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Abstract

Virtual reality is a powerful tool in human behaviour research. However, few studies com-

pare its capacity to evoke the same emotional responses as in real scenarios. This study

investigates psycho-physiological patterns evoked during the free exploration of an art

museum and the museum virtualized through a 3D immersive virtual environment (IVE). An

exploratory study involving 60 participants was performed, recording electroencephalo-

graphic and electrocardiographic signals using wearable devices. The real vs. virtual psy-

chological comparison was performed using self-assessment emotional response tests,

whereas the physiological comparison was performed through Support Vector Machine

algorithms, endowed with an effective feature selection procedure for a set of state-of-the-

art metrics quantifying cardiovascular and brain linear and nonlinear dynamics. We included

an initial calibration phase, using standardized 2D and 360˚ emotional stimuli, to increase

the accuracy of the model. The self-assessments of the physical and virtual museum sup-

port the use of IVEs in emotion research. The 2-class (high/low) system accuracy was

71.52% and 77.08% along the arousal and valence dimension, respectively, in the physical

museum, and 75.00% and 71.08% in the virtual museum. The previously presented 360˚ sti-

muli contributed to increasing the accuracy in the virtual museum. Also, the real vs. virtual

classifier accuracy was 95.27%, using only EEG mean phase coherency features, which

demonstrates the high involvement of brain synchronization in emotional virtual reality pro-

cesses. These findings provide an important contribution at a methodological level and to

scientific knowledge, which will effectively guide future emotion elicitation and recognition

systems using virtual reality.
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Introduction

The automatic quantification and recognition of human emotions is a research area known as

"Affective Computing", which combines knowledge in the fields of psychophysiology, com-

puter science, biomedical engineering and artificial intelligence [1]. Due to the central role

that emotions play in many background processes, such as perception, decision-making, crea-

tivity, memory and social interaction, several studies have focused on trying to obtain a reliable

methodology to evoke and automatically identify emotional states from objective psychomet-

ric measures [2]. Major exploitations of computational machines with affective intelligence

focus on healthcare, education, marketing and entertainment [3,4], as well as on environmen-

tal psychology, i.e. the study of the effect of the environment on humans [5].

Irrespective of the application, two approaches have commonly been proposed to model

emotions: discrete and dimensional models. The former proposes that there is a small set of

basic emotions, assuming that complex emotions result from a combination of these basics,

including anger, disgust, fear, joy, sadness and surprise [6]. Although discrete models are more

easily understood by the non-expert, they are strongly criticized for lacking consistency and

objective correlates (e.g. psychobiological and psychophysiological specific correlates) [7].

Dimensional models propose a multidimensional space where each dimension represents a

fundamental property common to all emotions. The “Circumplex Model of Affect” (CMA) is

one of the most used model, and refers to a Cartesian system of axes with two dimensions [8]:

valence, i.e. the pleasantness or unpleasantness of an emotion; arousal, i.e. the intensity of the

emotion in terms of activation from low to high.

To automatically classify emotions, correlates from, e.g. voice, face, posture, text, neuroimaging

and physiological signals are widely employed [9]. In particular, several computational methods

are based on variables associated with Central Nervous System (CNS) and Autonomic Nervous

System (ANS) dynamics [9]. On the one hand, the use of the CNS to automatically classify emo-

tion is justified by the fact that human emotional processing and perception involve activity of the

cerebral cortex. In this regard, the electroencephalogram (EEG) is one of the techniques most

used to measure CNS responses [10]. On the other hand, a wider class of affective computing

studies exploits ANS changes on cardiovascular dynamics as elicited by specific emotional states,

especially through Heart Rate Variability (HRV) analyses [11]. To this extent, recently proposed

emotion recognition systems exploit wearable systems [12,13], allowing physiological monitoring

in physical real-world environments through both HRV [14] and EEG [15].

Concerning the experimental emotional manipulation, the ability to reliably and ethically

elicit affective states has proven to be a challenging task [16]. Based on the nature of the stimuli

used to evoke emotional responses, two types are distinguished: active and passive. Active

methods may involve behavioural manipulation [17], social psychological methods with social

interaction [18], or dyadic interaction [19]. On the other hand, passive methods can funda-

mentally present images, sounds or films. Of note, regarding the images, the International

Affective Picture System (IAPS) is one of the most prominent databases. It includes over a

thousand depictions of people, objects and events standardized on the basis of valence and

arousal [16]. IAPS has been used in many researches as an elicitation tool in emotion recogni-

tion methodologies [11].

Although many computational models have been successfully developed in lab environ-

ments using controlled stimuli, the influence of the level of immersion of the set-up (i.e. the

objective description referring to the physical extent of the sensory information) has often

been underestimated, thus eliciting emotional experiences not similar to real-world scenarios

[20]. To overcome these limitations, researchers propose environmental-simulation technolo-

gies to replicate the experience of physical environments [21].
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At present, Virtual Reality (VR) is one of the most powerful technologies that simulate

experiences and provide the sensation of being in real situations [22]. In fact, 3D immersive

virtual environments (IVE) have successfully been applied to phobias [23], presence [24], visu-

alization technologies [25], quality of experience [26] and videogames [27]. Specifically, the

main advantages of this technology are that: i) it allows us to isolate and modify variables in an

efficient and low-cost way, something which is very difficult, or even impossible, in real envi-

ronments [28]; and ii) it allows us to analyse an environment before its construction or envi-

ronments far distant from the lab. Of note, VR can profitably be used to evoke emotions [28]

[29] and states of relaxation or anxiety [30]. Many VR researches have been performed using

desktop or semi-immersive systems such as Powerwalls or caves [31]. Nowadays, the use of

head-mounted displays (HMD) is growing due to their improved performance and decreased

price. They are fully immersive devices that isolate the user from the external world. These

devices, in fact, provoke a high sense of presence, understood as the illusion of "being-there"

[32]. Note that HMDs have two main formats for displaying IVEs: 360˚ panoramas and 3D

VR environments. 360˚ panoramas offer results closer to reality in terms of the participants’

psychological responses, while 3D VR in terms of their physiological responses [33]. In addi-

tion, 3D VR allows the user to freely interact with the environment.

The comparison between the responses evoked by physical environments and their virtual

simulations has been studied to some degree through the assessment of psychological

responses [34], cognitive performance [35] and—to a much lesser extent–physiological and

behavioural responses [36][37]. Although differences have been found, environmental simula-

tions achieve a considerable level of general validity [38]. However, in the variety of studies

undertaken, simulations have not yet been comprehensively compared with the real world in

the analysis of emotional experiences, especially by employing a thorough analysis of CNS and

ANS dynamics.

