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Abstract
Understanding the mechanisms underlying microbial resistance and resilience to perturbations is essential to predict the
impact of climate change on Earth’s ecosystems. However, the resilience and adaptation mechanisms of microbial
communities to natural perturbations remain relatively unexplored, particularly in extreme environments. The response of an
extremophile community inhabiting halite (salt rocks) in the Atacama Desert to a catastrophic rainfall provided the
opportunity to characterize and de-convolute the temporal response of a highly specialized community to a major
disturbance. With shotgun metagenomic sequencing, we investigated the halite microbiome taxonomic composition and
functional potential over a 4-year longitudinal study, uncovering the dynamics of the initial response and of the recovery of
the community after a rainfall event. The observed changes can be recapitulated by two general modes of community shifts
—a rapid Type 1 shift and a more gradual Type 2 adjustment. In the initial response, the community entered an unstable
intermediate state after stochastic niche re-colonization, resulting in broad predicted protein adaptations to increased water
availability. In contrast, during recovery, the community returned to its former functional potential by a gradual shift in
abundances of the newly acquired taxa. The general characterization and proposed quantitation of these two modes of
community response could potentially be applied to other ecosystems, providing a theoretical framework for prediction of
taxonomic and functional flux following environmental changes.

Introduction

Microbial communities are essential to the functioning and
evolution of our planet and their dynamics greatly affect

ecosystems processing [1]. Their taxonomic and functional
diversity allow microbial communities to adapt to a wide
range of conditions and to respond rapidly to environmental
changes [2, 3]. Resilience—the ability of a community to
recover from perturbations—is of particular interest, espe-
cially in the context of global climate change, as extreme
weather events are becoming more frequent [1]. Under-
standing adaptation strategies for microbial resilience is
therefore critical to gain insights into microbial evolution
and diversification, and to better understand the dynamics of
translationally relevant microbiomes following stress.

Previous studies have shown that acute disturbances can
push a community’s taxonomic structure toward alternative
equilibrium states, while retaining the preexisting functional
potential [4]. Such changes have been observed in soil,
aquatic, engineered, and human-associated ecosystems
where experimental perturbations caused the community
taxonomic composition to shift with relatively minor chan-
ges to the overall functional potential of the community
[1, 2, 5, 6]. Functional redundancy has been proposed as a
mechanism to support functional stability following
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perturbation [7], however, several studies have also shown
that major taxonomic changes can also result in important
changes to the functional potential of gut communities [8, 9].

Transitions between alternative taxonomic states have
been postulated to occur via an intermediate dis-equilibrium
state, during which a perturbation produces drastically dif-
ferent environmental stressors, causing the community to
radically reshape in composition [1, 4]. This has been
observed with antibiotic treatment that can lead to mass
death events. The resulting restructuring of the gut micro-
biome is major with long-lasting changes even after the
former conditions are re-established [6, 10]. However, little
is known about the response dynamics to acute perturba-
tions and in particularly the mechanisms that push a com-
munity’s taxonomic and functional structure in and out of
an intermediate state. In addition, the response and recovery
of natural communities following environmental disasters,
rather than manipulative experiments, remain largely
unexplored mechanistically because of the difficulty in
avoiding multiple compounding environmental factors
[11, 12]. These gaps in the understanding of microbial
community behavior limits our ability to effectively model
and predict the responses of microbiomes to major pertur-
bations, such as those resulting from climate change and
natural or man-made ecological disasters.

To address this knowledge gap, and to build a conceptual
model for modeling microbial community responses to
extreme stress, we examined the temporal dynamics in
response to a disastrous climate perturbation of a unique
microbial ecosystem found in the Atacama Desert, Chile.
The hyper-arid core of the Atacama Desert is one of the
harshest environments on Earth, with an average annual
precipitation of less than 1 mm and some of the highest
ultraviolet (UV) and solar radiation on the planet [13, 14].
Despite this, microbial communities have evolved strategies
to survive and grow within various mineral substrates of the
desert [15]. One such community inhabits halite nodules
that are natural porous salt rocks found exclusively in
evaporitic salt basins of the Atacama Desert, including the
Salar Grande basin [16, 17] (Fig. S1). In this community,
the majority of the biomass is constituted of salt-in strate-
gists Halobacteria (a major class of archaea) and Bacter-
oidetes [17, 18], two taxonomically diverse groups of
extreme halophiles that accumulate potassium ions to match
the external osmotic pressure from sodium ions [17, 19, 20].
This adaptation allows them to survive in extremely high-
salt environment, but restricts their fitness to a narrow range
of external salt concentration [21, 22]. As such, these highly
specialized communities are more vulnerable to change
compared with habitat generalists, particularly to sudden
changes in external osmotic pressure.

