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Abstract
Antibiotic resistance is a rapidly growing health care problem globally and causes many illnesses and deaths. Bacteria can
acquire antibiotic resistance genes (ARGs) by horizontal transfer mediated by mobile genetic elements, where the role of
phages in their dissemination in natural environments has not yet been clearly resolved. From metagenomic studies, we
showed that the mean proportion of predicted ARGs found in prophages (0–0.0028%) was lower than those present in the
free viruses (0.001–0.1%). Beta-lactamase, from viruses in the swine gut, represented 0.10 % of the predicted genes. Overall,
in the environment, the ARG distribution associated with viruses was strongly linked to human activity, and the low dN/dS
ratio observed advocated for a negative selection of the ARGs harbored by the viruses. Our network approach showed that
viruses were linked to putative pathogens (Enterobacterales and vibrionaceae) and were considered key vehicles in ARG
transfer, similar to plasmids. Therefore, these ARGs could then be disseminated at larger temporal and spatial scales than
those included in the bacterial genomes, allowing for time-delayed genetic exchanges.

Introduction

Globally, antibiotic resistance is a rapidly growing health
care problem. The World Health Organization estimated
that, in 2010, foodborne illnesses affected 600 million
people and caused 420,000 deaths globally [1]. Some bac-
teria display intrinsic resistance [2]. In others, resistance is
acquired by mutations in different chromosomal loci or by
the horizontal acquisition of antibiotic resistance genes
(ARGs), which is mediated by mobile genetic elements
(MGEs). The majority of MGEs, such as plasmids, genomic
islands, transposons, and integrative conjugative elements,
are transferred through cell-cell contact by a conjugation
mechanism [3]. Other mechanisms do not require cell
contact between microorganisms, but the persistence of the

DNA in the environment is then critical. Thus, DNA
transformation is unlikely a reason for the ARG transfer,
and the most suitable vehicle for the transfer between
noncontiguous cells could be phages or, more generally, all
vehicles protecting the nucleic acids as gene transfer agents
or vesicles [4]. Viruses are the most abundant biological
entities on earth, with an estimated abundance ranging from
109 to 1010 per liter of seawater (e.g., [5]) and from 108 to
109 per gram of human feces [6]. In addition, some studies
show that in certain environments, the transduction fre-
quencies are several orders of magnitude greater than what
was previously thought [7, 8]. Phages may, therefore, act as
vectors for genetic exchange via generalized or specialized
transduction. In the first mechanism, some host DNA is
erroneously packaged in the capsid, whereas in the second
phenomenon, the DNA prophage is excised with a small
part of the host chromosome. An important characteristic of
transduction is that gene transfer does not require that the
donor and recipient bacteria be present in the same biome at
the same time. In addition, phages can survive in the
environment for long periods of time, allowing for a time-
delayed transfer of genetic information [9].

The acquisition of antimicrobial resistance by transduc-
tion has already been demonstrated in clinically relevant
bacterial species. For example, prophages of Staphylo-
coccus aureus are believed to be responsible for the spread
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of some antibiotic resistance genes [10]. Of the 243 coli-
phages, 24.7% are able to transduce one or more antibiotic
genes, encoding for ampicillin, tetracycline, kanamycin and
chloramphenicol, to the laboratory strain Escherichia coli
ATCC 13706 [11]. The transfer of the ampicillin resistance
gene between E. coli cells is done at a surprisingly high
frequency (ranging between 10−4 and 10−3) [7]. Finally,
phage DNA may constitute 20% of the bacterial genomes,
and some cryptic forms help bacteria (E. coli) to resist
sublethal concentrations of antibiotics or, more generally, to
resist various stresses [12]. The importance of generalized
or specialized transductions are, therefore, rather well
described for foodborne bacteria, mainly among the Gam-
maproteobacteria. In this regard, the role of phages in the
dissemination of antibiotic resistance genes among bacterial
hosts in natural environments has not yet been clearly
resolved, since the results seem conflicting. Surprisingly,
the relative abundance of ARGs in the phage DNA fraction
(0.26%) was higher than in the bacterial DNA fraction
(0.18%) [13]. However, by qPCR, higher copy numbers of
ARGs were detected in the bacterial DNA fraction than in
the phage fraction [14]. Another example of the intense
debate within the scientific community about this topic is
the new analysis [15] of the metagenomics results obtained
by Modi et al. [16]. In the original paper, the authors shed
light on the fact that antibiotic treatment leads to the
enrichment of phage-encoded genes that confer resistance to
the antibiotics. However, the ARG detection from the reads
is challenging, and false results can be obtained by using
too relaxed or explanatory thresholds for the sequence
analysis. A more stringent analysis of the proteins in contigs
does not allow for the detection of ARGs among dominant
viruses. Finally, if the viromes built by Modi and colla-
borators were not contaminated by cellular components, any
ARG enrichment can be evidenced, since the percentage of
ARGs was correlated with the gene content found in bac-
teria, suggesting, rather, a generalized transduction. The
metagenomics approach represents, therefore, the standard
method for studying the gene contents of viruses that cannot
be isolated without their host. However, ARG detection is
very sensitive to the following: (i) the thresholds used to the
similarity search among the public databases; (ii) the kind of
data (short reads vs contigs), and (iii) the reference data-
bases [17].

To the best of our knowledge, ARG detection in the
viruses from various environments have mainly been rea-
lized from short reads [13, 18, 19], and their importance has
to be confirmed by a more robust approach, namely,
assembling and protein affiliation with stringent thresholds
against a curated database, as recommended [15, 17]. In this
paper, we (i) analyzed the virome data generated by high-
throughput sequencing and (ii) compared the role of the
viruses to plasmids as ARG vehicles in the biomes by a

network approach. This work allows therefore to decipher
the role of viruses in the dissemination of the ARGs in
environments compared to plasmids and could contribute to
limit the spread of such resistances in the future.

