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Abstract Prior expectations of movement instructions can promote preliminary action planning

and influence choices. We investigated how action priors affect action-goal encoding in premotor

and parietal cortices and if they bias subsequent free choice. Monkeys planned reaches according

to visual cues that indicated relative probabilities of two possible goals. On instructed trials, the

reach goal was determined by a secondary cue respecting these probabilities. On rarely

interspersed free-choice trials without instruction, both goals offered equal reward. Action priors

induced graded free-choice biases and graded frontoparietal motor-goal activity, complementarily

in two subclasses of neurons. Down-regulating neurons co-encoded both possible goals and

decreased opposite-to-preferred responses with decreasing prior, possibly supporting a process of

choice by elimination. Up-regulating neurons showed increased preferred-direction responses with

increasing prior, likely supporting a process of computing net likelihood. Action-selection signals

emerged earliest in down-regulating neurons of premotor cortex, arguing for an initiation of

selection in the frontal lobe.

DOI: https://doi.org/10.7554/eLife.47581.001

Introduction
We are often faced with probabilistic information guiding our decisions and actions, for example,

asking ourselves which way to aim a penalty kick when the goalkeeper seems prepared to jump to

the right. These kinds of prior probabilities allow us to prepare the action mostly likely to become

relevant, thereby helping us economize reaction times and improve accuracy (Dorris and Munoz,

1998; Basso and Wurtz, 1998; Gold et al., 2008; Suriya-Arunroj and Gail, 2015). At the same

time, we need to keep track of available action alternatives, the choice set, before commitment to a

choice, for example potential reach goals in action-selection tasks (Cisek and Kalaska, 2005;

Klaes et al., 2011). Here, we investigate how movement-planning areas in monkey frontoparietal

cortex integrate priors with choice set information.

Priors can be defined as the a priori probability of seeing a particular stimulus, instructing an asso-

ciated action, or receiving a particular reward in response to this action (Gold and Shadlen, 2007).

When action and reward probabilities are confounded, it is unclear whether the behavioral benefit

of priors results from the possibility for action planning thanks to higher predictability of future

events or from higher motivation elicited by events that provide higher expected reward, defined as

the product of reward amount and probability (Neumann Von et al., 1944; Gold and Shadlen,

2007). Choice biases due to reward-related priors have been investigated (Sugrue, 2004; Yang and

Shadlen, 2007). Much less is known about how action-related priors bias choice (Funahashi, 2017)

when expected reward is symmetric between both options (‘free’ choice). What impact does our
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preliminary action plan have on our penalty shot when the goalkeeper’s posture neutralizes in the

last moment?

We recently demonstrated in human subjects that action priors bias reward-symmetric free

choices, whereas pure reward priors do not (Suriya-Arunroj and Gail, 2015). Based on the idea that

sensorimotor decisions are achieved through competition between action plans (Gallivan et al.,

2018; Gallivan et al., 2015; Cisek, 2012; Cisek, 2007; Klaes et al., 2012), we postulated that

action priors induce behavioral bias by establishing an imbalanced action planning. In reach tasks,

reach plans are reflected by the encoding of spatially defined reach endpoints (‘goals’) in reach-plan-

ning brain areas. An imbalance in planning should show as different response strengths, associated

with different priors, for the two goals after both alternatives are revealed and before the decision is

required. Here, we tested this hypothesis in rhesus monkeys and asked if action priors proportionally

modulate motor-goal encoding in the frontoparietal reach-planning areas and if motor-goal encod-

ing influences subsequent free choices. The absence of prior encoding in the motor-planning areas

or the presence of prior encoding but without effect on free choices, meaning that imbalanced

action planning does not translate into free-choice biases, would argue against our hypothesis.

The information about priors needs to be maintained in parallel with currently valid alternatives

(choice set) until the decision is requested. As previously observed in tasks in which multiple reach

goals are narrowed down to two alternatives in each trial, sustained neural co-encoding of potential

motor-goal locations during planning (Cisek and Kalaska, 2005; Klaes et al., 2011), could serve

maintenance of the choice set in working memory. At single-neuron level, previously reported

potential-response cells were activated whenever one of two equipotent reach goals overlapped

with the preferred direction of the neuron (Cisek and Kalaska, 2005; Klaes et al., 2011). We thus

asked if priors and choice set are encoded in parallel in movement planning areas and specifically if

choice-set encoding of potential-response neurons is modulated by priors.

Finally, we ask how the transition from prior-modulated movement planning to action selection

(commitment) is achieved and where first in the frontoparietal circuit. The mutual roles of frontal ver-

sus parietal sensorimotor structures in action planning and decision making are still inconclusive

(Westendorff et al., 2010; Hanks et al., 2015; Siegel et al., 2015; Brown et al., 2007;

Connolly et al., 2000). Simultaneous action-selection signals in both areas would suggest common

input about action-selection outcome from other brain structures or that both areas converge onto

the same solution in consensus. Instead, latency differences of selection signals between areas could

be indicative of a processing hierarchy during reach selection.

Results
Two monkeys (Macaca mulatta; monkeys H and K) were trained to perform rule-guided center-out

reaches with sequential cueing (Figure 1; see also our human behavioral study Suriya-Arunroj and

Gail, 2015). On each trial, a pre-cue, pair of arrowheads, appeared at one of four cardinal directions.

The pre-cue location indicated the locations of two diametrically opposed reach goals in that given

trial, 90˚ clockwise and counter-clockwise rotation from the pre-cue. The arrowhead sizes indicated

the probabilities of the potential goals being later instructed as the final valid reach. We used seven

prior levels, where 6:0 and 0:6 were full-prior conditions and 3:3 was zero-prior condition. While the

pre-cue was indicated in every trial, the associated probabilities only applied to the instructed trials,

in which a later rule-cue indicated the single valid goal that would be rewarded upon selection. On

interspersed free-choice trials, the rule-cue was neutral, indicating that both reach goals would be

rewarded with equal probability, independent of the pre-cue at trial start (goalkeeper neutralizes

posture in the last moment). Although containing useful prior information, the arrowhead sizes could

be ignored and are uninfluential to gain the optimal reward outcome.

One idea of the design is that motor goals are dissociated from visual stimulus locations

(Crammond and Kalaska, 1994; Gail et al., 2009; Westendorff et al., 2010), which allows investi-

gating motor-goal encoding independent of visual target encoding, which is important in visuomo-

tor brain areas (Boussaoud and Wise, 1993; di Pellegrino and Wise, 1993; Crammond and

Kalaska, 1994; Gail and Andersen, 2006; Kuang et al., 2015). Second, the task design encouraged

sustained preliminary planning of two alternative movements, because the two out of four locations

of the potential reach-goals varied across trials and the final instruction was provided only after a

variable delay (planning period). The task discouraged premature commitment to a choice before
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the go cue because free-choice trials were rare and the trial type, instructed or free-choice, was

revealed only at the time of the go cue (Klaes et al., 2011; Klaes et al., 2012). If only free-choice tri-

als had been offered, immediate commitment upon offering of the alternatives would have been a

viable strategy. These task features allowed us to capture trial-by-trial encoding of potential

motor goals during the planning period at different prior levels. Third, different to binary choice

tasks, the use of four reach directions allowed estimating the spatial response properties of neurons

beyond the two potential motor-goal directions. We thereby can contrast responses between cases

when their coding directions align with one of the alternative reach goals (preferred and opposite

directions; PD and OD) or when they do not (orthogonal directions; Orth) (Cisek and Kalaska,

2005; Klaes et al., 2011; Glaser et al., 2018; Dekleva et al., 2018).