To this end, the main aim of the present study is to perform an exploratory research to

comparatively and quantitatively investigate the psychological and physiological patterns

evoked during, first, free exploration of a real art museum and, second, where they visualize a

virtualization of the museum through a 3D IVE.

To this extent, firstly, we undertake a psychological comparison, using self-assessment tests,

for both real and virtual environments. Secondly, we perform a comprehensive physiological

comparison using brain and cardiovascular linear and nonlinear dynamics to build arousal

and valence-specific classifiers. Thirdly, we analyse the inclusion of 2D (i.e. IAPS images) and

360˚ standardized emotional stimuli as a part of the calibration phase of the classifier. More-

over, at an exploratory level, we also investigate differences and similarities in psychophysio-

logical responses elicited by real and virtual environments. To this end, we develop emotion

recognition models for real vs. immersive-virtual scenario comparison to determine if the sub-

ject is experiencing a virtual or real emotional experience. Classification accuracies are gath-

ered from nonlinear Support Vector Machine algorithms and a set of EEG and HRV features

extracted using various state-of-the-art metrics. Methodological details, the experimental

results, and the discussion and conclusion follow below.

Materials and methods

Experimental design

An exploratory study was conducted in two different phases, including two prior stages using

controlled stimuli. Each stage was presented consequently (Fig 1), with signal acquisition inde-

pendently recorded. Between each stage, the subjects rested for 3 minutes, sitting on a chair.

Stage 1 consisted of showing the subjects 2D pictures based on IAPS. Stage 2 consisted of a
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360˚ panorama emotion IVE presented in an HMD. Finally, the last stage in both phases con-

sisted of the free exploration of a museum exhibition. However, in Stage 3.1, the subjects

explored a real museum exhibition and in Stage 3.2 the subjects explored the 3D virtual reality

simulation of the same exhibition. Each subject was randomly assigned to undergo either

Stage 3.1 or Stage 3.2.

The ethics committee of the Polytechnic University of Valencia approved the experimental

protocol. All methods and experimental protocols were performed in accordance with the

guidelines and regulations of the local ethics committee of the Polytechnic University of

Valencia. Written informed consent was obtained from all participants involved in the experi-

ment. In particular, the individual in this manuscript has given written informed consent (as

outlined in the PLOS consent form) to publish these case details.

Stimulus elicitation

Previous controlled stimuli. In Stage 1 we developed an affective elicitation using stan-

dardized 2D pictures. This was achieved by projecting a set of images onto a monitor (Dell

E198FPb, LCD, 19-inch, 1280x1024 @ 75Hz). At first, the users were asked to rest for 4 min-

utes while looking at a blank image (B), in order to start the exploratory study from a relaxed

status. This period was divided into: one open eye minute; one closed eye minute; one open

eye minute; and one closed eye minute. Thereafter, the affective elicitation began. We took

inspiration from the elicitation methodologies reported in previous works [10,11], with minor

changes. Briefly, the slideshow comprised of 9 image sessions, alternating neutral sessions

(from N1 to N5) and arousal sessions (from A1 to A4). The order of presentation of the images

was random. One-minute resting-state sessions (from R1 to R8) were placed between each

neutral/arousal session. Each arousal session was divided into 3 blocks of valence (from V1 to

V3). Thus, 1 block of neutral pictures and 12 blocks of non-neutral pictures were displayed.

Further details are reported in the supporting information. The overall protocol used 110

images. Each image was presented for 10 seconds for the whole duration of the experiment, 18

minutes and 20 seconds.

In Stage 2, we developed an affective elicitation using architectural environments displayed

by 360˚ panoramas implemented in a portable HMD. The stimuli had been analysed and vali-

dated in previous research [13]. This type of environment was chosen as the influence of archi-

tectural environments on affective-behavioural responses is widely accepted [39]. Previous

research shows that subtle variations in the space may generate different neurophysiological

Fig 1. Experimental phases of the research. n represents the number of subjects involved in each stage.

https://doi.org/10.1371/journal.pone.0223881.g001
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responses [40]. In addition, previous works show that the 360˚ panorama-format using HMD

devices is a valid set-up for evoking psychological and physiological responses similar to those

that physical environments evoke [25]. Hence, four architectural environments were proposed

as representative of four emotional states (Fig 2.), following the CMA [41]. The emotional

rooms were designed based on different variations of the same base-scenario, “Villa in the for-

est”, by Kazuyo Sejima [42]. The research team, which included architects, considered this an

appropriate base from which to make modifications to generate different moods. The architec-

tural parameters used to modify the base-scenario were illumination, colour and geometry.

Technically, the process of developing the four architectural environments consisted of

modelling and rendering. Modelling was performed by using Rhinoceros v5.0 (www.rhino3d.

com) and rendering was performed using the VRay engine v3.00.08 (www.vray.com), operat-

ing from Autodesk 3ds Max v2015 (www.autodesk.es). Renders were exported in .jpg format

with resolutions of 6000x3000 pixels at 300 dots per inch. The 360˚ panoramas were imple-

mented in Samsung Gear VR HMDs and the reproduction was fluid and uninterrupted. The

Samsung HMD has a stereoscopic screen of 1280×1440 pixels per eye and a 96˚ field of view,

supported by a Samsung Note 4 mobile telephone with a 2.7GHz quad-core processor and

3GB of RAM. Fig 3 shows an example of experimental set-up of Stages 1 and 2.

Regarding the protocol, each room was presented for 1.5 minutes and the sequence was

counter-balanced using the Latin Square method. After viewing each room, the users were

asked to orally self-assess the emotional state evoked by each room using a SAM questionnaire

embedded in the 360˚ photo, ranging from -4 to 4, for arousal and valence dimensions.

Physical museum exhibition. In Stage 3.1, we performed an affective elicitation using a

physical environment. An art exhibition was chosen in order to evoke an intense emotional

experience. The Institut Valencià d’Art Modern (IVAM) offered us their facilities to undertake

our study. We selected the art-exhibition “Départ-Arrivée”, by Christian Boltanski, because it

had a very emotional topic, the Nazi Holocaust. The exhibition had 5 rooms and an area of

approximately 750 m2 (Fig 4).

Fig 2. 360˚ panoramas used in stage 2.

https://doi.org/10.1371/journal.pone.0223881.g002
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The subjects were asked to explore freely the first four rooms. When they entered the fifth

room, they had also to explore it freely, but they were, in addition, required to stop and study

the three pieces of art in detail. The researcher waited for the subject at the exit door, allowing

the subject to freely explore the exhibition.

In order to track the position of the subjects, therefore being sure that she/he visited all

rooms, we used a GoPro camera, that subjects carried attached to their chests by means of a

suitable harness. The physiological signals were recording on a laptop that the subject carried

in a backpack. Fig 5 shows an exemplary experimental set-up of Stage 3.1.