Results

ARGs predicted in free viruses and prophages

The predicted ARGs in the virus genomes (free and pro-
phages) represented 0.02% of the total predicted genes
(Fig. 1). Surprisingly, the mean proportions of the predicted
ARGs found in prophages (0–0.0028%) were lower than
those present in the free viruses (0.001–0.1%) (P < 0.001,
Chi-squared test). The prophages were certainly under-
sampled compared to the free viruses. The genomes of the
viruses from the swine guts integrated the most ARGs, with
a value of 0.10%. These genes were also well represented in
the viruses inhabiting oceans, freshwater ecosystems and
human guts.

The resistance mechanisms differed greatly between the
vehicles analyzed, including bacteria, archaea, plasmids and
viruses (Fig. 2). The greatest richnesses in the ARGs were
detected in the chromosomes, plasmids and soil viruses.
Antibiotic efflux seemed, therefore, the main mechanism in
the viruses, with the exception of the gut microbiota, where
only antibiotic degradation and target alterations were
found. The swine gut consisted only of genes coding for
Beta-lactamase.

Interactions between microorganisms and viruses
inferred from networks

To decipher the putative gene transfer between the vehicles,
two networks were built. The first, a bipartite network

Fig. 1 Antibiotic Resistance Genes predicted in the viromes (i.e.,
viruses) and microbiomes (i.e., prophages) expressed in percentage of
the genes predicted
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(Supplementary Information Fig. S1a), allowed us to dis-
criminate the main associations within and between the
genomics units (GUs) defined as bacteria, archaea, plasmids
and viruses in the various environments. These GUs were
linked by protein clusters of ARGs named Homologous
protein Clusters (HpCs). An HpC, including at least 2
ARGs could be then linked to another GU or within the GU
by an edge. There were few edges (i.e., HpC) between
archaea and bacteria unlike with the marine viruses,
showing that both domains did not share many ARGs,
whereas viruses shared numerous ARGs with bacteria. The
second network (Fig. 3) was built from the first but with
various distances (from proteins, genes and phylogenies in a
same HpC) allowing us (i) to identify the vehicles linking
the GUs at a finer level and (ii) to select the best vehicle
involved in the interaction (i.e., ARG transfer). The best
vehicles were defined as those with the lowest evolutionary
distance. The most interesting results were the associations
between the GUs, including viruses, plasmids and bacteria/
archaea. Indeed, a protein cluster within a GU of viruses no
make sense here, since (i) viruses from different species can
share a same ARGs, because they infected a same host or
(ii) an edge between viruses can also correspond to a cluster
consisting of closed viruses.

The first network was built with 15937 HpCs, with a
strong identity between each other (Supplementary Infor-
mation Fig. S1b), since the median value was 99% and
more specifically 99.3% by taking account only viruses
and prophages. A total of 403 of these HpCs allowed us to
define an edge between at least 2 GUs and at the most 7
GUs. The bacteria (no archaea) were involved in all the

edges defined. From these 403 edges, 210 involved plas-
mids and almost the same number (205) of viruses and
prophages. The most important viruses in this network
were those sampled from the oceans and freshwater eco-
systems with 160 and 29 edges with bacteria, respectively.

From the HpC described, patristic distances (branch
lengths) from the phylogenies were computed and a new
network was built allowing to visualize the interactions
between bacteria and putative vehicles consisting in 40
plasmids and 180 viruses and prophages (Fig. 3a). Finally,
this network recruited significantly more viruses than
plasmids (P < 0.001, Chi-squared test). As expected plas-
mids appeared as central in this network but also viruses.
Both of the indices, betweenness and closeness, that can
measure this centrality, were used to determine the keystone
nodes and, therefore, the main vehicles involved in
the ARG flux (Fig. 3). A high closeness meant that the node
was near all other nodes and had a central position in
the network, and a high betweenness allowed us to detect
the nodes that acted as bridges between the nodes or
modules. Overall, the viruses detected in the viromes,
more numerous in this network, had the highest
closeness and betweenness values among the mobile
genetic elements (Fig. 3b, Supplementary Information
Fig S2). Nevertheless, the statistical tests (Table 1) show
that among the vehicles these indices were rather similar
with slightly differences. For example, the betweenness
computed from plasmids were significantly different from
marine viruses but not significant with freshwater viruses.

From the ARGs linking the viruses or plasmids to bac-
teria, the dN/dS ratios were computed for estimating the

Fig. 2 Mechanisms of the
resistance to the antibiotics
detected in the environments for
the viruses (free and prophages)
and the prophages

2858 D. Debroas, C. Siguret



ratio between the nonsynonymous and synonymous sub-
stitutions by using the bacteria in each cluster (HpC) as a
gene reference (Fig. 4). The median values for the plasmids,
freshwater and marine viruses were 0.99, 0.03, and 0.05,
respectively. Few prophages were found in this second
network, but interestingly the prophages that originated

from the human gut and human engineering had a low dN/
dS ratio (0.02).