Biasing effects of action priors on monkeys’ behavior
In instructed trials, monkeys made fewer errors when the rule-cue followed the high-prior direction

and more errors when it was against the prior (Figure 2a). This result was indicated by the increase

in error rates of against reaches and the decrease in follow reaches as a function of prior (against: t-

statistic = 53.92, p<0.001; follow: t-statistic = �21.26, p<0.001; GLMM). Also, the monkeys had

slower responses in against trials and faster responses in follow trials (against: t-statistic = 24.02,

p<0.001; follow: t-statistic = �76.31, p<0.001; GLMM; Figure 2b).

In free-choice trials, monkeys showed a choice bias toward the reach direction pre-cued with

higher prior and the bias gradually increased with prior (t-statistic = 8.17, p<0.001; GLMM;

Figure 2c). At the strongest prior level, monkeys almost exclusively (89%) chose the high-prior direc-

tion. Like in instructed reaches, choice RTs were slower in against trials (t-statistic = 14.61, p<0.001;

Figure 1. Rule-guided reach-selection task with trial-by-trial manipulation of action prior. In each trial, the monkey

reached from the center of the screen to one of four cardinal directions: up, down, left, or right. The peripheral

reach goals were not directly indicated by visual target stimuli. Instead, monkey inferred two potential reach

locations from a double-arrow pre-cue, either clockwise (cw) or counter-clockwise (ccw) from the location of the

pre-cue. Trial-by-trial, we induced variable prior by assigning probabilistic information to the sizes of the pre-cue

arrowheads. The arrowhead sizes announced the prior probability with which one of the two alternative rotation

rules would later be instructed by the rule-cue. A reach to the goal associated with the instructed rule (color

matching the corresponding arrowhead) was always rewarded, the non-instructed (non-matching color) never. A

color-neutral (white) rule-cue indicated a free-choice trial, in which both potential motor goals were rewarded

equally.

DOI: https://doi.org/10.7554/eLife.47581.002
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GLMM) and faster in follow trials (t-statistic = �42.76, p<0.001; GLMM) and the effect increased

with strength of prior (Figure 2d).

The monkeys’ behavior indicated that action priors were effective and biased their behavior in

both trial types. In instructed trials, rule-cues that matched the high-prior option created behavioral

benefits whereas opposite instructions created costs. In free-choice trials, action priors biased the

monkeys’ choice and RTs. These behavioral asymmetries were observed despite the symmetric

expected reward at the moment of commitment, that is without a value-associated advantage of

either option.

Both monkeys understood the task and showed near-perfect performance in full-prior trials (96%

and 94%; monkeys K and H). We did observe slight effect of previous trials on the accuracy of the

following instructed trials as well as the choice of the following free-choice trials (data not shown).

This effect did not support win-stay/lose-shift strategy but rather suggested that monkeys some-

times corrected their behavior after an error trial.

Complementary subclasses of graded modulation in individual neurons
during planning
We recorded extracellular single-unit spiking activities from 561 well-isolated units in PMd of both

monkeys (H: 238, K: 323) and 517 units in PRR (H: 248, K: 269), while animals performed the task.

We analyzed spatial selectivity of the neuronal responses during pre-cue presentation, planning, and

movement by comparing each unit’s activity at four spatial pre-cue locations (visual encoding) and

four reach directions (motor-goal and movement encoding) in full-prior instructed trials. 53% of PMd

(297/561) and 50% of PRR (261/517) units were spatially selective for the motor goal during planning

(motor-goal neurons; Figure 3—figure supplement 1) and were used for all following analyses. All

isolated neurons were used for control analyses as indicated below.

Figure 2. Biasing effects of action priors on the monkeys’ behavior. (a) Average error rates, (b) average reaction

time (RT) difference, both for trials instructing the monkey to reach the more (follow) and less (against) likely goal.

Cw trials were arbitrarily defined as follow trials in the zero-prior condition. The dashed horizontal line indicates

average value of both cw and ccw trials in the zero-prior instructed condition. (c) Average choice probabilities, (d)

average choice RTs. Error bars depict standard errors across trials. Asterisks next to the curves indicate significant

difference between neighboring data points (*p < acorr at 5%, **p < acorr at 1%, ***p < acorr at 0.1%; Bonferroni-

corrected t-test).

DOI: https://doi.org/10.7554/eLife.47581.003

The following source data is available for figure 2:

Source data 1. Mean error rates, choice probabilities, and reaction times.

DOI: https://doi.org/10.7554/eLife.47581.004
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Prior affected motor-goal neurons in two complementary ways. After receiving prior information

from the pre-cue, the majority of the motor-goal neurons in PMd (60%) and particularly in PRR (76%)

either showed increased planning-period responses when the higher prior coincided with the maxi-

mal responsive direction (PDmax) of the neuron (Figure 3a-left) or decreased when prior coincided

with the opposite direction (OD) of the neuron (Figure 3a-right), but not both. For each neuron in

PMd and PRR, we tested separately if the activity increased as the prior increased toward PDmax,

and if it decreased when prior was directed away from it, with a linear model with factors Prior level

and Prior direction. When plotting prior modulations at PDmax against OD, most motor-goal neurons

coalesced along the axes and not along the unity line (Figure 3b), suggesting that motor-goal neu-

rons mostly showed either upregulation or downregulation, and rarely both. The means the example

neurons in Figure 3a do not represent the opposite ends of a continuous distribution, but rather

two distinct neuron classes, further confirmed from the bimodal distribution of relative modulation

strengths in both brain areas (Hartigans dip test of unimodality; PMd: p < 0.005; PRR: p < 0.001;

Figure 3c). Relative modulation strength was quantified as arctan of the ratio of PDmax and OD mod-

ulation (angular distribution of the data points in the scatter plot of Figure 3b). The results suggest

separate downregulation of the disregarded motor-goal option and upregulation of the expected

motor-goal location driven by barely overlapping groups of neurons. We categorized these two

main subclasses of neurons as upregulating (UR: modulation at PDmax and angular coordinate >p

4
)

and downregulating (DR: modulation at OD and angular coordinate <p

4
) neurons to allow separate

treatment in further analyses.

Graded neuronal modulation during planning in PMd and PRR
populations correlates with graded choice bias
We quantified prior-induced modulation of motor-goal encoding during planning to ask how it

impacts later choice. When we aligned the tuning functions of all motor-goal neurons according to

their preferred direction (PD) to compute a grand-average population tuning (Figure 4a), three fea-

tures were eminent.