After the museum exploration, the subjects were asked to complete two questionnaires. In

the first, they evaluated the emotional impact of each of the five rooms and the three pieces of

art, using a SAM questionnaire and a photo of each room. In the second, we presented two

questions to evaluate the subjective impact of the sensors: (1) “During the test, did you feel

annoyed by the sensors?”; (2) “During the test, was there ever a time when you forgot that you

were sensorized?”. The subjects who reported feeling “moderately” or “a lot” annoyed were

excluded from further analyses.

Virtual museum exhibition. In Stage 3.2, an affective elicitation was performed through

the 3D VR representation of the museum exhibition visited in phase 1. The Unity 5.1 game

engine (www.unity3d.com) was used. A three-dimensional representation of the museum

Fig 3. Example of experimental set-up of stage 1 and 2.

https://doi.org/10.1371/journal.pone.0223881.g003

Fig 4. Plan of the art-exhibition with the 5 rooms and 3 pieces of art.

https://doi.org/10.1371/journal.pone.0223881.g004
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exhibition was provided by Rhinoceros v5.0. Textures partially extracted from the physical

environment were imported to achieve maximum realism. This involved exhaustively and

methodologically drawing and photographing the entire exhibition. Exemplary photographs

of the real environment and screenshots of the virtual environment are shown in Fig 6. Further

examples are in the supporting information. Regarding the 3D VR simulation, the developed

Fig 5. Example of experimental set-up of Stage 3.1.

https://doi.org/10.1371/journal.pone.0223881.g005

Fig 6. Comparison between the physical museum (left) and the virtual museum (right). The photos represent Room 1 and Room 5.

https://doi.org/10.1371/journal.pone.0223881.g006

Analysis of psycho-physiological patterns in a free exploration of an art museum

PLOS ONE | https://doi.org/10.1371/journal.pone.0223881 October 15, 2019 7 / 24

https://doi.org/10.1371/journal.pone.0223881.g005
https://doi.org/10.1371/journal.pone.0223881.g006
https://doi.org/10.1371/journal.pone.0223881


scenario was compiled for HTC Vive (www.vive.com). This system allows visual and dis-

placement simulations. On the one hand, visualization is performed using an HMD with

2160x1200 pixels (1080×1200 per eye) and a field of view of 110 degrees working at 90Hz

refresh rate. On the other hand, displacements are performed using tracking technology, two

controllers and two base stations that, together, allow the subject to interact with their environ-

ment and physically move within an area of a 2x2 metres. Specifically, the teleport navigation

metaphor included in the HTC Vive developed tools was used, with a 2.5 metres from the sub-

ject maximum teleportation radio. It was chosen in order to achieve pseudo-naturalistic navi-

gation, allowing the subjects to take large steps. The entire system was connected to the

research PC (Predator G6, www.acer.com) via DisplayPort 1.2 and USB 3.0, running smoothly

and without interruptions. Fig 7 shows an exemplary experimental set-up of Stage 3.2.

Before starting this stage of the experiment, the subjects were placed in a neutral scenario,

which displayed only a floor, without any texture. A screenshot of this scenario is included in

the supporting information. They were asked to undertake a period of training in this place.

They could take all the time that they needed inside this scenario, until they considered their

adaptation to VR and the navigation metaphor complete. After this, the instructions for the

virtual museum exhibition were exactly the same as for the physical exhibition. The subject´s

navigation was also displayed in real time on a desktop and the researcher used this to note

when the subject arrived at the exit, in order to stop the recording and remove the HMD.

Following the exploration of the virtual museum, the subjects were asked to answer the

same two questionnaires as for Stage 3.1: (1) affective self-assessment evaluation of the rooms

and pieces of art; (2) impact of the sensors in the behaviour of the subjects. In addition, in this

phase the subjects had to answer a questionnaire about presence in the virtual museum. We

used the well-known “SUS questionnaire” [43]. Its current version consists of six items, rated

on 1-to-7 Likert scale, measuring three aspects of the subject’s senses: the experience of being

inside the simulation; the consideration of the simulation as the dominant reality; and the

memory of the simulation as a place.

Participants’ eligibility and group homogeneity

A homogeneous population of 60 healthy subjects (age 28.9 ± 5.44, 40% male, 60% female),

suffering neither from cardiovascular nor obvious mental pathologies, was recruited to

Fig 7. Exemplary experimental setup of Stage 3.2.

https://doi.org/10.1371/journal.pone.0223881.g007
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participate in the exploratory study. They were divided into 30 subjects for the first phase and

30 for the second. The following were the criteria to participate in the study: age between 20

and 40 years; Spanish nationality; not having formal education in art or a fine-art background;

not having any previous virtual reality experience; and not having previously visited this par-

ticular art exhibition.

Two questionnaires were included to ensure that the subjects were in a healthy mental state

and constituted a homogeneous group. In the first, all participants were screened by a Patient

Health Questionnaire (PHQ) [44]. Only participants with a score lower than 5 were included

in the study to avoid the presence of either middling or severe mental disorders. In the second,

a self-assessment, based on a selection of IAPS pictures [45] using the Self-Assessment Mani-

kin (SAM) [46], was administered. The presented set consisted of different degrees of arousal

and valence perception (arousal from 3.41 to 7.24; valence from 1.29 to 8.17; pictures selected:

7234, 5201, 9290, 1463, 9181, 8380, 3102, 4652).

The self-assessment values were used to analyse if any subject had an emotional response

that could be considered as an outlier with respect to standard elicitations. To this end, the

arousal and valence of each subject were standardized through a z-score using the mean and

deviation of the IAPS published scores [45]. Standardized evaluations outside of the range

-2.58 to 2.58 (i.e., α = 0.01) were designated as outliers [47]. Subjects with outliers were

excluded from further analyses, while we retained the emotional responses that belong statisti-

cally to 99% of the population as published in the IAPS. In addition, the subjects whose signal

recording experienced errors were rejected, e.g. because of disconnection of the sensors during

the elicitation. The participants had successfully to complete all the stages.

Physiological signals and instrumentation set

The electroencephalographic (EEG) and electro-cardiographic (ECG) signals were acquired

using B-Alert x10 (Advanced Brain Monitoring, Inc. USA). This provides an integrated

approach for wireless wearable acquisition, sampled at 256 Hz. Regarding the EEG, the loca-

tion of the sensors was in the frontal (Fz, F3 and F4), central (Cz, C3 and C4) and parietal

(POz, P3, and P4) regions based on international 10–20 electrode placement. A pair of elec-

trodes placed below the mastoid was used as a reference. A test was performed to check that

the impedances of the electrodes were below 20kΩ. In order to check the proper conductivity

of the electrodes, a test was performed. Concerning the ECG, the left lead was located on the

lowest rib and the right lead on the right collarbone. Data from 15 subjects out of 60 were

rejected due to poor quality.