Encased in salt rocks, halite communities have very limited
nutrient input beyond atmospheric gasses, and obtain water

almost exclusively from deliquescence, the ability of sodium
chloride to produce concentrated brine when atmospheric
relative humidity rises above 75% [23]. Primary production is
the major source of organic carbon in the community and is
carried out by Cyanobacteria and, to a lesser extent, by a
unique alga [17]. Each halite nodule represents a near-closed
miniature ecosystem and thus can be treated as true inde-
pendent biological replicates in longitudinal studies, allowing
community changes to be tracked without external factors
compounding the results. Combined with their sensitivity to
changing osmotic conditions and slow growth rates, this
makes halite microbiomes ideal for studying temporal
dynamics of microbial communities and their ability to adapt
to major environmental changes.

In 2015, Northern Atacama received its first major rain in
13 years [14]. In particular, a weather station located 40 km
North–West of our sampling site (Diego Aracena Airport
SCDA) recorded significant rainfalls of 4.1 mm (August 9th,
2015) and 20.1 mm (November 20th, 2015) [24]. The pre-
vious notable precipitation in the area occurred in 2002 (4.1
mm) [25]. Such rain events have been observed to be
devastating to the specialized hyper-arid microbiomes of the
Atacama Desert [26], particularly in communities adapted
to survive in saturated salt conditions, such as those found
in halite nodules. Our longitudinal study over 4 years not
only captured the microbiome’s short-term adaptations to
this major natural disaster but also its recovery in the sub-
sequent years, revealing two strikingly different community
response mechanisms.

Materials and methods

Longitudinal sampling strategy and sequencing
approach

To investigate the temporal dynamics of halite micro-
biomes, samples of halite nodules from three sites at Salar
Grande (Fig. S1; Table S1), a salar in the Northern part of
the Atacama Desert [16], were harvested from 2014 to
2017, capturing the rare rain events that occurred in 2015
throughout the desert [14]. At each site, halite nodules were
harvested within a 50 m2 area. The main sampling site (Site
1) was revisited four times during the study—twice before
the rain (September 2014, June 2015), and twice after the
rain—3 months (February 2016) and 15 months (February
2017) after (Table S1). For each time point, five biological
replicates were sequenced with whole-metagenomic
(WMG) shotgun sequencing to investigate the functional
potential and taxonomic structure of the communities
over time, yielding a total of 70,689,467 paired-end reads
(150 bp paired-end, insert size 277 ± 217 bp). In addition,
9–12 biological replicates were collected for ribosomal
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amplicon (16S rRNA gene) sequencing and were used for
taxonomic profiling of the microbiomes; this yielded
535,233 paired-end reads (250 bp paired-end, insert size
419 ± 7 bp). A nearby site (Site 2) was also sampled after
the rain at a higher temporal resolution (February 2016, July
2016, October 2016, and February 2017), with 5–13 repli-
cates per time point. The 16S rRNA gene amplicons from
samples at this site were sequenced, yielding 357,325
paired-end 250 bp reads (insert size 419 ± 4 bp). Finally,
shotgun sequencing of samples from the S3 location were
used to improve the binning results from S1, but were not
used for the longitudinal analysis of this work because too
few time points and replicates were collected (see Table S1
for details on sampling sites and replication). Halite nodules
were collected as previously described [16] and ground into
a powder, pooling material from 1–3 larger nodules until
sufficient amount was collected, and stored in the dark in
dry conditions until DNA extraction in the lab. Genomic
DNA was extracted as previously described [16, 17], with
the DNAeasy PowerSoil DNA extraction kit (QIAGEN).

Climate data acquisition

Climate history data were obtained from the Weather
Underground weather reporting service by selecting “Monthly
History” in the data browser [24]. Weather data collected at
the Diego Aracena International Airport (code SCDA) was
manually downloaded for dates from the duration of the study
(January 2014–March 2017). The minimum and maximum
for temperature and relative humidity, as well as total pre-
cipitation data from each day were plotted against time. The
raw unedited data and analysis scripts can be found at https://
github.com/ursky/timeline_paper.