First, population tuning showed gradual modulation with varying prior and, as suggested from

single-unit analyses, the upregulating and downregulating neurons contributed to prior encoding in

a complementary manner. If we momentarily disregard the two neuronal subclasses (Figure 4a–b),

PMd and PRR grand-average populations showed higher activity when the higher prior was toward

PD (PDmax: PMd: p<0.001; PRR: p<0.001) and lower activity with increasing prior away from PD (OD:

PMd: p<0.001; PRR: p<0.001; GLMM; Figure 4b). The graded motor-goal encoding in the popula-

tion (Figure 4b) mirrored the graded behavioral bias (Figure 2), even respecting idiosyncratic non-

linear pattern of choice biases in each monkey (Figure 4—figure supplement 1). This similarity sug-

gests a link between the level of motor-goal activity during planning and the behavior in subsequent

choice. The neuronal subclasses contribute to either the up- or downregulating graded modulation,

in accordance with their class definition (PMd-UR: PDmax: p<0.001; OD: p>0.5; Orth: p>0.5; PRR-UR:

PDmax: p<0.001; OD: p>0.05; Orth: p>0.05; PMd-DR: PDmax: p>0.05; OD: p<0.001; Orth: p>0.05;

PRR-DR: PDmax: p>0.05; OD: p<0.001; Orth: p>0.05; GLMM; Figure 4c–d).

Second, the encoding of both potential motor-goals during planning is supported by the downre-

gulating neurons. In zero-prior trials, when both reach goals were equipotent, neuronal population

responses were higher when the two potential reach goals matched their PDmax and OD than when

they were orthogonal to it (Orth). This response was evident in downregulating neurons (zero-prior;

PMd-DR: PDmax-Orth: pcorr <0.001; OD-Orth: pcorr <0.001; PRR-DR: PDmax-Orth: pcorr <0.001; OD-

Orth: pcorr <0.001; Bonferroni-corrected t-test; Figure 4c–d), whereas upregulating neurons, if at all,

showed slightly higher activities when potential reach goals were orthogonal to their PDmax (zero-

prior; PMd-UR: Orth-PDmax: pcorr >0.05; Orth-OD: pcorr <0.01; PRR-UR: Orth-PDmax: pcorr >0.05; OD-

Orth: pcorr <0.05; Bonferroni-corrected t-test). This means, in trials offering two potential motor

goals, DR neurons were more active whenever their PD was part of the choice set, corresponding to

bi-lobed tuning curves (Figure 3a right), whereas UR neurons were directionally selective only when

their PD matched the higher prior option, corresponding to lack of tuning during zero-bias trials

(Figure 3b left).

Third, prior-induced neuronal modulation was spatially restricted to the potential motor-goal

locations considered in the current trial. No significant modulation was observed at orthogonal
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Figure 3. Distinct classes of prior-dependent graded modulation in single units. (a) Examples neurons with

graded modulation at the neuron’s maximum direction (PDmax; left panel) or opposite direction (OD; right),

respectively. Polar plot tuning functions (top) and raster plots with averaged spike densities (bottom) of each unit

are shown for each prior level as different shades. (b) Graded modulation is quantified as function of prior

Figure 3 continued on next page
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directions (PMd: p>0.1; PRR: p>0.1; GLMM; Figure 4a–b). When the maximally strong prior was

directed away from neurons’ PD, the response strength of DR neurons even dropped below the level

of Orth activities (full-prior; PMd-DR: Orth-OD: pcorr <0.001; PRR-DR: Orth-OD: pcorr <0.001; Bonfer-

roni-corrected t-test; Figure 4d). UR neurons showed OD activity levels that were overall below the

level of Orth activities and the difference became strongest at full-prior level (full-prior; PMd-UR:

Orth-OD: pcorr <0.001; PRR-UR: OD-Orth: pcorr <0.001; Bonferroni-corrected t-test). These results

suggest spatially selective enhancement and inhibition exclusively among potential motor-goal loca-

tions, while motor-goal options that have been already ruled out with the pre-cue are not

modulated.

Neuronal latencies of selection signals in PMd and PRR
Population-average spike density functions show that prior-induced modulation emerges early dur-

ing pre-cue presentation then lasts until or beyond commitment to an action in both UR- and DR-

neurons of PMd and PRR (Figure 5a). We quantify the latency of this process separately for each

prior level in each neural subpopulation. To account for the dynamic transition from the planning

period into the movement execution, we computed neural distances (NDs). NDs are Euclidean dis-

tances in the high-dimensional state space spanned by all neurons’ responses. As proxy for the

latency of an action-selection signal, we determined the time when the ND reached its maximal rate

of change (maximal velocity time: MVT). Compared to thresholding average firing rates, this

approach has the advantage of being applicable to complex activity increases and decreases during

movement initiation and being independent of the varying starting levels between different prior

conditions.

MVTs qualitatively reflected the prior-dependent RT patterns in instructed and free-choice trials

(Figure 5b–c), being faster for follow versus against trials and scaling with strength of prior. Quanti-

tatively, the modulation of neural latencies by prior was, however, larger than the modulation of

behavioral latencies. Latency differences between brain areas are most evident in DR neurons, with

PMd showing earlier MVTs than PRR (pairwise permutation test; Figure 5c-left). In contrast, UR neu-

rons in both PMd and PRR showed comparable MVTs (Figure 5c-right). DR neurons signaled the

selected movement earlier than UR neurons in PMd whereas the difference between DR and UR sub-

classes in PRR was not significant (Supp. Figure 5a). To compare all four neuronal subclasses

(Figure 5d), we selected a subset of conditions, zero-prior condition (3:3) and one high-prior condi-

tion (5:1; shaded area in Figure 5c; because the number of against trials in full-prior conditions was

limited). Despite slight variations in different task conditions, MVTs were overall reached the earliest

in DR neurons of PMd (Free-choice: against: 210 [193–227; 90% bootstrapped CI] ms; no-prior: 126

[103-172] ms; follow:72 [53-94] ms), then in UR neurons of PMd and DR neurons of PRR, and finally

in UR neurons of PRR (Free-choice: against: 261 [228-318] ms; no-prior: 204 [176-240] ms; follow:160

[145-190] ms; Figure 5d). The latest subclass, PRR-UR neurons, reached MVTs at ~50–100 ms after

Figure 3 continued

separately in the PDmax and the OD, and plotted against each other, for all PMd (left) and PRR (right) neurons. The

upper-right quadrant reflects increasing activities (positive modulation) of PDmax responses and decreasing

activities (negative modulation; inversed x-axis) of OD responses. Purple data points: neurons that showed

significant modulation of both PDmax and OD activities as function of prior; blue: prior-dependent modulation of

PDmax responses only; green: modulation of OD responses only; gray: no modulation. Asterisks indicate the

example units shown in (a) (blue - left unit (PDmax-graded); green - right unit (OD-graded)). (c) The angular

distribution of relative PD and OD modulation in all graded neurons in each area, with results of Hartigans’ dip

test, indicating bimodality with a concentration of the modulation along the PDmax(+) and OD(-) axes. Two shades

of colors signify our henceforth two categories of neurons, up-regulating (UR) and down-regulating (DR) neurons.

DOI: https://doi.org/10.7554/eLife.47581.005

The following source data and figure supplement are available for figure 3:

Source data 1. Prior-modulation at PDmax and OD, along with relative modulation strength for each PMd and PRR

units.