Signal processing

Firstly, the signals were synchronized and segmented for each stage. The methodology used is

detailed in the supporting information. Then, HRV and EEG signal processing methods were

applied to extract features to characterize the physiological responses to the stimuli.

Heart rate variability. To obtain the RR series from the ECG, we implemented the Pan-

Tompkins’s algorithm for QRS complex detection. The individual trends components were

removed using the smoothness prior detrending method [48]. Artefacts and ectopic beats were

corrected through the use of Kubios HRV software [49]. From the RR series, we performed the

analysis of the standard HRV parameters in the time and frequency domains. In addition, we

included other HRV measures quantifying heartbeat nonlinear and complex dynamics [50].

Table 1 presents a list of features included.

The time domain analysis includes the following features: average and standard deviation

of the RR intervals, the root mean square of successive differences of intervals (RMSSD), the
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number of successive differences of intervals which differ by more than 50 ms (pNN50), the

triangular interpolation of the HRV histogram and the baseline width of the RR histogram

evaluated through triangular interpolation (TINN). The features of the frequency domain

were calculated using a power spectrum density (PSD), applying Fast Fourier Transform. The

analysis was performed in three bands: VLF (very low frequency, <0.04 Hz), LF (low fre-

quency, 0.04–0.15 Hz) and HF (high frequency, 0.12–0.4 Hz).

For each of the three frequency bands we calculated the peak value (corresponding to the

frequency having maximum magnitude) and the power of each frequency band in absolute

and percentage terms. Normalized power (n.u.) was calculated for the LF and HF bands as the

percentage of total power, subtracting previously the power of VLF to the total power. The LF/

HF ratio was calculated to quantify sympatho-vagal balance and to reflect sympathetic modu-

lations [50]. Moreover, the total power was calculated.

Finally, many features were extracted using nonlinear analysis, as they were shown to be

important quantifiers of cardiovascular control dynamics mediated by the ANS in affective

computing [11]. Firstly, Poincaré plot analysis was applied. It is a quantitative-visual tech-

nique, whereby the shape of a plot is categorized into functional classes, providing summary

information of the behaviour of the heart. SD1 is associated with fast beat-to-beat variability

and SD2 analyses the longer-term variability of R–R [50]. An entropy analysis was included,

using Sample Entropy (SampEn) and Approximate Entropy (ApEn). SampEn provides an

evaluation of time-series regularity [51] and ApEn detects changes in underlying episodic

behaviour not reflected in peak occurrences or amplitudes [52]. DFA correlations analyse

short-term and long-term fluctuations through the α1 and α2 features, where α1 represents

the fluctuation in range of 4–16 samples and α2 refers to the range of 16–64 samples [53].

Finally, the D2 feature measures the complexity or strangeness of the time series. This is

expected to provide information on the minimum number of dynamic variables needed to

model the underlying system [54].

Electroencephalographic signals. Fig 8 shows the complete EEG processing scheme,

which is performed using the open source toolbox EEGLAB [55].

Firstly, the data from each channel was analysed to identify corrupted channels using the

fourth standardized moment (kurtosis) along the signal of each electrode [56]. Moreover, the

channel was also classified as corrupted if the signal was flatter than 10% of the total stage

duration. If a channel was considered as corrupted, it could be interpolated from its

Table 1. List of HRV features used.

Time domain Frequency domain Other

Mean RR VLF peak Poincaré SD1

Std RR LF peak Poincaré SD2

RMSSD HF peak Approximate Entropy (ApEn)

pNN50 VLF power Sample Entropy (SampEn)

RR triangular index VLF power % DFA α1

TINN LF power DFA α2

LF power % Correlation dimension (D2)

LF power n.u.

HF power

HF power %

HF power n.u.

LF/HF power

Total power

https://doi.org/10.1371/journal.pone.0223881.t001
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neighbouring electrodes. The subject would be rejected if more than one channel was cor-

rupted. Among all of the subjects, only one channel was interpolated.

The EEG baseline was removed by mean subtraction and a band pass filter between 0.5 and

40 Hz. The signal was segmented in epochs of one-second duration. Moreover, an automatic

artefact detection was applied, rejecting epochs when more than 2 channels contained samples

which exceeded an absolute threshold of 100.00 μV and a gradient of 70.00 μV between sam-

ples [57]. The Independent Component Analysis (ICA) [58] with an infomax algorithm was

performed to identify and remove components due to blinks, eye movements and muscular

artefacts. The components were analyzed by a trained expert to identify and reject those related

to artefacts. The effectiveness of the algorithms used to detect and remove artefacts was care-

fully checked by visual inspection. The subjects who had more than one third of their signals

affected by artefacts were rejected. Spectral and functional connectivity analyses were per-

formed after the pre-processing.

An EEG spectral analysis was performed to estimate the power spectra in each epoch,

within the frequency bandwidth: θ (4–8 Hz), α (8–12 Hz), β (13–25 Hz), γ (25–40 Hz). Fre-

quency band δ (< 4Hz) was not taken into account in this study. It was performed using

Welch’s method with 50% overlapping. 36 features were obtained from the 9 channels and 4

bands. The functional connectivity analysis was performed using Mean Phase Coherence [59].

It was performed for each pair of channels in each band:

R2 ¼ E½cosðD�Þ�2 þ E½sinðD�Þ�2

Where R is the MPC, Δϕ is the relative phase difference between two channels derived by

the instantaneous difference of the analytics signals from the Hilbert transform, and E is the

expectation operator. MPC values can oscillate between 0 and 1. The MPC is close to 1 when a

strong phase synchronization exists between two channels. Alternatively, MPC is close to 0 if

the two channels are not synchronized. From each combination of a pair of 9 channels in one

Fig 8. Block scheme of the EEG signal processing steps.

https://doi.org/10.1371/journal.pone.0223881.g008
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specific band, 36 features were extracted. Consequently, 144 features were developed from the

4 bands analysed.

Data fusion and pattern recognition

An overview of the emotion recognition classification scheme is shown at Fig 9. For each stim-

ulus, HRV features were calculated using the time windows defined in the segmentation meth-

ods. Concerning EEG, we considered the mean of the time-windows of the stimuli as the

representative value in both analyses. Therefore, each stimulus (pictures, emotional rooms and

museum rooms/pieces of art) was described by 209 features.

Four classification models were independently developed: arousal level in the physical

museum, valence level in the physical museum, arousal level in the virtual museum, and

valence level in the virtual museum.