16S rRNA gene amplicon library preparation and
sequencing

The communities’ 16S rRNA gene was amplified with a 2-
step amplification and barcoding PCR strategy as pre-
viously described [16], by amplifying the hypervariable V3-
V4 region with 515F and 926R primers [27]. PCR was done
with the Phusion High-Fidelity PCR kit (New England
BioLabs) with 40 ng of gDNA. Barcoded samples were
quantified with the Qubit dsDNA HS Assay Kit (Invitro-
gen), pooled and sequenced on the Illumina MiSeq platform
with 250-bp paired-end reads at the Johns Hopkins Genetic
Resources Core Facility (GRCF).

Shotgun metagenomic library preparation

Whole-genome metagenomic sequencing libraries were
prepared using the KAPA HyperPlus kit (Roche). The
fragmentation was performed with 5 ng of input gDNA for

6 min to achieve size peaks of 800 bp. Library amplification
was done with dual-index primers for a total of seven
cycles, and the product library was cleaned three times with
XP AMPure Beads (New England BioLabs) to remove
short fragments and primers (bead ratios 1X and 0.6X, keep
beads) and long fragments (0.4X bead ratio, discard beads).
Other steps followed the manufacturer’s recommendations.
The final barcoded libraries were quantified with Qubit
dsDNA HS kit, inspected on a dsDNA HS Bioanalyzer,
pooled to equal molarity, and sequenced with paired 150-bp
reads on the HiSeq 2000 platform at GRCF.

16S rRNA gene amplicon sequence analysis

The de-multiplexed and quality trimmed 16S rRNA gene
amplicon reads from the MiSeq sequencer were processed
with MacQIIME v1.9.1 [28]. Samples from Site 1 and Site 2
were processed separately. The reads were clustered into
OTUs at a 97% similarity cutoff with the pick_-
open_reference_otus.py function (with --suppress_step4
option), using the SILVA 123 database [29] release as
reference and USEARCH v6.1.554 [30]. The OTUs were
filtered with filter_otus_from_otu_table.py (-n 2 option),
resulting in a total of 472 OTUs for site 1 and 329 OTUs for
site 2 (Data S1). The taxonomic composition of the samples
was visualized with summarize_taxa_through_plots.py
(default options; Data S1). The beta-diversity metrics of
samples from the two sites were compared by normalizing the
OTU tables with normalize_table.py (default options), and
then running beta_diversity.py (-m unweighted_unifrac,
weighted_unifrac). The sample dissimilarity matrices were
visualized on PCoA plots with principal_coordinates.py
(default parameters) and clustered heat maps with clustermap
in Seaborn v0.8 [31] (method=‘average’, metric=‘correla-
tion’). Group significance was determined with compar-
e_categories.py (--method=permanova). Relative similarity
between metadata categories (harvest dates) was calculated
with the make_distance_boxplots.py statistical package,
which summarized the distances between pairs of sample
groups (from Weighted or Unweighted Unifrac dissimilarity
matrices), and then performed a two-sided Student's two-
sample t test to evaluate the significance of differences
between the distances. Relative abundance of phyla and
domain taxa were computed from the sum of abundances of
OTUs with their respective taxonomy, and group significance
calculated with a two-sided Student's two-sample t test.
Detailed scripts for the entire analysis pipeline can be found at
https://github.com/ursky/timeline_paper.