DOI: https://doi.org/10.7554/eLife.47581.007

Figure supplement 1. Chamber positions, recording coordinates, and neuronal directional selectivity.

DOI: https://doi.org/10.7554/eLife.47581.006
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the earliest subclass, PMd-DR neurons. We performed the same analyses for plateau time (PT; when

the ND stopped increasing and its velocity approached zero). PTs mostly matched movement onset

or lagged behind, but overall followed the same ranking pattern as MVTs, hence showed converging

results on latency differences between neuron classes and brain areas (Figure 5b and Figure 5—fig-

ure supplement 1b).

In summary, in the transition from encoding of prior-modulated motor goals to actual movement

execution, neuronal signatures of action selection manifested earlier in PMd than in PRR and the

leading role of PMd is driven by the DR neurons.

Discussion
In response to trial-by-trial parametric manipulation of action priors in our rule-guided action selec-

tion task, monkeys showed gradual decreases in error rates, decreases in reaction times (RT), and

increases in choice probabilities in favor of the action pre-cued with higher prior. The opposite was

Figure 4. Population tuning functions and graded modulation of motor-goal activities. (a) Average normalized tuning function. Shaded areas

correspond to standard errors. Vertical arrows illustrate directions quantified in (b). (b) Comparison of (non-normalized) average firing rates at maximum

direction (PDmax: red), opposite direction (OD: blue), orthogonal direction (Orth: yellow) during the planning period (300 ms before the rule-cue onset),

and the baseline (gray dotted line) of all motor-goal tuned PMd (left) and PRR (right) neurons. Error bars depict standard errors (*p < acorr at 5%, **p <

acorr at 1%, ***p < acorr at 0.1%; Bonferroni-corrected t-test). Interpolated population tunings (a) were plotted for illustrative purposes, in which we refer

to interpolated firing rates and PDs continuously between 0˚ and 360˚. Statistical analyses are based on the original neuronal activities restricted to the

four discrete directions (0˚, 90˚, 180˚, 270˚) which we had sampled in our task as shown in (b). The preferred direction of a neuron was then defined by

the direction toward which the motor-goal evoked the maximum response, denoted PDmax. (c–d) Same as (a–b) for upregulating (UR) and

downregulating (DR) neurons separately.

DOI: https://doi.org/10.7554/eLife.47581.008

The following source data and figure supplements are available for figure 4:

Source data 1. Average firing rates at PDmax, OD, and Orth directions, along with interpolated tuning curve of each unit.

DOI: https://doi.org/10.7554/eLife.47581.012

Source data 2. Average firing rates at PDmax, OD, and Orth directions, along with interpolated tuning curve, separately for DR and UR neurons.

DOI: https://doi.org/10.7554/eLife.47581.013

Figure supplement 1. Planning-period activities reflect each monkey’s choice bias as function of action priors.

DOI: https://doi.org/10.7554/eLife.47581.009

Figure supplement 2. ROC analyses of choice predictive responses.

DOI: https://doi.org/10.7554/eLife.47581.010

Figure supplement 3. Neuronal co-activation analysis.

DOI: https://doi.org/10.7554/eLife.47581.011
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Figure 5. Population average of spike density functions and analyses of selection-signal latencies. (a) Average spike density functions are shown for

different prior levels at maximum (PDmax: red), opposite (OD: green) and orthogonal directions (Orth: dotted gray). Orthogonal trials are only shown in

zero-prior trials for better visibility). Gray-shaded areas indicate duration of pre-cue presentation in pre-cue epoch and rule-cue presentation in reach

epoch. Small dots above the curves represent average reaction times (RTs) and horizontal bars represent standard errors in corresponding colors. For

Figure 5 continued on next page
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true for reaches against the high-prior direction. Behavioral costs and benefits of priors occurred not

only on instructed but also on free-choice trials, even though both choice options offered equal

expected reward at the moment the decision was required. Neuronal activity in PMd and PRR

showed graded motor-goal encoding during reach planning, mirroring the graded priors and subse-

quent free-choice biases. Individual neurons in PMd and PRR showed prior-dependent modulation

for either their preferred direction (upregulating, UR) or the opposite direction (downregulating,

DR), but rarely both. DR neurons contributed to co-encoding of both potential motor goals, as seen

in zero-prior trials, both in PMd and PRR. Neuronal action-selection signals were detected earlier in

PMd, also driven by DR neurons. The results show how frontoparietal planning areas can integrate

priors with choice sets to maintain knowledge about potential action goals while at the same time

preparing the system for the most likely needed action. Latency differences indicate a potential hier-

archical dependency between parietal and premotor areas.

Graded action prior induces graded action planning, leading to graded
choice bias
Our task did not involve decisions under risk. The probabilistic information contained in the pre-cue

was not needed to successfully complete the trials: monkeys received an unambiguous instruction at

the end of each instructed trial and were offered equal reward probability for both options in free-

choice trials. Nevertheless, both monkeys showed behavioral asymmetries in instructed trials and in

free-choice trials, when priors were neutralized by the white rule-cue indicating reward symmetry at

the time of commitment, which we refer to as ‘bias’.

Strictly speaking, our task design does not allow to distinguish action priors from reward priors

during the planning period. Nevertheless, we propose that bias in our task arises from action priors.

This is because the same behavioral paradigm in humans showed that only action priors but not

reward priors bias free choices (Suriya-Arunroj and Gail, 2015). RT reductions alone, as observed in

studies in which reward and action priors were confounded (Dorris and Munoz, 1998; Basso and

Wurtz, 1998; Gold et al., 2008), are not necessarily indicative of movement preparation. Therefore,

we consider the combination of instructed and prior-neutralized free-choice trials essential for con-

trasting the effect of action prior from reward prior. As instructed and free-choice trials in our task

were indistinguishable before the ‘go’ instruction, the absence of a final rule instruction and the sym-

metric reward in free-choice trials allowed us to translate the graded cognitive state of action plan-

ning into observable graded choice behavior.

The graded action planning showed as graded neural encoding of spatial motor-goal locations in

PRR and PMd. We rule out that the observed graded modulation resulted from averaging binary

responses across different fractions of trials under different priors (Dekleva et al., 2018) by conduct-

ing two types of trial-by-trial analyses. If monkeys had prematurely committed to a choice during the

Figure 5 continued

the reach epoch, only free-choice trials in which monkeys chose to follow the priors are illustrated. (b) Neural distances at different levels of prior

aligned to rule-cue onset. RTs, maximal velocity times (MVTs), and plateau times (PTs) are shown above the curves. (c) Between-area comparisons of

MVTs relative to rule-cue onset for DR and UR neurons. All prior conditions and both instructed (top) and free-choice (bottom) trials are shown. Solid

lines indicate follow trials and dashed lines indicate against trials. RTs are also shown as gray lines. (d) Comparisons of MVTs. Zero-prior (3:3) and one

high-prior (5:1) conditions, against and follow trials separately, are shown. Latency differences were tested between neuronal subclasses within each

area (e.g. PMd-DR vs PMd-UR) and between areas only within the same neuronal subclasses (e.g. PMd-DR vs PRR-DR), depicted by horizontal gray and

red lines above the bar plots (*p < a at 5%, **p < a at 1%, ***p < a at 0.1%; permutation test).