For each model, the datasets of stimuli were created using three analytical cases: (1) using

only the museum data, (2) including IAPS data and (3) also including the 360˚ data. The differ-

ent cases were performed to test the following analyses.

Fig 9. Overview of the data analysis and emotional pattern recognition.

https://doi.org/10.1371/journal.pone.0223881.g009
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Case 1: Physical or Virtual Museum. The features of stimuli from Stage 3.1 were used in

order to analyse emotion recognition in the physical museum. In addition, the features of the

stimuli from Stage 3.2 were independently used to analyse emotion recognition in the virtual

museum.

Case 2: Physical or Virtual Museum + IAPS. In order to analyse the influence of including

standardized 2D image responses in the emotional models, the features of Stage 1 stimuli were

concatenated with the physical museum feature stimuli (Stage 3.1) or virtual museum feature

stimuli (Stage 3.2).

Case 3: Physical or Virtual Museum + Emotional Rooms. In order to analyse the influence of

including 360˚ IVE responses in the models, the features of Stage 2 stimuli were concatenated

with the physical museum feature stimuli (Stage 3.1) or virtual museum feature stimuli (Stage

3.2).

In each emotional model, the class label was bipolarized into high/positive (>0) and low/

negative (< = 0) for both arousal/valence.

Finally, a 2-class pattern recognition algorithm discerning between real vs. virtual museum

exploration was developed, i.e. a classifier that aims to recognize if the emotional experience is

elicited from a virtual or real scenario.

In all the classification models, including the emotional and real vs. virtual classifier, a fea-

ture reduction strategy was adopted to decrease the dimension of the dataset due to the high-

dimensional feature space obtained. We implemented the Principal Component Analysis

method (PCA) [60], which is based on the linear transformation of the different variables in

the principal components. We included the features that explained 95% of the variability of the

dataset. The PCA was independently applied in the three analyses. In order to validate the

machine learning models, the Leave-One-Subject-Out (LOSO) cross-validation procedure was

applied, using Support Vector Machine (SVM)-based pattern recognition [61]. For the LOSO

scheme, the training set was normalized by subtracting the median value and dividing by the

median absolute deviation over each dimension.

In each iteration, the validation set consisted of the stimuli of the physical or virtual muse-

ums of one specific subject; it was normalized using the median and deviation of the training

set. Regarding the learning model, a C-SVM with sigmoid kernel function was used. The

parameters of cost and gamma were optimized using a vector with 15 parameters logarithmi-

cally spaced between 0.1 and 1000. Moreover, we performed a feature selection strategy to

explore the relative importance of each feature. A support vector machine recursive feature

elimination (SVM-RFE) procedure, in a wrapper approach, was included. It was performed on

the training set of each fold and we computed the median rank for each feature over all folds.

We specifically chose a recently developed nonlinear SVM-RFE which includes a correla-

tion bias reduction strategy in the feature elimination procedure [62]. The model was opti-

mized to achieve best accuracy whenever it has a balanced confusion matrix. We consider a

model balanced when its confusion matrix has a true positive and a true negative over 60%.

The algorithms were implemented using Matlab© R2016a and LIBSVM toolbox [63].

Results

Subjects’ self-assessment

No subjects showed depressive symptoms according to their PHQ-9 scores. The mean and

standard deviations of the PHQ-9 questionnaires were 3.31 ± 2.57. Considering the IAPS self-

assessment, a total of 8 subjects were considered outliers with respect to standard emotion

elicitations.
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Regarding the Stage 2, the evaluation of the subjects for each IVE averaged using mean and

standard deviation in terms of arousal were (Room 1: 1.17 ± 1.81, Room 2: 2.10 ± 1.59, Room

3: 0.05 ± 2.01, Room 4: -0.60 ± 2.11) and valence (Room 1: -1.12 ± 1.95, Room 2: 1.45 ± 1.93,

Room 3: -0.40 ± 2.14, Room 4: 2.57 ± 1.42), achieving the emotion statement for which they

were designed, except in the case of arousal in Room 3.

Concerning Stages 3.1 and 3.2, Fig 10 shows the self-assessment of the subjects for the

museum stimuli (rooms and pieces of art), using mean and standard deviations in terms of

arousal and valence. Due to the non-Gaussianity of data (p< 0.05 from the Shapiro-Wilk test

with null hypothesis of having a Gaussian sample), the Mann-Whitney U test was applied

(α<0.05). Along the arousal dimension, no significant differences were found. Regarding

valence, only room 1 showed a significant difference (p-value = 0.006). In addition, we analyse

the stimuli considering a second alpha threshold (α<0.1) in order to decrease the probability

of perform a type II error. In this case, room 1 (p-value = 0.084) and room 4 (p-value = 0.053)

show higher arousal in virtual condition, and room 1 (p-value = 0.006) and room 3 (p-

value = 0.051) present higher valence in virtual condition. After the bipolarization of scores

(positive/high >0), the physical museum presents 59.72% of high arousal and 40.97% of posi-

tive valence values; and the virtual museum presents 71.71% of high arousal and 61.84% of

positive valence values.

Emotion recognition classification

Table 2 shows an overview of the results of the four emotion recognition models in three anal-

ysis cases. Regarding arousal recognition in the physical museum, not including IAPS or emo-

tional rooms data, the accuracy is 68.05%. In the case where IAPS and emotional rooms data

were included, the accuracy increases by 3.47%, reaching 71.52% in both cases. In all cases the

model used features of the three analyses and the confusion matrices were balanced.

Fig 10. Self-assessment scores in physical and virtual museums using SAM and a Likert scale between -4 and +4.

Bars represent the means, vertical lines represent the standard deviation of the means, blue represents arousal, and red

valence. (� indicates significant differences with p< 0.05, ¶ indicates significant differences with p< 0.1).

https://doi.org/10.1371/journal.pone.0223881.g010
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Concerning the valence recognition in the physical museum, not including IAPS or the

emotional rooms data, the accuracy is 74.30%. The best accuracy is obtained by including

IAPS data, achieving 77.08%. The confusion matrix is balanced in all cases and features of all

analyses were included.

Regarding arousal in the virtual museum, it was not possible to develop a balanced model

without including IAPS or emotional room data, because the true negative was below 60%.

Including the IAPS data, the accuracy was 71.05%. However, the best accuracy is obtained by

including the emotional rooms, achieving 75.00%. Moreover, this model presents a more bal-

ance confusion matrix. Both cases only use EEG MPC features.

Concerning valence in the virtual museum, not including IAPS or the emotional rooms,

the accuracy is 67.10%. The model including IAPS data presents the same results. The best

accuracy includes emotional room data, achieving 71.05% of accuracy. All cases used only

EEG MPC features.