Geographical distribution of the ARGs

The results show therefore the importance of the aquatic
viruses in the ARG dissemination. These ecosystems can

Fig. 3 aMolecular network built
with the best vehicles of the
ARGs inferred from the gene
phylogenies (patristic distances).
b Main network topological
indices computed from the
network
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considered by their watershed as integrating all the human
activities and ultimately, it reflects the pollution. Thus, the
study of the spatial distribution of ARGs in this part was
focused to aquatic environments. In Fig. 5, the main ARG
categories are displayed in the map, and the pie size is
proportional to the quantity of ARGs (i.e., bases mapped
against genes) among the ecosystem considered (ocean or

lakes). In the few lakes studied, the ARGs, mostly
represented by Beta-lactamase, were mainly found in the
eastern part of the USA. From the TARA-Ocean experi-
ments [20], “ABC Transporter”, “Gene Modulating
Resistance” and “RND Antibiotic Efflux” were sig-
nificantly different (P < 0.05) between biomes. Thus, a
more precise geographical distribution was generated, and

Table 1 Various metrics inferred
from the second network built
(Fig. 3), with distances
computed from the phylogenies
(patristic distances) for
each HpC

Bacteria Plasmids Freshwater viruses Marine viruses Prophages Pa

Betweenness 0.040 0.487bc 0.342ab 0.286a 0.725c < 0.001

Closeness 0.508 0.721bde 0.687abc 0.641ad 0.843ce < 0.001

Neighbors 1.716 4.875a 4.450ab 4.221a 3.141a < 0.001

Because the low abundances in the second network, prophages were grouped together and swine viruses
were not take account in this statistical test
aANOVA one way (ddl: 4, 748)

Tukey test: values with the same subscripts (a, b c, d, e) did not differ significantly (P > 0.05)

Fig. 4 Selective pressure acting
on the ARGs included in the
second network (Fig. 3)
evaluated by the dN/dS ratio

Fig. 5 Relative importance of the ARGs and the main resistance mechanisms in the aquatic ecosystems in the earth. The pie size is proportional to
the reads mapped on the viral contigs for each environment: oceans and lakes
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the ARGs were less numerous in the open ocean than
along the coasts. More precisely, the ARGs in viruses
were the most abundant in the close seas (Mediterranean
and Red Seas) and the Indian coast. Surprisingly, an ARG
spot was also detected in the southern ocean close to the
Cape Horn passage and far away from dense populations.

Taxonomies of the viruses involved in the ARG flux

After sampling down the sequences (i.e. 1000 contigs)
among the various GUs defined (total viruses or prophages
inhabited various environments) for avoiding sampling bias,
the proteomic trees generated by VipTree evidenced that the
taxonomy of GUs were significantly different (ANOSIM,
P= 0.001). The prophages, whatever the environments,
were also significantly different from the free viruses
(ANOSIM, P= 0.001).

More precisely, among the viruses involved in the ARG
fluxes, some remained mainly unclassified because no
landmark viruses or cellular genes were found in the contig
(Fig. 6). This category remained rather weak (15%), and
two categories dominated the viral community, including
caudovirales and Leptospira phages. Surprisingly, the tax-
onomy of the ocean viruses (Supplementary Information
Fig. S3) was quite similar with the freshwater one. This
result sheds light on the fact that the close viruses harbored
ARGs in their genomes in both ecosystems or that this
taxonomy reflected the paucity of the virus databases.
However, the results obtained from the proteomic trees
showed no significant differences (ANOSIM, P= 0.23)
between the viral communities (Supplementary Information
Fig. S4) harboring ARGs in their genomes. Likely, the first
hypothesis should be retained.

In the network, these viruses interacted with bacteria that
were represented mostly by Gammaproteobacteria and
Alphaproteobacteria (Fig. 6). Enterobacterales and vibrio-
naceae, within which human pathogens are found,
accounted for 6% and 0.7% of the bacterial community,
respectively.

Discussion

Viruses are known as the most abundant and diverse bio-
logical entities on earth, and their main role in ecosystems
was identified in the first time as the microbial population
regulation. The innovation in microbial studies though
“omic” approaches allows us to now decipher intriguing
virus-host interactions in the environment, such as the
auxiliary metabolic genes or HGT [21]. However, the study
of viruses is technical challenged, the abundance may be
overestimated in the environment [22] and the gene content
may be biased by cellular contaminants [23]. In addition,

the gene annotation, and more particularly the ARG anno-
tation, is sensitive to the database and bioinformatic pro-
cedures used [17]. Finally, this reanalysis of the Modi’s
study [16] allowed to define the major pitfalls in ARG
identification [15]. The bioinformatic pipeline used in this
study (briefly gene annotation from contigs with RESFAM)
represents certainly the most accurate procedure right now.
However, similar to microbial annotation, the ARG activity
cannot be deduced, undoubtedly, since changes of a few
amino acids in a gene can alter its substrate preference or
binding site. However, there was a strong identity between
the microbial and virus proteins within an HpC, and the low
dN/dS ratio, found in this study advocate for a negative
selection (i.e. amino acid sequences not modified) of the
ARGs detected in the virus genomes and likely a pre-
servation of the function.

Fig. 6 Taxonomies of the vehicles of the ARGs, bacteria (a) and
viruses (b), present in the second network displayed in Fig. 3
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Our study allowed us to confirm part of the results found
by Lekunberri et al. [19] from metagenomic reads analysis.
Most of the viromes harbored ARGs, and the pig sewage
showed the highest relative abundance dominated by a
resistance mechanism, namely Beta-lactamase. However,
our work sheds light on the fact that a lower relative
abundance of the ARGs was estimated compared to the
maximum at ~0.45% in the rare previous studies [18, 19].
For the reasons given above (i.e., bioinformatic procedures),
our estimation is certainly more accurate. Intriguingly, the
ARGs were dominant within the pig sewage but not in the
human feces, while the antibiotic pressure was also strong.
As underlined by Colombo et al. [24], ARGs may, there-
fore, be mobilized even in the absence of antibiotic treat-
ment in some environments. To support this hypothesis,
[25] also found a high proportion of ARGs in a pristine
pond of the Mauritanian Sahara. In addition, the microbial
genes mobilized in the genome could be the result of past
transfer events rather than a picture of the current microbial
diversity. For example, ARGs were evidenced in viromes
from fossilized fecal material from the 14th century [26].
However, our study on the geographical distribution of the
ARGs in the aquatic ecosystem, which are considered
through the watershed as a summarize of the human
activities, showed that, globally, the hot spot of the ARGs in
the viromes corresponded to the most anthropized systems
and/or a closed sea (Mediterranean sea). In contrast, viruses
from open oceans included few ARGs in their genomes,
with the exception of one sample close to Cap Horn.
Overall, in the environment, the ARG distribution asso-
ciated with the viruses seemed to be strongly linked to
human activity.