Processing shotgun metagenomic sequence data

The de-multiplexed WMG sequencing reads were processed
with the complete metaWRAP v0.8.2 pipeline [32] with
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recommended databases on a UNIX cluster with 48 cores
and 1024GB of RAM available. Read trimming and human
contamination removal were done by the metaWRAP
Read_qc module (default parameters) on each separate
sample. The taxonomic profiling was done on the trimmed
reads with the metaWRAP Kraken module [33] (default
parameters, standard KRAKEN database, 2017). The reads
from all samples from the three sampling sites were indi-
vidually assembled (for pI calculations) and co-assembled
(for all other analysis) with the metaWRAP Assembly
module (--use-metaspades option) [34]. For improved
assembly and binning of low-abundance organisms, reads
from all samples (Site 1 and Site 3) were co-assembled, then
binned with the metaWRAP Binning module (--maxbin2
--concoct --metabat2 options) while using all the available
samples for differential coverage information. The resulting
bins were then consolidated into a final bin set with meta-
WRAP’s Bin_refinement module (-c 70 -x 5 options; Data
S2). The bins were then quantified by Salmon [35] with the
Quant_bins module (default parameters). Contig read depth
was estimated for each sample with the metaWRAP’s
Quant_bins module, and the weighted contig abundance
calculated by multiplying the contig’s depth by its length,
and standardizing to the total abundance of all contigs in
each replicate. Detailed scripts for the entire analysis pipe-
line can be found at https://github.com/ursky/timeline_pa
per.

Functional annotation

Gene prediction and functional annotation of the co-
assembly was done with the JGI Integrated Microbial
Genomes & Microbiomes (IMG) [36] annotation service.
Gene relative abundances were taken as the average read
depth of the contigs carrying those genes (estimated with
Salmon in the metaWRAP Quant_bins module) [35].
KEGG KO identifiers were linked to their respective
functions and pathways using the KEGG BRITE pathway
classification [37]. The KEGG pathway relative abundances
were calculated as the sum of read depths of genes (esti-
mated from the read depths of the contigs carrying them)
classified to be part of the pathway. To test for changes in
functional diversity, the total number of unique enzyme
identifiers that had a combined coverage of 1, 2, 4, 8, 16, or
32 transcripts per million was calculated.

Isoelectric point (pI) analysis

The average pI of gene pools were calculated from indivi-
dual replicate metagenomic assemblies. Open-reading
frames (ORFs) were predicted by PRODIGAL [38] with
the use of metaWRAP [32], and the pI of each ORF was
calculate with ProPAS [39]. The average pI of the entire

gene pool as well as individual taxa were calculated from
the average pI of proteins encoded on contigs of relevant
(KRAKEN) taxonomy.

Taxonomic turnover index (TTI)

The turnover indexes (TTIs) of each gene function (KO ID)
represent the changes in relative abundances of the orga-
nismal strains (contigs) carrying them. For this purpose, the
abundance of any given gene is assumed to be equal to the
average abundance (coverage) of the contig that carries it.
To calculate the TTI, all contigs carrying genes of a given
KEGG KO were identified, and the change in their relative
abundances was calculated between two time points of
interest. Contig abundances from individual replicates were
added up for each time point, then the TTI for each KEGG
KO identifier was calculated from the weighted average of
the absolute values of these changes (Eq. (1)). Importantly,
this index does not measure the net change in abundance of
each function, but instead quantifies the turnover in the
organisms that carry it. Indeed, it is possible for the total
abundance of a gene function to be carried by a completely
new set of organisms, yet remain unchanged in total
abundance. The TTIs from all the KEGG functions were
plotted and the difference in their distributions between the
time points was computed with the Kolmogorov–Smirnov
two-sample test.

TTI ¼
PN

0 T2� T1j j
PN

0 T1þ T2
ð1Þ

Eq. (1): Formula calculating one function’s taxonomic
turnover index TTI, where T1 and T2 are standardized
abundances of a contig carrying that function in two sam-
ples, and N is the number of contigs carrying that functions.

Shotgun statistical analysis

The significance in abundance changes of gene functions
(i.e., KEGG KO identifiers), functional pathways (i.e.,
KEGG BRITE identifiers), and average pI of gene pools
were estimated with a two-sided Student’s two-sample t
test. The relative similarity between groups of replicates
(ordered by harvest dates) in terms of total pathway abun-
dances and co-assembly contig abundances were computed
by comparing Pearson correlations between samples. A
Pearson correlation coefficient distance matrix was com-
puted from all replicates, and a two-sided Student’s two-
sample t test was performed to evaluate the significance of
the difference between the correlation distances. Differen-
tially abundant KEGG (level 2) pathways were selected
with a one-way ANOVA test (p < 0.01, FDR < 1%), and
hierarchically clustered with Seaborn v0.8 [31]
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(method=’average’, metric=’euclidean’). The significance
of the differences in distributions of RIs between pairs of
time points, as well as differences in pI distributions of gene
pool proteins were calculated with the
Kolmogorov–Smirnov two-sample test. Significance of
MAG abundance, contig abundance, and pathway abun-
dance clustering was determined with SigClust
(nsim=1000, icovest=3) [40]. Due to time considerations,
the contig clustering test was limited to contigs over 5 kbp
in length, which were then subsampled randomly to 5000
contigs prior to the test.