Real vs virtual classification

Table 3 shows the level of recognition of the nature of the stimuli in the museum, classifying if

the stimuli are real or virtual. The accuracy is 95.27% and the confusion matrix is balanced.

The model uses only one feature of EEG MPC, the first component of the PCA, to achieve this

level of recognition.

Discussion and conclusion

The purpose of this novel and exploratory research was to quantitatively compare psychologi-

cal and physiological patterns during an emotional experience in a physical environment and

Table 2. Level of emotion recognition.

Analysis cases Feature Accuracy F-Score ΔAccuracy Confusion matrix Featured used

True high/

pos

False high/

pos

False low/

neg

True low/

neg

Total HRV EEG

Band

EEG

MPC

(1) Physical museum Arousal 68.05% 0.68 - 70.93 29.06 36.2 63.79 9/14 1/3 1/1 7/10

(2) Physical museum

+ IAPS

Arousal 71.52% 0.72 +3.47% 75.58 24.41 34.48 65.5 10/18 1/2 1/4 8/12

(3) Physical museum + Em.

Rooms

Arousal 71.52% 0.72 +3.47% 79.06 20.93 39.65 60.34 16/18 3/3 3/3 10/12

(1) Physical museum Valence 74.30% 0.74 - 74.57 25.42 25.88 74.11 9/14 1/3 1/1 7/10

(2) Physical museum

+ IAPS

Valence 77.08% 0.76 +2.78% 72.88 27.11 20 80 10/18 2/2 1/4 7/12

(3) Physical museum + Em.

Rooms

Valence 76.38% 0.74 +2.08% 69.49 30.5 18.82 81.17 3/18 0/3 0/3 3/12

(1) Virtual museum Arousal (TN<60) - - 88.07 11.92 44.18 55.81 - - - -

(2) Virtual museum + IAPS Arousal 71.05% 0.70 - 75.22 24.77 39.53 60.46 4/22 0/2 0/3 4/17

(3) Virtual museum + Em.

Rooms

Arousal 75.00% 0.75 - 76.14 23.85 27.9 72.09 1/25 0/4 0/3 1/18

(1) Virtual museum Valence 67.10% 0.68 - 71.27 28.72 39.65 60.34 4/26 0/3 0/5 4/18

(2) Virtual museum + IAPS Valence 67.10% 0.68 +0.00% 71.27 28.72 39.65 60.34 3/22 0/2 0/3 3/17

(3) Virtual museum + Em.

Rooms

Valence 71.05% 0.71 +3.95% 74.46 25.53 34.48 65.51 3/25 0/4 0/3 3/18

Level of recognition of arousal and valence in physical/virtual museum exhibition using (1) only physical/virtual museum dataset (2) including IAPS dataset and (3) also

including emotional rooms dataset. Average of accuracy in percentage, F-score, increment of accuracy when IAPS and Rooms datasets were included in each case,

confusion matrix and features used in each analysis. Bold indicates cases with the highest accuracy.

https://doi.org/10.1371/journal.pone.0223881.t002
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their virtualization through a 3D IVE, guiding future emotion elicitation and recognition sys-

tems using VR. With this aim in mind, we developed a realistic 3D IVE simulation of an art

museum and performed a comparative study involving 60 subjects in a real art museum and

its simulation, while they were performing a free exploration of an exhibition. In addition, we

included two prior phases including controlled stimuli using 2D pictures and 360˚ IVEs, in

order to study the influence of this data on the accuracy and robustness of the emotional mod-

els. The results can be discussed on four levels: i) a comparison of the psychometric scores, ii)

a comparison of the physiological patterns, iii) a comparison of the level of emotion recogni-

tion and the influence of previously (standardized) controlled stimuli, iv) a comparison of

emotional subjective and psychophysiological correlates in VR and real scenarios and its

meaning in the framework of the different theories and models of emotion, iv) a methodologi-

cal assessment and v) limitations of research.

Self-assessment results were used to compare the psychometric patterns. The virtual

museum presents slightly more arousal and valence levels than the physical museum. This

slight bias could be due to the subjects having no previous VR experience, and the novelty

could increase arousal and valence. This should be taken account of in future experiments

with these types of subjects. However, only Room 1 presents significant differences in valence

considering the usual alpha threshold (α = 0.05). Moreover, considering that this conservative

threshold is focused to avoid type I error, we analyse a second threshold (α = 0.1) to decrease

the probabilities to perform a type II error and claim incorrectly the null hypothesis of equal

means. The vast majority of the stimuli (93.75%) do not present statistically significant differ-

ences in self-assessment considering the first alpha threshold (α = 0.05). However, two rooms

(1 and 4) present higher arousal, and two rooms (1 and 3) show higher valence in virtual con-

dition considering the second alpha threshold (α = 0.1) [64]. Room 1 presents the biggest dif-

ferences in the evoked emotion and it could be provoked by a ‘wow’ effect derived also by the

novelty and the lack of previous experience in VR. This effect will need to be consider in future

research. The results suggest that 3D IVEs are powerful tools for emotional elicitation, since

the majority of stimuli do not present significant differences in affective statements reported

by the subjects in comparison to those evoked by physical environments, and are appropriate

for emotion research. The results also support the use of VR to elicit emotion and are in accor-

dance with previous research [20,30,65], but more confirmatory research is needed in the

future, especially considering the new VR devices.

Regarding the physiological pattern comparison, the automatic feature selection of the

SVM-RFE algorithm was used. The influence of the features of each analysis on the models

could be analysed as the PCA was applied independently for HRV, EEG Band Power and EEG

MPC. In emotion recognition of the physical museum, all the models (except for the valence

with Emotional Room data) used features of all the analyses to predict mood. Thus, all analyses

contributed with information about emotional status. However, the emotion recognition mod-

els developed for the virtual museum used only few EEG MPC features. Moreover, the real vs

virtual classification model used only the first component of the EEG MPC PCA to discrimi-

nate between the real and virtual museum stimuli. These results reveal the important role that

Table 3. Level of recognition of nature of stimuli.

Analysis cases Feature Accuracy F-Score Confusion matrix Featured used

True high False high False low True low Total HRV EEG Band EEG MPC

Real vs Virtual Nature 95.27% 0.95 94.07 5.92 3.47 96.52 1/17 0/3 0/2 1/12

Level of recognition of nature of stimuli (real or virtual), including average of accuracy in percentage, F-score, confusion matrix and features used from each analysis

https://doi.org/10.1371/journal.pone.0223881.t003
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brain synchronization plays in the neuro-physiological processes involved in VR, as they can

discriminate between virtual and real environments with a level of recognition of over 95%

accuracy. In addition, the use of EEG MPC features to recognize emotions in VR suggests that

brain synchronization is deeply involved in emotional processes in VR environments. The

measures of nonlinear interdependency in EEG have become in the last years an emerging

field and they have been applied to analyse perceptual processes, cognitive tasks and disorders

[66,67]. Even when these have been applied in virtual reality studies [57,68,69], to our knowl-

edge we present the first evidence of their influence in immersive virtual emotional experi-

ences. In future studies, the correlations between emotions in VR and the synchronization of

each brain region should be analysed in depth, since in this exploratory study we use PCA as a

feature reduction method in order to perform classification models.