Another intriguing result was the lower proportion of
ARGs in the prophages compared to the free viruses, since
from the reference genomes [27] concluded that the ARGs
were 10-fold less abundant in phages than in prophages.
These statistics were determined from the RefSeq data-
base [28], which is known to be enriched in isolates from
agriculture and medicine fields. On the other hand, (i) our
results were partly biased by the sampling effort, since the
proteins predicted from the viruses were therefore
approximately four times more abundant than those ana-
lyzed from prophages (Supplementary Information
Table S1), and (ii) the cellular contaminants might still be
present in the viromes despite the precautions taken to
exclude such contigs. This last aspect should be minimal
since we reanalyzed entirely or checked the data already
appraised when the contigs were available. In addition,
the viromes originated from the various sources, mini-
mizing the methodological bias, and this conclusion was
true for each ecosystem, with the exception of the soil.
Since the specialized transduction is associated with a
lysogenic cycle (prophage), we then considered, in a first

approximation, that this mechanism was a minority
compared to the general transduction. This mechanism is
indeed evidenced, for example, in freshwater ecosystems
[29]. Enault et al. [15] hypothesized that the main factor
explaining ARG increases is that the antibiotic-treatment-
inducing prophages, with some subset, performed a gen-
eralized transduction. Nevertheless, generalized transdu-
cing particles completely lack DNA originating from the
viral vector, containing instead only bacterial sequences.
With the exception of the unclassified viruses, the virus
contig harbored viral genes, and we excluded general
transduction as the main mechanism for transferring the
ARGs. Finally, the free-reference approach (i.e., VipTree)
highlighted a significant difference between the viruses
from viromes and prophages. Thus, the few studies on the
gene contents from prophages from various environments
may be the best explanation for understanding the low
proportion of ARGs in their genomes.

The presence of the ARGs in the virus fraction was likely
the result of a specialized transduction. These transduction
events have been quantified in a few ecosystems. In the
aquatic ecosystems, they vary from 0.3 × 10−3 transduc-
tants/plaque forming unit in freshwater ecosystems [29] to
5.33 × 10−9 in oceans [30]. These events are more frequent
than expected when the methodology takes into account the
noncultivable and cultivable bacteria [29]. Nevertheless, the
presence of ARGs in metagenomes does not directly
represent a risk for human health [31], and the gene transfer
toward the pathogens is not straightforward to show. We,
therefore, choose to compare these data with plasmids that
are considered a reference vehicle for HGT and more par-
ticularly conferring some resistance/virulence factors to the
bacteria [32]. This comparison was conducted mainly by
combining both network approaches [33, 34]. Our network
study showed that viruses are considered key vehicles in the
ARG transfer similar to plasmids. Remarkably, this con-
clusion was drawn with the plasmids sequences that origi-
nated mainly from environments enriched in ARGs (i.e.
medical and agricultural domains). In addition, they were
linked to putative pathogens (Enterobacterales and vibrio-
naceae). From their study, Halary et al. [33] concluded that
phages displayed lower betweenness centralities than plas-
mids and were on the periphery of the network, and thus,
demonstrated that plasmids, not viruses, were key vectors of
genetic exchange. However, the Halary’s study did not
focus on the ARG transfer, and the network was built only
with the DNA similarity between the vehicles (bacteria,
plasmids and viromes). From a study based on a phyloge-
nomic network between bacteria and phages, Popa et al.
[35] revealed limited HGT events by transduction but
highlighted transfer events of genes coding for a broad
range of antibiotic resistance, demonstrating a putative role
of phages in the spread of these resistances. Interestingly,
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this study was restricted to the reference genomes (bacteria
and prophages) found in the RefSeq database, whereas our
conclusions were drawn from a larger sampling of the
viruses, not restricted to the prophages, and inhabited var-
ious environments. In addition, Popa et al. [35] showed that
the barriers for gene transfer via transduction were primarily
genetic, since the integration of the acquired DNA into the
recipient genome was mediated by homologous recombi-
nation and, therefore, depended on the sequence similarity
between the donor and recipient. In contrast, the ecological
barriers played a minor role compared to the genetic
recombination. However, a prophage, including a gene
encoding for tetracycline resistance, was linked to a bacteria
(Bacillus cereus) and an archaea (Methanobrevibacter
smithii), shedding light on a transduction at the interdomain
level [35]. Nevertheless, beyond the phylogenetic analysis,
some experiments show that DNA exchange among bac-
teria via phage may occur in a more divergent range of
bacteria than previously thought using cultural methods
[29]. In addition, a significant proportion of the transferred
genes (>20%) remain in viable recipient cells. Finally, these
studies and the ours demonstrate that viruses are, therefore,
a possible vehicle for ARGs at large temporal and spatial
scales (i.e., biomes), and they transfer them between non-
contiguous cells. These transfers could be directly involved
in foodborn pathogens or indirectly because of the host
specificity of the viruses. The transduction could be
involved a first step, namely, specific bacteria in the
environment (ocean, river or soil), and in a second step the
ARG could be transferred by conjugation toward com-
mensal bacteria and/or pathogens. In this model, the body
waters, such as lakes or rivers, are considered hot-spots of
the HGT [1].