Results

High-order taxonomic composition and functional
potential were temporarily perturbed after the rain

The halite communities were found to be sensitive to the
acute perturbation from the rain at the end of 2015 (Fig. S2),
as it induced a change in their taxonomic structure (Fig. 1).
Practical considerations limited this longitudinal study to
four samples collected of a 4-year period (2014–2017), with
two time points before and two time points after the rain
event. A second site was sampled four times after the rain,
over 1 year. The average climate temperature during pre-rain
sample collection was notably cooler (11 °C–18 °C) than that
of 2016 and 2017 (17 °C–25 °C), which could have con-
tributed to the shift described below. However, the recovery
of the community composition in the following year despite
higher temperatures suggests that the shift and recovery were
primarily driven by the rain events at the end of 2015.

Weighted Unifrac analysis of the amplicon data, which
compares the dissimilarity of communities based on
weighted taxonomic composition, revealed that the halite
communities were significantly different between time
points (PERMANOVA: p < 0.001), with the taxonomic
composition shifting following the rain. While the compo-
sition of the post-recovery (2017) communities was still
significantly different from the pre-rain (2014 and 2015)
samples (PERMANOVA: p < 0.001), we found that they
were more similar to each other than to the post-rain (2016)
communities, suggesting a partial recovery in composition
(two-sided t tests of pairwise comparisons: p < 0.0001;
Fig. 2a, S3E). To investigate broad high-level taxonomic
changes, we interrogated the community composition at the
domain and phylum levels. At the domain level, the halite
community structure shifted from an Archaea-dominated
community before the rain (2014 and 2015) to a more
balanced Archaea–Bacteria community 3 months after the
rain (2016) (Fig. 1). The relative abundance of Archaea
dropped significantly (two-sided t tests: p < 0.0001) in both
16S rRNA gene (Fig. 2b) and WMG sequencing. At the

phylum level, we tracked changes in four taxa that con-
stituted the majority of the community—Cyanobacteria,
Bacteroidetes, Euryarchaeota (only represented by Halo-
bacteria), and Chlorophyta (Data S1). While chloroplast
16S rRNA gene abundance is not necessarily indicative of
the absolute abundance of algae, we know that there is only
one alga in the halite community and that it contains a
unique chloroplast [17], validating our use of chloroplast
sequences as a proxy for relative algal abundances. All four
taxa significantly shifted in abundance after the rain: Cya-
nobacteria, Chlorophyta, and Bacteroidetes significantly
increased in relative abundance following the rain, while the
abundance of Halobacteria significantly decreased (Fig. 1,
S3A–D; Data S1; two-sided t tests: p < 0.01). The abun-
dances of these taxonomic groups partially recovered in the
final sampling time point (Fig. S3). To strengthen these
observations of community changes, we conducted addi-
tional sampling after the rain with a higher temporal reso-
lution at an alternate location (Site 2; Fig. S4, S5; Data S1).
From 16S rRNA gene sequencing of this additional data set,
we discovered gradual changes of domain (Fig. S4A) and
some of the major phyla (Fig. S5) during the year after the
rain, revealing the slow nature of this recovery process.
Weighted Unifrac dissimilarity clustering of these samples
(Fig. S4B) confirmed significant differences between the
pre- (February 2016) and post-rain (February 2017) samples
(PERMANOVA: p < 0.001), however, the intermediate
time points (July 2017 and October 2017) did not form
distinct clusters and overlapped with the other samples.

The functional potential of the community, determined
by annotation of KEGG pathways in the WMG co-assem-
bly, also significantly changed after the rain, although it is
important to note that these estimates were only based on
gene abundances. Consistent with the taxonomy-based
clustering, samples from before the rain (2014 and 2015)
were distinctly separate from samples collected shortly after
the rain (2016; Fig. 2c). The KEGG pathway abundances in
2014 samples were better correlated with that of 2015 and
2017 samples than 2016 samples (two-sided t tests of
Pearson correlations: p < 0.001). While the majority of
functional pathways were present in similar abundances
between replicates and time points, a number of pathways
were differentially represented between time points
(Fig. 2d; ANOVA test, p < 0.01, FDR < 1%). Of these, the
majority were significantly over- or under-represented in the
samples collected shortly after the rain (2016-02; SigClust
2-group significance: p < 0.0001).