DOI: https://doi.org/10.7554/eLife.47581.014

The following source data and figure supplement are available for figure 5:

Source data 1. Average spike densities functions of UR and DR neurons of PMd and PRR.

DOI: https://doi.org/10.7554/eLife.47581.016

Source data 2. Euclidean distances of UR and DR neurons of PMd and PRR.

DOI: https://doi.org/10.7554/eLife.47581.017

Source data 3. Selection-signal latencies (maximum velocity time: MTV and plateau time: PT) of UR and DR neurons of PMd and PRR.

DOI: https://doi.org/10.7554/eLife.47581.018

Figure supplement 1. Selection-signal latencies between DR and UR neurons of PMd and PRR.

DOI: https://doi.org/10.7554/eLife.47581.015
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planning then planning-period activity should be indicative of the upcoming choice in each trial,

including zero-prior trials. However, a receiver-operating characteristic (ROC) analysis indicated that,

separately at each level of prior, the planning-period activity clearly distinguished whether higher

prior was towards or away from neurons’ PDmax (Figure 4—figure supplement 2b) but, at each prior

level, barely predicted monkeys’ upcoming choices (Figure 4—figure supplement 2c). Further, we

correlated trial-by-trial spike counts of each simultaneously recorded neuron pair which had opposite

spatial selectivity (PDmax). During unambiguous encoding of a single motor goal in full-prior trials,

neurons with similar PD have positive signal correlations (spike count correlations across different

reach directions), neurons with opposite PD negative signal correlations, by definition. If the animals,

trial-by-trial, randomly switched between both potential motor goals then these signal (anti-)correla-

tions should be preserved even in zero-prior trials in which both potential goals were equipotent.

Instead, we observed a systematic decrease in anti-correlation of neurons with opposite PDmax with

decreasing priors, suggesting co-encoding of the potential motor goals in zero-prior trials (Fig-

ure 4—figure supplement 3).

In summary, our trial-by-trial modulation of prior induced graded action planning which is

reflected in graded motor goal encoding in PRR and PMd during sustained movement planning and

leads to graded choice bias in subsequent symmetric choice.

Complementary encoding of action priors in disjoint subclasses of
neurons and dual process of decision making
Up-regulation of neuronal responses when prior was toward neurons’ PD and down-regulation when

prior was toward OD were supported by two hardly overlapping groups of neurons. The two com-

plementary mechanisms for encoding priors cannot be explained by ceiling or floor effects (low-fir-

ing neurons can only upregulate; high-firing neurons only downregulate), as subsampled sets of

neurons with matched firing rates were equally likely to fall into either category (data not shown; but

see example neurons in Figure 3a). The DR neurons here likely correspond to potential response

neurons described in a previous study (Cisek and Kalaska, 2005); the UR neurons likely correspond

to a mixture of single response and build-up neurons. We did not attempt to differentiate the latter

two types. As we based our classification on different criteria, namely on the pattern of prior-

induced modulation, not on the bimodal tuning property, we used different nomenclature, but

assume correspondence.

We ruled out that the bimodal distribution of graded units results from the preselection of

motor-goal neurons in our analyses and that excluded units would fall between the DR and UR cate-

gories and restore a unimodal distribution. For this, we repeated the analysis including all recorded

units in both brain areas. When analyzed in the same fashion as in Figure 3b and 3c, all excluded

units concentrated around the origin and p

2
as angular measure, respectively, thereby preserving the

bimodal distribution (data not shown).

DR neurons encode both potential motor goals, and are also modulated by the likelihood of the

less likely goal to become instructed. Hence, they could serve as mechanism for encoding priors and

choice set in parallel before commitment to a choice. DR neurons contain information about the cur-

rently valid options, in our case two out of four total. At the same time, they ‘devaluate’ the less

likely option proportionally to the strength of prior. This could be a way of implementing choice by

elimination strategies (Tversky, 1972), in which choice sets are reduced if factors rule out one

option.

Conversely, UR neurons represent relative likelihood of choice toward their PD compared to

other alternatives (Cisek and Kalaska, 2005) and might contribute to the encoding of decision varia-

bles (Ratcliff et al., 2016; Gold and Shadlen, 2007).

Dual motor-goal encoding
The question whether our brain encodes dual movement goals during decision is currently still under

active discussion and investigations (Gallivan et al., 2018). Dekleva et al. (2018) recently argued

against dual motor representation in zero-prior two-target trials, based on the observation that mon-

keys showed alternating single-target selection in such trials in their experiment. First, we observed

dual motor-goal encoding which is not explained by trial-averaging (ROC analysis and spike-count

correlations, Figure 4—figure supplements 1 and 2). Second, in the same task (Suriya-Arunroj and

Suriya-Arunroj and Gail. eLife 2019;8:e47581. DOI: https://doi.org/10.7554/eLife.47581 11 of 21

Research article Neuroscience

https://doi.org/10.7554/eLife.47581


Gail, 2015), few human subjects verbally reported that they employed a biased strategy, focusing

on one target per trial and seeing if the final instruction matched their initial plan (data not shown).

Similarly, only one monkey in Dekleva et al. showed strong evidence for single reach plan represen-

tation. We thus believe that single or dual motor-goal representations can be strategy-dependent

and if subjects adopt a biased strategy, one motor-goal representation will be prominent, as we also

have found previously in monkeys (Klaes et al., 2011), but not in our current data. Third, the task

design in Dekleva et al. did not encourage dual reach planning: monkeys did not have to memorize

the target positions shown during the ‘Target on’ period as both would reappear again during the

‘Go’ period. It seems rather unlikely to find evidence for dual motor representation from this task.

Instead it might be suited to test between single action plan vs. no plan. Task designs that require

animals to retain potential motor goals in memory and in which single-trial cognitive states are

sparsely and randomly probed with free-choice trials are a better common ground to compare single

versus dual motor representations.

Selective inhibition between competing motor-goal alternatives
The absence of prior-dependent modulation at orthogonal directions (Orth) and the inhibition of

activities below Orth activities when prior is directed toward OD, suggest selective inhibition. Knowl-

edge of such selectivity can help constrain computational models of biased competition in decision

making. Dynamic neural field (DNF) models (Erlhagen and Schöner, 2002; Cisek, 2007;

Klaes et al., 2012), for example, consist of computational layers that represent the continuous work-

space of sensory and motor parameters, such as stimulus location or reach endpoint, and implement

within-layer competition by lateral inhibitory mechanisms using center-surround excitation-inhibition

(CSEI) kernels. We previously simulated biased rule-based action selection (Klaes et al., 2012) using

a DNF model and showed bimodal motor-goal representations in the zero-prior condition that, with

increasing prior, showed increasing PD activities and decreasing OD activities, while Orth responses

were always lowest (Figure 6a). The latter contradicts our current empirical findings (Figure 4a).