The beneficial contribution of phage-mediated gene
transfer to the host fitness has been documented in diverse
environments as, for instance, the presence in the cya-
nophage genomes of the genes coding for components of
the photosystems I and II (reviewed in [36]). There is now
some evidence on the role of viruses in the dissemination of
the antibiotic resistance by transduction, therefore requiring
a selective pressure to maintain such genes in the phage
(lytic or temperate) genomes. These genes have certainly
the potential to be beneficial for the bacteria. Thus, the
MazE/F toxin–antitoxin system encoded by prophages
increases the persistence of Escherichia coli under anti-
biotic stress [37] or contributes significantly to the resis-
tance to sublethal concentrations of some antibiotics [12].

Conclusion

This work contributes to deciphering the putative role of
viruses as vehicles of the ARGs, whose dissemination

represents a health care problem at the worldwide scale.
These ARGs included in the viral genomes can be then
disseminated at a larger temporal and spatial scales than
those in bacterial genomes (included in the chromosomes
or plasmids). This property can be correspond to the
process of “gene externalization” predicted by Corel et al.
[38]. This process is of sharing between chromosomes and
extrachromosomal elements (plasmids, viruses). Under-
standing the prevalence, mechanisms and spread of such
resistances are priorities from a heath perspective. How-
ever, in a first step, the ARG flux between bacteria, mainly
the pathogens, and viruses must be quantified and the
functionality of these ARGs assessed. If future studies
confirmed the threat for the human health of such HGT in
the environments, the elimination of viruses harboring
ARGs will become a major challenge since they are
known to persist more than bacteria after, for example,
disinfection procedures in wastewaters from urban
areas [39].

Methods

Data

The protein sequences of 32,188 bacteria and 535 archaea
(without plasmids and phage protein sequences) and the
plasmid protein sequences were downloaded from the
NCBI RefSeq Protein Database (ftp://ftp.ncbi.nlm.nih.gov/
refseq/release/bacteria/ and ftp://ftp.ncbi.nlm.nih.gov/
refseq/release/archaea/, version 07/2017 - ftp://ftp.ncbi.nlm.
nih.gov/refseq/release/plasmid/, version 03/2017).

For the viromes, the contigs (assembled data) or reads
were downloaded from public databases. When only the
reads were available, the assemblages were conducted
with IDBA [40], with a k-mer size from 20 to 120 and a
step of 20. The viromes corresponded to the sequencing of
the viral DNA from various microbiotes and the data
from prophages [41] (Supplementary Information
Table S1). In this work, we called “virus”, the data from
the assembly of the viromes (including of course the free
state of the prophages) and prophages the public data
contained based on the work by [41]. The protein
sequences were predicted using the MetaGeneAnnotator
tool [42]. The workflow for analyzing the contigs gener-
ated by the assembling is described thereafter, with the
exception for the viromes from the freshwater ecosystems,
where specific steps were processed to deal with multiple
papers on this topic (Supplementary Information Fig. S5).
The distribution of the contigs length therefore available
for subsequent analysis are displayed in the supplemen-
tary information part (Supplementary Information
Fig. S6).
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Taxonomic affiliation

The contigs were checked for removing the DNA from
cellular origin [23]. The predicted proteins are aligned using
the BLAST+ tool [43] (e-value= 10−5) on a viral basis
(database UniProtKB reduced to viral proteins) and on a
“cellular” protein base (protein bases of bacteria, archaea
and eukaryotes built from nonredundant UniProtKB: UNI-
REF100) [44]. Viral contigs were aligned using the
BLASTn tool (e-value= 10−5) against the SILVA database
[45], including the 16S/18S SSU rRNA and the 23S/28S
rRNA. The presence of ribosomal RNA was confirmed if
the length of the alignment was greater than 1200 bp or if
the alignment was greater than 300 bp when the alignment
was at one end of the contig. A contig was considered to be
viral if the following criteria were met: (i) the absence of
ribosomal RNA; (ii) not more than two proteins were
affiliated with the “cellular organisms” base (protein data-
bases of Bacteria, Archaea and eukaryotes), and (iii) the
presence of viral proteins [23, 46]. If a contig fulfilled the
first two conditions but had no alignment in the virus
database, it was classified as an unclassified virus. The
taxonomy of the viruses was deduced from an LCA (lowest
common ancestor) analysis on, at most, the five best protein
alignments of a contig on the viral protein base described
above. A free-reference approach was used for assessing the
distance between the contigs with VipTree [47]. This pro-
cedure was based on the normalized tBLASTx scores
computed from the pairwise comparisons. A principal
coordinate analysis (PcoA) and the statistical tests (ANa-
lysis Of SIMilarity or ANOSIM) were computed from the
distance matrix generated by VipTree with the vegan
package [48] under the R environment [49].

Identification and quantification of the genes
encoding antibiotic resistance

The predicted protein sequences were aligned using the
HMMs (Hidden Markov Models) profiles based on the
Resfams data [50] (version 1.2). The core Resfam consisted
of 119 HMMs, whereas 47 additional HMMs profiles were
collected from the Pfam databases [51] and TIGRFam [52]
and corresponded to the full Resfams HMM Database. A
protein sequence alignment against the Resfams HMM
Database Core was performed using the HMMER tool set
(version 3.1b2) [53], with the “-cut_ga” parameter, which
defines the similarity threshold, to confirm the presence of
antibiotic resistance in these sequences. By comparing our
procedure applied to the bacterial genomes with the ARG
predicted in the PATRIC database [54], we found the same
proportions and concluded that the pipeline used was a
reliable tool to predict ARGs (Supplementary Information
Fig. S7). The Resfam database links the sequence to an

identifier and a name corresponding to a family of anti-
biotics (e.g., AAC3) and its description, as well as an
affiliation to an antibiotic resistance mechanism (e.g.,
Acetyltransferase).

