bursting inhibitory interneurons,
called B cells (Fig. 1) (Watanabe et al., 1998; Wang et al., 2001).
These cells are connected by both chemical and electrical syn-
apses (Ermentrout et al., 2004) and show a gradient of excitability
with apical B cells most excitable (higher burst rate), accounting
for normal initiation of the activity wave at the apical end in the in
vitro preparation (Ermentrout et al., 1998). The gradient of B-cell
excitability is attributable to a spatial gradient in the amplitude of
chloride-dependent depolarizations in B cells (Watanabe et al.,
2003). Activity waves occupy the full width of the PC lobe, most
likely attributable to the rapid lateral conduction speed of activity
in varicose B cells compared with the apical– basal conduction
speed of activity in smooth B cells (Wang et al., 2001). The band-
like conduction of activity along the apical– basal axis of the PC
lobe is related to the band-like storage of learned odor represen-
tations in the PC lobe (Kimura et al., 1998; Teyke et al., 2000).

Modification of PC lobe cell properties by learning reflects the
general finding that learning affects odor representations in the
earliest stages of odor processing (Kay and Laurent, 1999; Wilson
et al., 2004).

The excitability of B cells is modulated by NO (Gelperin,
1994). Suppression of NO synthesis shuts down the LFP oscilla-
tion and wave propagation in the PC lobe (Gelperin et al., 2000).
Suppression of NO synthesis in the behaving snail (Teyke, 1996)
or slug (Sakura et al., 2004) blocks fine odor discrimination or
odor learning. These observations of degraded odor processing
and odor learning after inhibition of NO synthesis are paralleled
by findings in ewes (Kendrick et al., 1997), honeybees (Müller,
1996; Hosler and Smith, 2000), the predatory snail Euglandina
(Clifford et al., 2003), mice (Okere et al., 1996), and rats (Sa-
mama and Boehm, 1999). The relationship between nitric oxide
and synaptic plasticity has been reviewed recently (Susswein et
al., 2004).

Computational implications of olfactory oscillations
Recent work has explored the computational utility of synchro-
nous activity in a group of neurons coding stimulus identity, with
direct relevance to olfaction (Brody and Hopfield, 2003; Hopfield
and Brody, 2004). Part of the mechanism to enhance synchro-
nous activity is a shared membrane potential oscillation (Margrie
and Schaefer, 2003), which may result in an oscillation of LFP,
depending on geometrical and electrotonic properties of the cells
showing the coherent changes in membrane potential. Olfactory
interneurons can show odor-elicited synchronous activity not
phased to the oscillating LFP (Christensen et al., 2003).

The temporal evolution of activity in the group of synchro-
nously active interneurons can result in distinct temporal pat-
terns within the odor-responsive population (Stopfer and Lau-
rent, 1999; Christensen et al., 2003). As the pattern of activity
evolves in time, sparsening of the representation can reduce the
overlap of patterns set up by closely related odors (Friedrich et al.,
2004; Szyszka et al., 2005). The amplitude and regularity of the
LFP oscillation also shows a temporal evolution after odor onset,
typically becoming larger and more regular in the first several

Figure 1. Diagram of the intrinsic circuitry of the Limax PC lobe. The intrinsic excitability of
the B cells is highest on the left and decreases moving to the right. The B cells are connected by
both chemical and electrical synapses. Each B cell connects with and inhibits�100 nonbursting
(NB) cells, only three of which are shown in the diagram. The processes of the B cells are confined
to the cell body layer of the PC lobe, whereas the neurites of the NB cells project into the neuropil
layer in which they receive synapses from olfactory afferents and second-order neurons in the
digitate ganglion (data not shown). The NB cells also synapse in the neuropil with the neurites
of output neurons whose somata are located in the pedal and buccal ganglia (Gelperin and
Flores, 1997) and in the metacerebrum (Ratté and Chase, 2000; Shimozono et al., 2001).
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hundred milliseconds after stimulus onset. There are also
history-dependent effects such that a series of closely spaced odor
stimuli result in successive epochs of oscillatory responses, with
sharper LFP oscillation patterns triggered at shorter latency over
the first three odor stimuli (Stopfer and Laurent, 1999). These
events provide an opportunity to determine whether the latency
for odor identification shows a parallel decrease in latency over
the first three odor pulses, as measured by latency to emit a con-
ditioned response (Daly et al., 2004; Yu et al., 2004).