Differences in salt adaptations likely drove changes
in salt-in strategists

The most notable change in the functional composition of
the community post rain (2016) was an enrichment in
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Fig. 1 Average taxonomic composition of halite microbial communities from Site 1 before (2014, 2015) and after (2016, 2017) the rain event,
estimated from whole metagenome reads with KRAKEN and visualized with KronaTools

Fig. 2 Halite microbial community taxonomic composition and func-
tional potential over time. Taxonomic composition of halite micro-
biomes at each time point, shown by (a) hierarchical clustering
(correlation metric) of the Weighted Unifrac dissimilarity matrix and
(b) the average relative abundance of archaeal sequences, based on
16S rRNA gene amplicon sequencing. Error bars represent standard

deviation; significance bars denote two tail t test p < 0.0001. The
changes in functional potential of the halite communities is shown in
(c) with a PCA of the abundance of KEGG pathways inferred from
WMG co-assembly quantitation and (d) with hierarchical clustering
(Euclidean metric) of differentially abundant pathways (ANOVA p <
0.01, FDR=<1%), standardized to the maximum value in each row
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proteins with a higher isoelectric point (pI), and a decrease
in the potassium uptake potential (trk genes), both of which
are hallmarks of salt-in strategists. We found that the pI of
proteins encoded in community gene pool shifted sig-
nificantly after the rain, favoring higher pI composition
(Fig. 3a; KS2-sample test: p < 0.0001). Because of the
significantly different pI distributions in the predicted pro-
teins of Halobacteria (pI=5.04) and Bacteroidetes (pI=
5.80; Fig. 3d; KS2-sample test: p < 0.0001), the shift in their
relative abundances resulted in the average pI of the com-
munity to significantly increase after the rain (two-sided t
test: p < 0.01; Fig. 3b). Consistent with salt-in adaptations,
we also found that the average potassium uptake potential
(estimated from trk gene abundances) significantly
decreased after the rain (Fig. 3c). Interestingly, both the
shift in the average protein pool pI and the change in
potassium uptake potential were also observed within the
highly heterogeneous Halobacteria class (Fig. 3e, f).

Fine-scale taxonomic compositional shift after the
rain

While changes in overall taxonomic composition (domain and
phylum levels) of the halite communities were transient
(Fig. 2a, b), we surprisingly found that their fine-scale com-
position (individual OTUs and contigs) did not recover.
Samples collected at different dates were significantly differ-
ent in terms of presence or absence of operational taxonomic
units (97% OTUs), as measured by the Unweighted Unifrac
dissimilarity index (PERMANOVA: p < 0.001), with samples
harvested shortly after the rain (2016) being more distant from
pre-rain samples than they were from each other (two-sided t
test: p < 0.0001). We found that the community did not return
to its initial state after the perturbation, as the post-recovery
samples (2017) clustered together with post-rain (2016) sam-
ples (Fig. 4a), and were less distant to 2016 samples than to
the pre-rain samples (two-sided t test: p < 0.0001). The altered

Fig. 3 Differences in predicted protein isoelectric points and potassium
uptake potential over time. Analysis of the isoelectric points (pI) of
proteins encoded in replicates of WMG assemblies from samples
harvested at different dates, showing (a) the overall weighted dis-
tribution of the protein pIs, and the weighted average pI of proteins
encoded in (b) all contigs and (e) only Halobacteria contigs. (d) pI
distribution of predicted proteins encoded in Bacteroidetes and

Halobacteria contigs. Average potassium uptake potential across time-
point samples inferred from trk gene relative abundance and quantified
in (c) all contigs and (f) only Halobacteria contigs. Error bars represent
standard deviation; significance bars represent group significance
based on a two tail t test, and stars denote the p-value thresholds (*=
0.01, **= 0.001, ***= 0.0001)
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OTU composition of the community, shown with Unweighted
Unifrac clustering, contrasts with the successful recovery of
the higher-order taxonomic structure, as shown with Weighted
Unifrac dissimilarity clustering (Fig. 2a).