Concerning the level of emotion recognition, we present the first study that develops an

emotion recognition system in a 3D IVE, comparing results with the physical environment

model. Firstly, we presented the results of the models in the physical and virtual museum with-

out the IAPS or Emotional Rooms dataset, using features extracted from EEG and HRV series

gathered from wearable sensors, and properly combined through nonlinear SVM algorithms.

The models were validated using LOSO cross-validation, which has been extensively per-

formed in emotion recognition research to validate models [70–72]. The accuracies of the

model in the physical museum without IAPS or Emotional Rooms datasets achieve 68.05% in

arousal and 74.30% in valence, both balanced in confusion matrix. These results are consider-

ably higher than the level of chance, which is 58% in statistical assessment classification with

brain signals (p = 0.05, n>100, 2-classes) [73]. The accuracy of the model in the virtual

museum, without including IAPS or Emotional Rooms datasets, is 67.10% in valence and is

balanced. However, the model of arousal in the virtual museum does not exceed the balance

threshold (>60% of true high and true low), invalidating its accuracy. Therefore, the 3D IVEs

show an initial limitation for use in evoking stimuli in emotion recognition systems, especially

in arousal recognition.

The emotion stimuli habitually applied in the methodologies of affective computing studies,

such as IAPS, include a large number of stimuli to elicit a wide range of emotions with differ-

ent levels of intensity. This wide range of moods allows the emotion recognition systems to

improve their accuracy. However, real-world environment (physical or simulated) stimuli are

not created to evoke different ranges of valence and arousal and cannot cover different mood

intensity. Thus, the responses to a set of controlled emotional stimuli are included in the emo-

tion models to test if they improve the accuracy of the models. Thus, we analyse the addition

of datasets of pre-performed controlled, standardized stimuli which are designed to evoke a

range of arousal and valence, including 2D pictures (IAPS) and 360˚ IVEs (Emotional

Rooms).

As can be seen in Table 2, accuracy improves in all models when using IAPS or Emotional

Rooms information. Regarding the physical museum, the IAPS and Emotional Rooms datasets

provide better accuracy in terms of arousal (71.52%), increasing the accuracy by 3.47% in both

cases. The inclusion of IAPS datasets maximizes recognition in terms of valence, achieving

77.08%. Therefore, the inclusion of IAPS works slightly better than the Emotional Rooms

phase in physical environments. Regarding the virtual museum, the Emotional Rooms dataset

provides better accuracy in terms of arousal (75.00%). In this case, the Emotional Rooms pro-

vide 4 points of accuracy more than IAPS and the museum dataset doesn´t achieve a balanced

result. The Emotional Rooms dataset also provides better accuracy in terms of valence in the

virtual museum (71.05%). The good performance related to the inclusion of the Emotional

Rooms dataset in the virtual museum could be because the 360˚ IVEs provide important infor-

mation for the recognition of arousal in 3D environments, because both use an HMD.
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Moreover, the initial accuracy limitation of the model with no previous data is exceeded with

the inclusion of the Emotional Room dataset. Thus, a prior phase with 360˚ IVE controlled sti-

muli is shown as a powerful methodology to develop emotion recognition models in 3D IVEs.

Therefore, the physiological signals allow us to predict the self-assessment in both cases. In

future experiments, these results could be optimized using alternative machine learning algo-

rithms and multivariate signal analyses [56] and a confirmatory analysis need to be performed.

Although the arousal and valence self-evaluations were to some extent similar in the virtual

and real museums, the two conditions appear to be different in terms of psychophysiological

parameters. Moreover, the psychophysiological-based emotional classifiers, virtual and real

environments, although they had similar performances with high accuracy, used different fea-

tures and were affected differently by the introduction of features acquired in stage 1 and 2.

Interestingly, the classifier for the virtual environment needs less features than the classifier for

the real museum, which suggests that the psychophysiological reaction in the latter was more

complex than the former. Our data, therefore, highlights a possible limitation of the applica-

tion of the circumplex model of emotions to psychophysiological data, since similar subjective

experiences (in terms of arousal and valence) did not show unique psychophysiological pat-

terns. For instance, the model does not take in account where the emotion takes place: a VR

environment is necessarily unfamiliar and the degree of familiarity does not follow a linear

relationship with the similarity to reality (for instance, see [74] for a detailed review of the

uncanny valley phenomenon and related issues). Understanding reality in its context is ana-

lysed by the Theory of Mind (ToM) and several models suggest that the ToM may modulate

emotional perception [75]: even for phobias and their treatment, patients tend to prefer VR

because they are cognitively aware that the phobic stimulation is similar but not identical to

the real scenario [76]. Recently, an uncanny-valley of the mind reaction was theorized to

describe a scenario where VR agents performed in a very similar (but not identical) emphatic

way [77]. Similarly, it is possible that being in an environment which is very similar (but not

identical) to a real environment will elicit a sense of eeriness. Such a sense of eeriness may

interact with psychophysiological responses, but to a lesser extent with the arousal-valence

subjective evaluation. It is possible to imagine that, by introducing further dimensions, such as

emotional embodiment [78,79] or emotional presence, to the circumplex model of emotion

may overcome the current limitations of the model. Regarding emotional presence there are

several pieces of evidence that suggest how vividness of emotional experience can affect arousal

and valence. For instance, patients with Post Traumatic Stress Disorder (PTSD) report very

vivid traumatic emotional memories with high arousal and negative valence. On the contrary,

techniques designed to reduce the vividness of such memories also reduce arousal and valence

[80]. Finally, our results may also be explained by reference to constructed emotion theory [7].

According to this theory, emotions are predictive and not reactive systems, therefore they

depend on what the brain/mind considers the most probable outcome in terms of previous

knowledge and sensorial input. Emotional labelling, as we know it, is just an approximation to

something similar we have experienced in the past and therefore is not particularly reliable. It

is not, therefore, unexpected that VR and real museum experiences are subjectively similar,

but different in terms of psychophysiological correlates. Future studies might test the fit of

constructed emotion theory to VR data. In this sense, a switch of paradigm may be needed.

For instance, as proposed for the psychophysiological correlates of mental disorders [81], we

might adopt a data driven approach, based on unsupervised learning algorithms, to identify

hidden similarities in psychophysiological reactivity to emotional states.