For quantifying the genes encoding ARGs in marine and
freshwater ecosystems, the reads were mapped against the
ARG with bowtie2 [55]. The bases mapped against the
ARGs were computed according to the procedure described
by Sunagawa et al. [56]. The ARO features were compared
between biomes such as defined by Longhurst [57] by using
the package DESeq2 with R software [58].

Analysis of the ARG transfers by a network
approach

Two networks were built from antibiotic resistance-related
sequences, including a bipartite network to analyze the
potential ARGs transferred between the viral entities and
bacteria/archaea and a second network, derived from the
first, representing the link between the best vehicles. The
bipartite network describing the protein transfers between
different “genomic units” or GUs is based on the Accessory
Genome Constellation Network (AccNET) program [59].
The GUs corresponded to viruses and prophages in different
ecosystems as well as plasmids, bacteria and archaea. These
GUs were linked by protein clusters of ARGs named HpCs.
An HpC was linked to at least two GUs when they had a
protein sequence affiliated with a similar antibiotic resis-
tance (Supplementary Information Fig. S8). Nevertheless,
an HpC was also linked to a single GU when the protein
sequence had no similarity with another GU. The con-
struction of the bipartite network takes place in three stages
as follows: (i) clustering proteins for defining the HpC; (ii)
defining the distances between the proteins among each
HpC, and (iii) calculation of the distances between the
HpCs and the different GUs. The first step was realized with
CD-HIT v4.8 [60] instead the kClust tool implemented in
AccNET, which is an efficient program for grouping large
protein or nucleotide sequence data according to a similarity
threshold. The parameters used were a sequence identity of
90% and a coverage of at least 90% of the shortest sequence
with respect to the representative sequence (-c 0.9 -n 5 -g 1
-aS 0.9). The second and third steps were described in the
publication by Lanza et al. [59]. Briefly, these steps inclu-
ded the protdist program [61] for computing the protein
distances within the various HpCs. The edge-weight was
considered an attraction force between the nodes and thus
was proportional to the inverse of the protein distances (the
scripts used are available at the following address https://
github.com/meb-team/AccNetPhylA).

The second network was focused on the putative vehicles
of the ARGs by focusing on the clusters of the proteins
(HpCs) linking the different GUs. First, the matrix of the
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distance between the proteins (protdist program) generated
previously in step 2 was used for selecting the genes and
computing both of the new distances. The gene distances
were calculated by the dnadist program [61], and the
patristic distances were from the phylogenies. More pre-
cisely, this last distance was computed from tree branch
lengths describing the amount of genetic change represented
by a tree. This tree was built with the maximum likelihood
method using the PhyML tool [62] with the default settings
and was rooted according to the midpoint rooting method
(https://github.com/meb-team/HpC_to_vehicle). Finally,
from an HpC including at least 2 GUs, only the best vehi-
cles were selected on the basis of the minimal distance
between the GUs (Supplementary Information Fig. S8). The
network was then built with these vehicles, and the edges
were equal to the inverse of the number of links. The
pipelines used, the main command lines and the statistics
can be found in the supplementary materials (Supplemen-
tary Information Fig. S8 and Table S2).

The network was visualized by using Cytoscape software
(version 3.2.1) [63]. The various parameters characterizing
the networks were calculated using the Cytoscape Network
Analyzer plugin [64]. This module allowed us to compute a
set of topological parameters, such as the degree distribu-
tion, the betweenness and the closeness of the nodes.
The betweenness centrality a node n is defined as follows:
Σs ≠ n ≠ t (σst(n)/σst). In this formula, s and t are nodes in the
network different from n, σst denotes the number of shortest
paths from s to t, and σst (n) is the number of shortest paths
from s to t. The betweenness value for each node n is
normalized by dividing the number of node pairs excluding
n: (N− 1)(N− 2)/2, where N is the total number of nodes in
the connected component. The closeness centrality of a
node n is the reciprocal of the average shortest path length.
These values computed from each node are a number
between 0 and 1 [64]. These both indices help to define the
keystone nodes. The topological indices computed from the
different vehicles were tested by rewiring the network with
the igraph package [65]. Briefly, 10000 networks were
determined and for each a F value was computed from an
ANOVA test. This F distribution allowed to compare the F
value obtained from the real network with the simulations.

dN/dS ratio

The selective pressure acting on the ARGs included in the
second network was evaluated based the dN/dS ratio using
the kaks calculator [66]. This ration corresponds to the rates
of non-synonymous (Ka) to synonymous (Ks) substitution.
For each HpC, the putative ARG within the viruses or
plasmids was compared to each bacterial sequence con-
sidered as a reference in the cluster, and the median was
then computed for each vehicle among an HpC.

Author contributions DD supervised research, conducted some bio-
informatic analyses and prepared the paper with contributions from
CS. CS performed bio-informatic analyses. Both authors read and
approved the final paper.

Publisher’s note: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages
contribute to the spread of antibiotic resistance genes among
foodborne pathogens of the enterobacteriaceae family? A Review.
Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.
01108.

2. Davies J, Davies D. Origins and evolution of antibiotic resistance.
Microbiol Mol Biol Rev. 2010;74:417–33.

3. Brown-Jaque M, Calero-Cáceres W, Muniesa M. Transfer of
antibiotic-resistance genes via phage-related mobile elements.
Plasmid. 2015;79:1–7.