We propose three possible explanations within the DNF framework to better account for the

selective PD enhancement and OD inhibition. First, DNF can be expanded with strong mutual com-

petition selectively between association nodes with opposing rule-preference (cw or ccw) but over-

lapping spatial selectivity. This corresponds to an anisotropic interaction kernel, with strongest

inhibition along the ‘rule’ dimension in the two-dimensional association field (Figure 6b). We postu-

late corresponding association neurons to come into existence during learning of our rule-based

selection task, for example, in the dorsolateral prefrontal cortex, and a strong mutual competition

between them is feasible. Second, the range of mutual competition (i.e. the CSEI kernels) along the

spatial dimension could be adaptive to the task, maximized at 180˚ apart for center-out reach task

with circular workspace. In this case, a lack of modulation of Orth locations by priors could result

from excitation and inhibition that cancel each other out at half-distance (in direction space) between

PD and OD. Third, other decision models postulate competition between a set of discrete groups of

neurons, the properties of which are defined by the specific option of the decision-making task

(Usher and McClelland, 2004; Brown and Heathcote, 2008; Ratcliff et al., 2016; Gold and Shad-

len, 2007), for example competition between cw and ccw goals in our experiment. Yet, we consider

it important to include the implementation on a continuous coding space in the context of action-

selection tasks (Figure 6d) to allow space-continuous motor outputs and to account for space-con-

tinuous multisensory input to posterior parietal cortex. In this sense, our suggested former two

explanations provide means of achieving the third. While the first explanation suggests the main

competition in the upstream association field, the second explanation requires competition mostly

on the motor-goal field. A rule-guided task with varied distance or angle between reach options

could help to distinguish these hypotheses.

Neuronal selection-signal latencies suggest a hierarchy in achieving a
decision
Earlier action-selection signals in frontal than parietal areas within the same animals performing the

same reach-selection task suggests a frontoparietal hierarchical dependency. In contrast, saccadic

choice signals during color or motion-direction categorization emerged earlier in parietal (lateral

intraparietal: LIP) and dorsolateral prefrontal cortex (dlPFC) than premotor cortex (frontal eye field:
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Figure 6. Potential explanations of selective inhibition, discussed on the basis of a learning dynamic neural field (DNF) model previously used to

simulate rule-guided reach selection (Klaes et al., 2012). It consists of an association field, linking visual and rule inputs, and projecting onto a motor-

goal field. The visual and motor-goal fields are one-dimensional, covering the space of spatial cue/reach directions. The 2D association field (AF)

receives input from the visual field and two rule nodes. Putative activation levels are indicated by color temperature. Sustained representations in the

AF and downstream fields are supported by local self-excitation and compete via surrounding suppression. Through training, the model learned to

map a single spatial cue onto two potential motor goals in the spatial motor goal field (dashed arrows; figure conceptually illustrates simulation data

from Klaes et al., 2012. A rule bias enhances regions in the AF which encode the corresponding rule in conjunction with their spatial selectivity. (b)

Hypothetical extension of the model to account for the effect of PD enhancement and OD suppression observed in the current experiment. Anisotropic

lateral inhibition leads to strong mutual competition (blue circle-headed arrows) along the rule dimension, that is between regions that share the same

spatial selectivity but prefer different rules. (c) Distance-dependent inhibition in the motor-goal field could be task-specific and maximal when the

potential movement goals are 180˚ apart. (d) Mutual inhibition could occur selectively among currently relevant regions, representing the options, in a

given decision.

DOI: https://doi.org/10.7554/eLife.47581.019
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FEF) (Siegel et al., 2015). The discrepancy might result from differences in experimental design.

First, the absence of physical target stimuli representing options in our task required the brain to

construct rule-based motor goals and decide among them. Stimulus-based (‘perceptual’) and action-

based decisions might involve different brain circuitry (Wunderlich et al., 2009; Camille et al.,

2011). Second, saccade-related parietal areas might be faster than reach-related areas. In a match-

to-sample categorization task requiring a manual response, average LIP activities peaked around

movement onset and about 100 ms earlier than MIP (medial intraparietal; part of PRR)

(Swaminathan et al., 2013). Late choice signals in PRR observed here and previously

(Swaminathan et al., 2013; Westendorff et al., 2010) challenge a causal role of parietal lobe in

rule-guided action planning and action-selection signaling. This view would agree with a previous

study showing no effect on decision-making performance after LIP inactivation (Katz et al., 2016).

Materials and methods

Rule-guided reach selection task
Monkeys (monkey H/K, aged 9/11, weighing 10.34/9.80 kg, group housed) initiated a trial by direct-

ing gaze to the eye fixation spot (red square, 0.75–0.78˚ visual angle) monitored at 224 Hz (ET-49B,

Thomas Recording, Giessen, Germany) and touching the hand fixation spot (adjacent white square)

within 4.52–4.7˚ VA tolerance at the center of the screen (19’ LCD VX922, ViewSonic, Brea, CA; Intel-

liTouch, ELO Touch Solutions, Milpitas, CA) 36.5–38 cm away (Figure 1). Each trial unfolded as fol-

lows. After 500–1000 ms fixation (random uniform distribution) the pre-cue flashed (500 ms) at one

of four locations (0 o, 90o, 180o, or 270o) 8 cm (12–12.5˚ VA) eccentric from the screen center. Two

differently colored arrowheads (magenta and cyan) of the pre-cue indicated two spatial transforma-

tion rules and hence two possible reach goals in a given trial, 90o cw and 90 o ccw from the pre-cue,

at identical eccentricity. The two pre-cue arrowheads could be differently sized, indicating the rela-

tive likelihoods of the later cw and ccw instruction. After 500–1500 ms memory period (uniform dis-

tribution), the rule-cue was presented (250 ms; 3.01–3.14˚ VA) as frame around the fixation spots

and was either colored (magenta or cyan; instructed trials) or white (free-choice trials). In instructed

trials, only the reach goal associated with the color-matching arrowhead in the pre-cue was

rewarded. The association between rule and color was randomized trial by trial; monkeys had to

remember and color-match the arrowheads with the later single-color rule-cue to complete the trial

correctly. In free-choice trials, both potential reach goals were rewarded with equal probability.

Simultaneously with the rule-cue, the hand fixation spot disappeared (‘go’ signal), and the monkey

had to reach the goal (4.52–4.7˚ VA/3 cm tolerance) within a maximum of 800 ms. Successful goal

acquisition resulted in a circular patch at the (chosen) goal position, a high-pitched tone, and juice

reward. In failure trials, the circular patch was displayed briefly at the goal position, or both valid

positions in case of free-choice trials, with a low-pitched tone, followed by 5 s timeout. Failure could

be due to ocular or touch fixation breaks, misplaced or delayed reaches. Unsuccessful trials were

reinserted into the trial sequence randomly. A real-time LabView program running on a PXI com-

puter (National Instruments, Austin, TX) was used to control the tasks as well as to register all stimu-

lus properties, event timing, and behavioral responses in each trial.

Monkey K achieved very good performance with 96% correct reaches in full-prior trials when trials

were not aborted due to fixation breaks. Monkey H also understood the task very well with 94% cor-

rect reaches in full-prior trials, but high failure rate when fixation was imposed during the pre-cue.

We therefore allowed monkey H to briefly break ocular fixation during the pre-cue period without

the trial being aborted. Fixation had to be re-acquired before the pre-cue disappeared and main-

tained throughout the rest of the trial, particularly during planning and movement. Aside from stron-

ger cue-related neuronal activities during the initial phase of pre-cue presentation in monkey H, the

neuronal activity patterns of both monkeys were comparable during the rest of the trial.