The shift in the community’s fine-scale membership was
validated with WMG sequencing at the scale of individual
contig abundances (Fig. S6). Based on contig read coverage
across samples, we found that all post-rain samples clustered
away from pre-rain samples (Fig. 4c; SigClust 2-group sig-
nificance: p < 0.01). In addition, pairwise Pearson correlation
comparison confirmed that contig abundances of post-rain
samples were better correlated with each other than with that
of pre-rain samples (two-sided t test: p < 0.0001). These
contig-level turnover dynamics were additionally investigated
with individually recovered metagenome-assembled genomes
(MAGs). In all, 91 high-quality MAGs (>70% completion,
<5% contamination; Data S2) were reconstructed with
metaWRAP [32] and their abundances were tracked between
samples. Pearson correlation comparison (two-sided t test: p
< 0.0001) and group significance analysis (SigClust 2-group
significance: p < 0.01) confirmed the permanent shift of the
fine-scale taxa composition after the rain (Fig. 4b). While the

fine-scale composition of the community did change during
the post-rain recovery between 2016 and 2017, the resulting
shift was more moderate when compared with the more
drastic taxonomic shift immediately following the rain. This
contrasts with the near-complete recovery of the overall
functional potential of the community (Fig. 2c, d). In addition,
two conditionally rare taxa [41] of Cyanobacteria that were
previously reported in only a small fraction of halite nodules
[18] were found in high abundances in most of the samples
after the rain (Fig. S7). Surprisingly, we found no correlation
between the functional potentials of the MAGs and their
survival after the rain, suggesting that this shift was a sto-
chastic process. These results indicate that while the abun-
dances of higher-order taxonomic ranks recovered to the pre-
rain state, the fine-grain taxonomy of the community has been
permanently reshuffled.

The rain disrupted taxonomic membership of
potential functional niches

To investigate the basis of the functional potential shift of
the halite community after the rain, we introduced a

Fig. 4 Fine-scale taxonomic
composition shifts across time.
Fine-scale compositional
changes of halite communities
over time shown with
(a) hierarchical clustering
(correlation metric) of an
Unweighted Unifrac
dissimilarity matrix (based on
16S rRNA gene amplicon
sequencing), (b) hierarchical
clustering (Euclidean metric) of
standardized MAG abundances,
(c) PCA of co-assembly contig
abundances, and (d) weighted
distributions of taxonomic
turnover (TTI) of functional
niches between time points. The
TTI of each functional category
estimates the changes in
organisms that encode it (see the
Methods section)
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taxonomic turnover index (TTI), which quantifies the turn-
over of strains (estimated from contigs) contributing to each
community function. To compute the TTI, genes from each
KEGG Orthology identifier were cataloged and their
abundances in each sample estimated from the read cover-
age of the contig that they were on. The absolute value
average of the change in contig abundances that carry a
given function between two samples represents the degree
of taxonomic turnover within that functional category (see
the Methods section). A relatively high TTI for a given
community function indicates that it is carried by different
community members between two samples, but does not
necessarily imply a high net change in its total abundance in
the samples. Therefore, the distribution in TTIs for all
functions between two time points quantifies changes in
niche representation over that time (Fig. 4d). However,
because these results are based solely on functional poten-
tial prediction from gene abundances, it should be noted
that our estimations of the functional landscape could be
significantly altered by compensatory transcriptional and
translational processed, and functional rates. The turnover
following the rain (2015 to 2016) was significantly higher
than the baseline taxonomic shift prior to the rain (2014 to
2015; KS2-sample test: p < 0.0001), indicating that the
same functional pathways were being carried on a different
set of contigs. However, the shift in functional niche
membership during the recovery phase (2016 to 2017) was
low compared with the post-rain shift, indicating that the
taxonomic membership did not return to its initial state.
These findings indicate that functional redundancy of
community members ensured a robust functional landscape
in the halite microbial communities despite changes in the
fine-scale taxonomic membership. Interestingly, this shift
did not notably affect the overall functional diversity of the
samples, as seen from lack of a significant difference
between the total number of unique gene functions found in
each time point (two-sided t tests: p > 0.05).