4. Lossouarn J, Dupont S, Gorlas A, Mercier C, Bienvenu N, Mar-
guet E, et al. An abyssal mobilome: viruses, plasmids and vesicles
from deep-sea hydrothermal vents. Res Microbiol.
2015;166:742–52.

5. Fuhrman JA. Marine viruses and their biogeochemical and eco-
logical effects. Nature. 1999;399:541–8.

6. Kim M-S, Park E-J, Roh SW, Bae J-W. Diversity and abundance
of single-stranded DNA viruses in human feces. Appl Environ
Microbiol. 2011;77:8062–70.

7. Kenzaka T, Tani K, Sakotani A, Yamaguchi N, Nasu M. High-
frequency phage-mediated gene transfer among escherichia coli
cells, determined at the single-cell level. Appl Environ Microbiol.
2007;73:3291–9.

8. Muniesa M, Imamovic L, Jofre J. Bacteriophages and genetic
mobilization in sewage and faecally polluted environments. Micro
Biotechnol. 2011;4:725–34.

9. Touchon M, Moura de Sousa JA, Rocha EP. Embracing the
enemy: the diversification of microbial gene repertoires by phage-
mediated horizontal gene transfer. Curr Opin Microbiol.
2017;38:66–73.

10. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB,
Westh H, et al. Bacterial viruses enable their host to acquire
antibiotic resistance genes from neighbouring cells. Nat Commun.
2016;7:13333.

11. Shousha A, Awaiwanont N, Sofka D, Smulders FJM, Paulsen P,
Szostak MP, et al. Bacteriophages isolated from chicken meat and
the horizontal transfer of antimicrobial resistance genes. Appl
Environ Microbiol. 2015;81:4600–6. AEM.00872-15

12. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM,
et al. Cryptic prophages help bacteria cope with adverse envir-
onments. Nat Commun. 2010;1:1146.

13. Subirats J, Sànchez-Melsió A, Borrego CM, Balcázar JL, Simonet
P. Metagenomic analysis reveals that bacteriophages are reservoirs
of antibiotic resistance genes. Int J Antimicrob Agents.
2016;48:163–7.

14. Marti E, Variatza E, Balcázar JL. Bacteriophages as a reservoir of
extended-spectrum β -lactamase and fluoroquinolone resistance
genes in the environment. Clin Microbiol Infect. 2014;20:
O456–O459.

15. Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit M-A.
Phages rarely encode antibiotic resistance genes: a cautionary tale
for virome analyses. ISME J. 2016;11:237.

16. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment
expands the resistance reservoir and ecological network of the
phage metagenome. Nature. 2013;499:219–22.

Viruses as key reservoirs of antibiotic resistance genes in the environment 2865

https://github.com/meb-team/HpC_to_vehicle
https://doi.org/10.3389/fmicb.2017.01108
https://doi.org/10.3389/fmicb.2017.01108


17. Bengtsson-Palme J, Larsson DGJ, Kristiansson E. Using meta-
genomics to investigate human and environmental resistomes. J
Antimicrob Chemother. 2017;72:2690–703.

18. Balcazar JL. Bacteriophages as vehicles for antibiotic resistance
genes in the environment. PLoS Pathog. 2014;10:e1004219.

19. Lekunberri I, Subirats J, Borrego CM, Balcázar JL. Exploring the
contribution of bacteriophages to antibiotic resistance. Environ
Pollut. 2017;220(Part B):981–4.

20. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG,
Alberti A, et al. Patterns and ecological drivers of ocean viral
communities. Science. 2015;348:1261498.

21. Parmar KM, Gaikwad SL, Dhakephalkar PK, Kothari R, Singh
RP. Intriguing interaction of bacteriophage-host association: an
understanding in the era of omics. Front Microbiol. 2017;8.
https://doi.org/10.3389/fmicb.2017.00559.

22. Forterre P, Soler N, Krupovic M, Marguet E, Ackermann H-W.
Fake virus particles generated by fluorescence microscopy. Trends
Microbiol. 2013;21:1–5.

23. Roux S, Krupovic M, Debroas D, Forterre P, Enault F. Assess-
ment of viral community functional potential from viral meta-
genomes may be hampered by contamination with cellular
sequences. Open Biol. 2013;3:130160.

24. Colombo S, Arioli S, Guglielmetti S, Lunelli F, Mora D. Virome-
associated antibiotic-resistance genes in an experimental aqua-
culture facility. FEMS Microbiol Ecol. 2016;92:fiw003.

25. Fancello L, Trape S, Robert C, Boyer M, Popgeorgiev N, Raoult
D, et al. Viruses in the desert: a metagenomic survey of viral
communities in four perennial ponds of the Mauritanian Sahara.
ISME J. 2013;7:359–69.

26. Appelt S, Fancello L, Bailly ML, Raoult D, Drancourt M, Des-
nues C. Viruses in a 14th-Century Coprolite. Appl Environ
Microbiol. 2014;80:2648–55.

27. Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder
and VirulenceFinder web-services for easy identification of
acquired antibiotic resistance and E. coli virulence genes in bac-
teriophage and prophage nucleotide sequences. Bacteriophage.
2014;4:e27943.

28. Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. RefSeq
microbial genomes database: new representation and annotation
strategy. Nucleic Acids Res. 2015;43:3872.

29. Kenzaka T, Tani K, Nasu M. High-frequency phage-mediated
gene transfer in freshwater environments determined at single-cell
level. ISME J. 2010;4:648–59.

30. Jiang SC, Paul JH. Gene transfer by transduction in the marine
environment. Appl Environ Microbiol. 1998;64:2780–7.

31. Martínez JL, Coque TM, Baquero F. What is a resistance gene?
Ranking risk in resistomes. Nat Rev Microbiol. 2015;13:116–23.