Manipulating prior
The task was designed to manipulate prior, on a trial-by-trial basis, with a pre-cue that indicated the

probability that each of the two possible actions would have to be performed at the end of the trial.

Instructed goals were rewarded with one unit. Either choice goal was rewarded with 100% probabil-

ity but 50% chance of either receiving 1.5 units or 0.5 units, independent of pre-cue size and choice
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history. We varied reward amount in free-choice trials to discourage the monkey from repeating a

default selection throughout the session and encourage explorative behavior for both response

alternatives instead.

The prior manipulation and balancing procedure were described previously (Suriya-Arunroj and

Gail, 2015). We used seven prior levels, defined as likelihood ratios {6:0, 5:1, 4:2, 3:3, 2:4, 1:5, 0:6}

for instruction of the ccw or cw rule, respectively. Priors were randomized but kept constant in

blocks of eight (two free-choice, six instructed) successful trials. The ratios of initial expected values

(iEV) associated with the two rules for each prior were {0.875:0.125, 0.75:0.25, 0.625:0.375, 0.5:0.5,

0.375:0.625, 0.25:0.75, 0.125:0.875}. iEVs were only valid between pre-cue and rule-cue. After the

rule-cue, the EV relevant for goal selection in instructed trials became one unit for the instructed

rule, zero for the non-instructed rule, and one for both rules in the free-choice trials.

We analyzed behavioral bias and neuronal modulation as function of prior, defined as absolute

normalized difference between the two iEVs associated with a priorðhigher iEV�lower iEV

higher iEVþlower iEV
Þ, resulting in four

levels {0 0.25 0.5 0.75}. We sorted data independent of the cw and ccw rules but dependent of

whether the reach was conducted toward the same (follow) or the opposite (against) direction indi-

cated by the bigger pre-cue triangle (prior direction). We split behavioral and neural data into follow

and against because preliminary analyses and our previous study (Suriya-Arunroj and Gail, 2015)

showed asymmetric effects between both conditions. Note that follow and against responses are

well-defined only in non-zero-prior conditions. In the zero-prior condition, cw reaches were arbitrarily

considered as follow reaches for convenience of presentation but without relevance for the

conclusions.

To encourage the monkeys to explore the possible choices, we ran a balancing task before each

experimental session. The balancing task contained only zero-prior trials and, instead of rewarding

both options with random probability, we used the bias-minimizing reward schedule (BMRS)

(Klaes et al., 2011; Suriya-Arunroj and Gail, 2015), in which the reward probabilities reduced the

more often a target was chosen in the previous free-choice trials. The balancing task was run until

the monkey made at least two cw and two ccw reaches at each pre-cue position.

Behavioral data analysis
We analyzed behavioral bias in error rate, reaction time (RT), and choice probability as functions of

prior.

Error rate was the percentage of mis-placed or delayed reaches, independent of earlier trial abor-

tion due to fixation errors. As error rates were very low and both goals were considered valid in

free-choice trials, we report error rates only in instructed trials. In free-choice trials, we compute

choice probabilities, defined as the fraction of correct reaches following the high-prior direction. RTs

were defined as time between onset of the go-signal and release of the hand from the touch screen.

RTs were corrected for monitor display and touch screen latencies.

With a generalized linear mixed model (GLMM; ‘fitglme’ function of MATLAB R2014b, Math-

works) we quantified influences of action priors on errors and RTs. Full models included PRIOR (con-

tinuous variable), CONGRUENCY (categorical: follow or against), and their interaction as fixed

effects. MONKEYS were included as random effects (random slopes for PRIOR and CONGRUENCY).

The likelihood of the models including or excluding different variables was compared using the

MATLAB function ‘compare(model1, model2)’. Our final model for error rates and RTs was:

X ~PRIOR �CONGRUENCY � CONGRUENCY þ ðPRIOR :CONGRUENCY jMONKEYSÞ (M1)

which tests for differential effects of prior between follow-against responses on error rates (binomial

response) and RTs with possible interactions between prior and congruency.

We tested for a biasing effect on choice using a separate full model without the Congruency

term:

choiceðbinomialÞ~PRIOR þ ðPRIORjMONKEYSÞ (M2)

Following GLMM analyses, post-hoc tests on error rates, RT and choice were performed to com-

pare each pair of successive values of prior (t-tests, Bonferroni corrected for multiple comparisons).

Suriya-Arunroj and Gail. eLife 2019;8:e47581. DOI: https://doi.org/10.7554/eLife.47581 15 of 21

Research article Neuroscience

https://doi.org/10.7554/eLife.47581


Animal preparation and recording procedure
All experiments complied with institutional guidelines on Animal Care and Use of the German Pri-

mate Center and with European (Directive 2010/63/EU) and German national law and regulations,

and were approved by regional authorities where necessary (LAVES 3392-42502-04-13/1100).

Both monkeys were implanted with a titanium head holder custom-fit to the skull based on com-

puter-tomographical surface reconstruction (3di GmbH, Jena, Germany) and two magnetic reso-

nance imaging (MRI) compatible recording chambers in the left hemisphere contralateral to each

monkey’s dominant right hand (Horsley Clarke coordinates PRR: �12.50 /- 10.00 mm (monkey H/K)

lateral; �13.50 /- 18.50 mm anterior; PMd: �19.00 /- 13.00 mm lateral, 22.00/20.00 mm anterior).

Chamber placement was guided by pre-surgical and confirmed by postsurgical structural MRI, also

guiding the placement of electrodes (Figure 3—figure supplement 1). Sustained and direction-

selective neuronal responses during memory-guided center-out reach planning were used as a physi-

ological signature in both areas to confirm the imaging-based positioning. All surgical and imaging

procedures were conducted under general anesthesia and proper analgesia.

Extracellular neuronal recordings were conducted from up to five microelectrodes simultaneously

in each cortical area using a five-channel Microdrive (’mini-matrix’; Thomas recording). In most ses-

sions, simultaneous recordings were conducted in both areas. The raw signal from each electrode

was pre-amplified (20�; Thomas recording), bandpass filtered, and amplified (154 Hz to 8.8 kHz;

400-800�; Plexon), while being subjected to on-line spike-sorting (Sort Client; Plexon). Spike wave-

forms were digitized (40 kHz) and subjected to off-line control of sorting quality and stationarity (Off-

line Sorter; Plexon). All behavioral and neural data were analyzed using MATLAB and most plots

were generated using GRAMM toolbox (Morel, 2016).

Neural data selection and direction selectivity
All recorded units with sufficiently good isolation, stability, and activity (firing rates > 5 Hz in any trial

period; see below) were included in the analysis of direction selectivity.

As known from previous studies, spatiotemporal selectivity profiles (‘tuning’) of individual neurons

in PMd and PRR can change over time from visual-related to motor-related (Crammond and

Kalaska, 1994; Gail et al., 2009; Westendorff et al., 2010). Neuronal spike rates were computed

to reveal spatial selectivity of individual neurons Analysis time windows were: 300 ms before pre-cue

onset (baseline), 300 ms after pre-cue onset (pre-cue), the last 300 ms before the rule/go-signal

(planning), the time from the reach onset to offset (movement).