The Limax olfactory system allows the causal link between the
LFP oscillation in the PC lobe and odorant-induced behavior to
be explored using an in vitro nose– brain preparation (Teyke and
Gelperin, 1999; Inoue et al., 2004). Recent work by Inoue et al.
(2004) uses the neural substrate of a response to aversive odors,
firing of an identified mantle motor neuron, to read out the be-
havioral decision made by the isolated brain in response to odor
stimulation. Previous conditioning of the animal creates an aver-
sive response to a previously attractive odor (Sahley et al., 1981),
which survives in the isolated nose– brain preparation (Teyke et
al., 2000). Application of an aversively conditioned odor to the
superior nose of the in vitro nose– brain preparation causes an
increase in LFP oscillation frequency in the PC lobe and firing of
the identified mantle motor neuron (Inoue et al., 2004). Directly
increasing LFP oscillation frequency in the PC lobe does not ac-
tivate the mantle motor neuron. It may be that the motor path-
way for the aversive mantle reflex is activated in parallel with an
increase in PC lobe LFP frequency as learning-related changes are
engaged in the PC lobe (Ermentrout et al., 2004). If the naive
nose– brain preparation can be trained in vitro while the pharma-
cology of the PC lobe is selectively manipulated, the role of the PC
lobe LFP oscillation and activity wave in odor recognition and
odor learning can be directly tested. This possibility is encour-
aged by the demonstrated learning ability of the isolated Limax
lip– brain preparation (Chang and Gelperin, 1980) along with
other isolated CNS preparations (Muhlethaler et al., 1993;
Kemenes et al., 1997; Mokin and Keifer, 2005).

Multisite network measurements
Tests of computational models of synchronous activity require
simultaneous monitoring of activity in dozens or hundreds of
olfactory interneurons to provide an adequate sample of neurons
responding to a given odor. Arrays of silicon microprobes (Chris-
tensen et al., 2000), tetrodes (Egana et al., 2005), and multiple
single-unit electrodes (D. Rinberg, A. Koulakov, A. Gelperin, un-
published observations) are beginning to provide simultaneous
access to sufficient numbers of mitral cells or projection neurons
(insect analog of mitral cells) so that spatial and temporal evolu-
tion of odor-responsive cell populations can be analyzed in detail
in the awake behaving animal. One or more electrodes in the
array are devoted to measuring LFPs so that correlations between
responding interneurons can also be indexed to a common field
potential (Wang et al., 2003).

Optical recordings in the awake head-fixed animal (Margrie et
al., 2002) have the potential to permit a behavioral readout of the
results of olfactory processing, whereas voltage- or calcium-
sensitive dyes or genetically encoded markers (Bozza et al., 2004)
sample large populations of olfactory interneurons. It will be
interesting to make these population measurements in animals
with substantially reduced olfactory processing networks that
spare significant olfactory ability (de Belle and Heisenberg, 1994;
Slotnick et al., 2004; Komischke et al., 2005).

Network perturbations to probe causality
The critical need is to test the computational role of synchronous
activity and network oscillations using selective perturbations of
central olfactory circuits while measuring odor identification and
discrimination. The experiments of Stopfer et al. (1997) suggest
that pharmacologically induced desynchronization of first-order
olfactory interneurons degrades discrimination of similar odors
but not dissimilar odors. A similar result was obtained relating
oscillations in the Limax PC lobe to odor discriminations, as
tested using an in vitro lip– brain preparation (Teyke and Gelp-
erin, 1999). The Limax experiment will be even more informative
using a newly developed in vitro nose– brain preparation, also
using motor neuron activation to index the attractive or repellent
nature of the applied odor (Inoue et al., 2004). Other perturba-
tions used to explore the causal link between olfactory circuit
function and odor-guided behavior include lesions of the olfac-
tory bulbs (Slotnick et al., 2004), genetic lesions of specific neu-
rotransmitter receptor subtypes (Nusser et al., 2001) or ionic
channel subunits (Fadool et al., 2004) in the olfactory bulb, phar-
macological manipulations of the olfactory bulbs during odor-
guided behavioral tasks (Ravel et al., 1994; Kendrick et al., 1997),
and direct electrical stimulation of the olfactory bulb in awake
behaving animals to create “electric odors” (Jirsa and Radil, 1997;
Mouly and Gervais, 2002; Roman et al., 2004). Creative use of
these and other methods for selective perturbation of olfactory
networks during their participation in olfactory computations
and the readout of the effects of these perturbations in odor-
guided behavior is critical to fully clarify the computational role
of olfactory oscillations and synchronous cellular activity during
odor processing.
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