At a methodological level, the proposed signal processing and machine learning techniques

using data from healthcare wearables provide satisfactory levels of recognition, achieving accu-

racies over 70%. They are presented as a powerful software and hardware equipment to extend
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the applications of emotion recognition systems including physical real-world environments,

and they are in accordance with recent studies using HRV [82] and EEG [83]. However, con-

cerning signal recordings, even when the physical environments allow the analysis of the real

impact of one specific environment, these also present the following limitations: i) it is difficult

to keep ambient features constant; ii) it is difficult, or even impossible in some cases, to change

some environmental features in order to analyse their impact; iii) the extra-cost of developing

studies of environments situated far distant and; iv) it is impossible to analyze the impact of an

environment before it is constructed. On the other hand, the capacity of virtual simulation to

evoke the same emotions as physical environments could be essential in the near future, taking

into account the rise of virtuality and the central role that emotion plays in many background

processes. Moreover, the capacity of IVEs to be used as stimuli could significantly improve the

application of emotion recognition in simulated real-world tasks.

Some possible caveats should be mentioned. This exploratory study aimed at investigating

human psycho-physiological patterns of emotions during a free exploration of virtual and real

art museums. We used wearable sensors allowing to translate our research to real scenarios,

although such sensors a limited number of physiological sensors. In addition, the biosignals

could be affected by artefacts especially caused by head movement in the case of virtual

museum, and by walking in the case of real museum where we recorded biosignals “in the

wild”, i.e. outside of the highly constrained and tightly controlled laboratory paradigms. This

is especially true for the EEG series, although many researches have successfully employed

such data in combination with HMDs or other wearable devices in naturalistic conditions

[13,84,85]. Nonetheless, our results point to the significance of brain synchronization for the

emotion recognition in both real and virtual museum scenarios. The psychological self-assess-

ment was performed using retrospective reports, leading to possible bias such as recency, pri-

macy and memory, although our experimental paradigm replicates a real scenario. Note also

that the user’s emotional perception could be biased by stopping the real or virtual museum

exploration. The real and the virtual environments have intrinsic differences in unavoidable

physical features such as light, colour and complexity, and these may affect physiological

responses. Furthermore, the time of the exploration for each room/piece of art would need to

be considered as a confounding/critical factor in future studies because of its possible role in

evoking emotions. In particular, it could affect the real vs virtual museum discrimination in

case of differences in the time of exploration. In this regards, we recently found that Room 1

and Room 2 of the virtual museum are associated with lower time of visit than the real exhibi-

tion [86]. On the other hand, the other 6 stimuli do not show differences in terms of explora-

tion time between real and virtual museums.

This study marks new steps in the discipline of affective computing and its application to

environmental physiology and other fields, providing evidence through psychological and

physiological comparisons during an emotional experience in real and virtual environments.

This exploratory study tries to contribute to overcome passive methods’ limitations of affective

elicitation classically used in emotion recognition models, such as pictures, sounds or videos,

supporting the use of VR in emotion elicitation. The methodology has implications at com-

mercial and research levels in many disciplines as health, architectural design, urban planning

and aesthetics. It could be applied to study the emotional responses of subjects in many specific

environments, such as hospitals, schools and factories, where the emotional responses of users

play a critical role in daily wellbeing. More specifically, new emotion recognition models will

strongly contribute to the development of ambient assisted living, smart environments that

change depending on human responses. On the other hand, the new VR set-up allows the

analysis of the influence of one parameter, changing it while maintaining the remainder of the

environment in a steady state. This will help to develop many studies, impossible to undertake
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in real environments for physical reasons (e.g. architectural modification of spaces) or security

reasons (e.g. phobias therapy). Moreover, it will allow the analysis of environments before

their construction, helping in the decision-making process of creating new environments ori-

ented to wellbeing.

Supporting information
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S1 File. IAPS experimental protocol and physiological signal segmentation and synchroni-

zation.

(PDF)
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23. Peperkorn HM, Alpers GW, Mühlberger A. Triggers of fear: Perceptual cues versus conceptual informa-

tion in spider phobia. J Clin Psychol. 2014; 70: 704–714. https://doi.org/10.1002/jclp.22057 PMID:

24353196

Analysis of psycho-physiological patterns in a free exploration of an art museum

PLOS ONE | https://doi.org/10.1371/journal.pone.0223881 October 15, 2019 21 / 24

https://doi.org/10.1007/BF01238028
https://doi.org/10.1007/BF01238028
https://doi.org/10.1109/CSPA.2011.5759912
https://doi.org/10.1109/CSPA.2011.5759912
https://doi.org/10.1007/s11065-010-9138-6
https://doi.org/10.1007/s11065-010-9138-6
http://www.ncbi.nlm.nih.gov/pubmed/20809200
https://doi.org/10.1016/j.jenvp.2012.09.003
https://doi.org/10.1016/j.jenvp.2012.09.003
https://doi.org/10.1017/S0140525X0800349X
https://doi.org/10.1017/S0140525X0800349X
https://doi.org/10.1093/scan/nsw154
http://www.ncbi.nlm.nih.gov/pubmed/27798257
https://doi.org/10.1109/T-AFFC.2010.1
https://doi.org/10.1098/rsta.2015.0176
http://www.ncbi.nlm.nih.gov/pubmed/27044990
https://doi.org/10.1109/T-AFFC.2011.30
https://doi.org/10.1109/JBHI.2013.2290382
https://doi.org/10.1109/JBHI.2013.2290382
http://www.ncbi.nlm.nih.gov/pubmed/24240031
https://doi.org/10.1038/s41598-018-32063-4
http://www.ncbi.nlm.nih.gov/pubmed/30209261
https://doi.org/10.1007/978-981-10-2404-7_2
https://doi.org/10.1016/j.eswa.2017.09.062
https://doi.org/10.2224/sbp.2007.35.7.863
https://doi.org/10.1089/cpb.2004.7.734
https://doi.org/10.1089/cpb.2004.7.734
http://www.ncbi.nlm.nih.gov/pubmed/15687809
https://doi.org/10.1016/S0169-2046(01)00134-7
https://doi.org/10.1007/11755494_3
https://doi.org/10.1002/jclp.22057
http://www.ncbi.nlm.nih.gov/pubmed/24353196
https://doi.org/10.1371/journal.pone.0223881


24. Meehan M, Razzaque S, Insko B, Whitton M, Brooks FP. Review of four studies on the use of physiolog-

ical reaction as a measure of presence in stressful virtual environments. Appl Psychophysiol Biofeed-

back. 2005; 30: 239–258. https://doi.org/10.1007/s10484-005-6381-3 PMID: 16167189
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