Directional selectivity was quantified with a directional tuning vector (DTV) (Gail et al., 2009;

Westendorff et al., 2010) calculated relative to the pre-cue location (baseline and pre-cue) or

reach-goal location (planning and movement). The direction of the DTV defines the preferred direc-

tion (PD) of a neuron. Significance of directional tuning was tested with a Kruskal–Wallis test DIREC-

TION as factor and sample sizes defined by the number of identical trial repetitions (p < s = 0.01).

Basic directional selectivity was analyzed independent of cw and ccw rules in successful full-prior

trials, where the definite motor-goal was announced with the pre-cue. Further analyses depended

on motor-goal selectivity during planning, for which only significantly motor-goal selective neurons

were used.

Neuronal population tuning
Directional selectivity during planning was computed as function of the four motor-goal directions,

separately for each value of prior. Directionally continuous tuning curves were reconstructed from

the four sampled directions via ideal low-pass filtering according to the sample theorem for period

signals. Each neuron was aligned relative to its PD in the planning period and normalized to the

maximal response level in full-prior trials at the neuron’s PD before averaging across all motor-goal

neurons (Klaes et al., 2011) (Figure 4a).

Analysis of graded neuronal modulation
We characterized graded modulation in two ways. First, at the population level, we computed the

non-normalized mean firing rate of all motor-goal neurons during planning in PDmax, OD, and

orthogonal trials (Orth). We tested the influence of prior using a GLMM, including PRIOR, prior
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direction (PRIORDIR: PDmax vs. OD), and their interaction as fix effect and individual UNITS as ran-

dom effect:

Activity~PRIOR �PRIORDIR þ ðPRIOR �PRIORDIRjUNITSÞ; (M3)

followed by t-tests with Bonferroni correction for post-hoc comparisons.

Second, at the single neuron level, we assessed graded modulation by extracting trial-by-trial nor-

malized firing rates at the PDmax and OD and using a linear model,

Activity~PRIOR �PRIORDIR; (M4)

to test whether neuronal activity was significantly modulated at the PDmax and/or at the OD as a

function of prior. We quantified the proportion of individual neurons that showed a significant effect

in both PDmax and OD, only in PDmax, only in OD, or no significant modulation. Additionally, we

compared the strength of modulation from the model estimates (slope parameter) between PDmax

and OD. For this we tested the angular distribution (arctan of the ratio of PDmax and OD slopes) for

unimodality using Hartigans’ dip test (Hartigan and Hartigan, 1985).

Choice predictive activities and ROC (related to Figure 4—figure
supplement 1)
For each single unit, we sorted all choice trials into PDmax (Prior-in), OD (Prior-out), and Orth trials

according to the prior direction (identical to Analysis of graded neuronal modulation). We further

split the conditions into Reach-in and Reach-out choices, for reaching into versus out of the neurons’

PDmax, respectively. The combinations of Prior-in followed by Reach-in and Prior-out followed by

Reach-out were follow trials, whereas the combinations of Prior-in followed by Reach-out and Prior-

out followed by Reach-in were against trials.

First, we tested the difference between Reach-in and Reach-out choices (REACHDIR) using

GLMM (Activity ~PRIOR * PRIORDIR * REACHDIR + (PRIOR * PRIORDIR * REACHDIR | UNITS)).

Second, we tested the discriminability of choices by measuring the area under curve in a ROC

analysis for each neuron separately and based on trial-by-trial planning-period activity prior to the

rule-cue. The area under the ROC curve determines levels of discriminability (here: of the subse-

quent reach choice), where 0.5 corresponds to chance level, 1.0 to perfect discriminability. We com-

puted the within-condition ROC, that is discriminability of Reach-in vs. Reach-out choices separately

in Prior-in and Prior-out trials, to test how well we could predict follow vs. against choices depending

on the action priors. Also, we computed the between-condition ROC, that is Prior-in vs. Prior-out

conditions, to test how reliable we could predict choice based on prior directions.

Analysis of neuronal co-activation (related to Figure 4—figure supplement
2)
We computed signal correlation of all pairs of motor-goal tuned neurons recorded simultaneously in

the same experimental session. Between each pair, we computed pairwise Pearson correlation coef-

ficients of the planning-period activities across all trials as a function of the distance between the

neurons’ PDs. The dependency of signal correlation from PD distance was computed separately for

each level of prior. We used a GLMM, including PRIOR as fixed effect and neuron PAIRS as random

effect (CorrCoef ~PRIOR | PAIRS).

Analysis of selection signal latencies and reaction times
To illustrate the temporal dynamics of population responses, we computed spike densities R as func-

tion of time t by convolving spike trains with a causal EPSP-like kernel

RðtÞ ¼ tg � td

t
2

d

� ð1��t

etg
Þ ��t

etd
; (E1)

with rise-time constant TMP½ �mediumg set to 2 ms, and decay time constant ad to 50 ms. Average spike

densities across trials within identical conditions were sampled at 1 ms

resolution (Westendorff et al., 2010).

For latency analyses, we used a Gaussian kernel of width s= 50 ms:
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RðtÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p � e�t2

2s2 (E2)

Even though not a causal filter, the Gaussian kernel allowed more reliable estimates of neural

velocity (rate of change). We controlled latency results by running identical analyses on the data con-

volved with the EPSP-like kernel (Westendorff et al., 2010), yielding similar results but with less sta-

tistical power (not shown).

For assessing neural latency of commitment to a motor-goal (action-selection signal), we com-

puted neural distance (ND). ND was defined as Euclidean distance in the high-dimensional state

space spanned by all neurons, without dimensionality reduction (Ames et al., 2014). Because neu-

rons were collected in different sessions, ND was computed based on the average trajectories of

each task condition (congruency x prior x pre-cue location). For analysis of selection signal latency,

ND was computed between trials in which monkeys reached two opposing reach goals, as function

of time after the go-signal, averaged across the four pre-cue locations, separately in follow and

against trials and for each prior. We estimated the variability of the ND by bootstrapping (N = 1000

resampled distances; just for illustration in Figure 5b). As neuronal responses differed in response to

priors during planning, we could not use a non-zero ND as indicator for commitment to an action.

Instead, we quantified selection signal latency as the time after the go-signal onset in which the

change in ND reached maximal velocity (MVT). To confirm that the results did not depend on choice

of thresholds, we also quantified the plateau latencies (PT) by calculating the time bin in which the

velocity of ND became lower than 0.3 (typical velocity when the ND started to reach its peak or pla-

teau). We did not use the maximum ND because the PRR population showed a plateau in ND rather

than a peak during reach movements, which would have made peak search highly variable.

The selection-signal latencies were compared between both brain areas by pairwise permutation

tests: we randomly reassigned each neuron to one of the brain areas such that the number of units

in both sets matched the original sample size (N = 10,000 resampled latency differences). The per-

centage of random permutations leading to a latency difference larger or equal to the original sam-

ple served as the p value and when the p value was less than 5%, we considered the latency

difference significant.
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