32. Popa O, Dagan T. Trends and barriers to lateral gene transfer in
prokaryotes. Curr Opin Microbiol. 2011;14:615–23.

33. Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E. Network
analyses structure genetic diversity in independent genetic worlds.
Proc Natl Acad Sci. 2010;107:127–32.

34. Corel E, Lopez P, Méheust R, Bapteste E. Network-thinking:
graphs to analyze microbial complexity and evolution. Trends
Microbiol. 2016;24:224–37.

35. Popa O, Landan G, Dagan T. Phylogenomic networks reveal
limited phylogenetic range of lateral gene transfer by transduction.
ISME J. 2016 https://doi.org/10.1038/ismej.2016.116.

36. Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light
on viral photosynthesis. Photosynth Res. 2015;126:71–97.

37. Zhang Y, Zhang J, Hara H, Kato I, Inouye M. Insights into the
mRNA cleavage mechanism by MazF, an mRNA interferase. J
Biol Chem. 2005;280:3143–50.

38. Corel E, Méheust R, Watson AK, McInerney JO, Lopez P, Bap-
teste E. Bipartite network analysis of gene sharings in the
microbial world. Mol Biol Evol. 2018;35:899–913.

39. Calero-Cáceres W, Muniesa M. Persistence of naturally occurring
antibiotic resistance genes in the bacteria and bacteriophage
fractions of wastewater. Water Res. 2016;95(Supplement
C):11–18.

40. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a
de novo assembler for single-cell and metagenomic sequencing
data with highly uneven depth. Bioinformatics. 2012;
28:1420–8.

41. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD,
Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome.
Nature. 2016;536:425–30.

42. Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting
species-specific patterns of ribosomal binding site for precise
gene prediction in anonymous prokaryotic and phage genomes.
DNA Res Int J Rapid Publ Rep Genes Genomes.
2008;15:387–96.

43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J,
Bealer K, et al. BLAST+: architecture and applications. BMC
Bioinforma. 2009;10:421.

44. The UniProt Consortium. UniProt: the universal protein knowl-
edgebase. Nucleic Acids Res. 2017;45(D1):D158–D169.

45. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P,
et al. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids
Res. 2013;41:D590–D596.

46. Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining
viral signal from microbial genomic data. PeerJ. 2015;3:e985.

47. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto
S. ViPTree: the viral proteomic tree server. Bioinformatics.
2017;33:2379–80.

48. Dixon P. VEGAN, a package of R functions for community
ecology. J Veg Sci. 2003;14:927–30.

49. Team RC. R: a language and environment for statistical com-
puting. 2018

50. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of
antibiotic resistance determinants reveals microbial resistomes
cluster by ecology. ISME J. 2015;9:207–16.

51. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J,
Mitchell AL, et al. The Pfam protein families database: towards
a more sustainable future. Nucleic Acids Res. 2016;44:
D279–D285.

52. Haft DH, Selengut JD, White O. The TIGRFAMs database of
protein families. Nucleic Acids Res. 2003;31:371–3.

53. Eddy SR. Profile hidden Markov models. Bioinforma Oxf Engl.
1998;14:755–63.

54. Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C, Conrad
N, et al. PATRIC as a unique resource for studying antimicrobial
resistance. Brief Bioinform. 2017. https://doi.org/10.1093/bib/
bbx08.

55. Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nat Methods. 2012;9:357–9.

56. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K,
Salazar G, et al. Structure and function of the global ocean
microbiome. Science. 2015;348:1261359.

57. Longhurst AR. Biomes: The Primary Partition. Ecological Geo-
graphy of the Sea Elsevier: 2010. p. 89–99.

58. Love MI, Huber W, Anders S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014;15:550.

59. Lanza VF, Baquero F, de la Cruz F, Coque TM. AcCNET
(Accessory Genome Constellation Network): comparative geno-
mics software for accessory genome analysis using bipartite net-
works. Bioinformatics. 2017;33:283–5.

60. Li W, Godzik A. Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide sequences. Bioinforma
Oxf Engl. 2006;22:1658–9.

2866 D. Debroas, C. Siguret

https://doi.org/10.3389/fmicb.2017.00559
https://doi.org/10.1038/ismej.2016.116
https://doi.org/10.1093/bib/bbx08
https://doi.org/10.1093/bib/bbx08


61. Felsenstein J. PHYLIP—Phylogeny Inference Package (Version
3.2). Cladistics. 1989;5:164–6.

62. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Syst Biol.
2003;52:696–704.

63. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage
D, et al. Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 2003;
13:2498–504.

64. Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht
M. Computing topological parameters of biological networks.
Bioinforma Oxf Engl. 2008;24:282–4.

65. Csardi G, Nepusz T. The igraph software package for complex
network research. 2006;9.

66. Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J. KaKs_-
Calculator: calculating Ka and Ks through model selection
and model averaging. Genom Proteom Bioinforma. 2006;
4:259–63.

Viruses as key reservoirs of antibiotic resistance genes in the environment 2867


	Viruses as key reservoirs of antibiotic resistance genes in�the�environment
	Abstract
	Introduction
	Results
	ARGs predicted in free viruses and prophages
	Interactions between microorganisms and viruses inferred from networks
	Geographical distribution of the ARGs
	Taxonomies of the viruses involved in the ARG flux

	Discussion
	Conclusion
	Methods
	Data
	Taxonomic affiliation
	Identification and quantification of the genes encoding antibiotic resistance
	Analysis of the ARG transfers by a network approach
	dN/dS ratio

	ACKNOWLEDGMENTS
	References