Discussion

The response and recovery of the halite microbiome, a
sensitive extremophile ecosystem, provided the opportunity
to characterize the response dynamics of a natural com-
munity to changing environmental conditions. While low
sampling frequency limits the temporal resolution of this
study, our evidence suggests that the 2015 rainfall required
major adaptations in the extreme halophiles found within
the halite nodules of Salar Grande. The shift in the observed
taxonomic composition following the rain was noteworthy
not only in the context of this study but also when com-
paring with previous studies of this area in 2013 [17]. The
surviving community was comprised of organisms with

higher average isoelectric points (pI) of their predicted
proteins and lower potassium uptake potential. This was
significant because high-potassium uptake is a strategy used
by salt-in strategists to balance high external salt con-
centrations, while the low pI of their proteome allows them
to function in the high-potassium intracellular environment
[21, 42]. Our reported average isoelectric points for the two
dominant salt-in strategists in this system—5.80 (Bacter-
oidetes) and 5.04 (Halobacteria)—were similar to those
previously documented for these taxa – 5.92 and 5.03,
respectively [19]. It is also well documented that acid-
shifted proteomes is also an adaptation in salt-in strategists
to increasing salt in the environments [43, 44]. The changes
in pI and potassium uptake potential we observed after the
rain suggest that the rain temporarily decreased the salt
concentrations within the colonized pores [23, 45], rapidly
changing the osmotic conditions within. We hypothesize
that this led to a mass death event of organisms poorly
adapted to large osmotic changes immediately following the
rain, while giving others an advantage.

The taxonomic shifts at the contig level were likely
driven by neutral (i.e., random) processes [46, 47] resulting
from the halite re-colonization, rather than deterministic
processes associated with adaptation to the rain. These
stochastic dynamics, similar to those governing the initial
colonization of halite nodules, resulted in high inter-nodule
taxonomic diversity [18] while the functional states
remained. We suggest that each nodule was stochastically
colonized by random draw, from the seed bank, of com-
petitively equivalent organisms. A seed bank is a diverse
genetic reservoir consisting of a large collection of low-
abundance organisms [1, 48] that might be critical for
microbiome functioning, particularly following prolonged
unchanging environmental conditions, such as the past 13
years prior to the rain in northern Atacama. Seed banks
conserve genetic and functional diversity, which in turn
allows for rapid adaptation and restructuring of the micro-
bial community following a drastic perturbation.

While our methods cannot differentiate the DNA of
living organisms from relic DNA present in the halite
nodule [49], it is unlikely that the observed compositional
shift after the rain was an artifact of relic DNA turnover.
Indeed, it is improbable that the 24.2 mm of rain was suf-
ficient to wash away relic DNA from within the nodules.
Similarly, the rain itself was probably not a major con-
tributor to the sequenced DNA since we did not detect non-
halophilic organisms that are likely to be found in atmo-
spheric microbiomes [50].

The halite microbiome was able to recover from this
catastrophic event, however, the effects of the perturbation
lasted remarkably long (months), in contrast with studies in
other desert systems where much quicker recoveries were
documented (weeks) [12]. The higher temporal resolution in
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the time series at additional sampling Site 2 especially
highlights the slow-growing nature of these extremophiles
and suggests that the immediate effects of the rain on the
halite community may have been even more dramatic than
what we observed 3 months post rain [17, 51]. Fifteen
months post rain, the community comprises an entirely new
set of organisms but its functional potential recovered to a
pre-rain state, suggesting that the community taxonomic
structure entered an alternative equilibrium state during the
recovery period [4, 11]. The functional consistency of a
community, disconnected from taxonomic variance, has
previously been documented in a variety of microbiomes
and stems from functional redundancy of closely related
taxa [6, 7, 52, 53]. In particular, isolated microbiomes such
as miniature aquatic ecosystems found in bromeliad rosettes
(similarly isolated as the halite nodules) appear to converge
on identical functional landscapes through mechanisms
such as stoichiometric balancing between metabolic path-
ways, despite great inter-community taxonomic diversity
[54, 55].

The pre-rain (2014) and recovered (2017) communities
were very similar in terms of their functionally potential,
while the intermediate state (2016) was very distinct
(Fig. 2c, d). Therefore, the two compositional shifts that the
halite microbiomes underwent following the rain—the
initial response (2015–2016) and subsequent recovery
(2016–2017) resulted in a similar magnitude of change to
the overall functional potential of the community. Tax-
onomically, however, the two shifts were fundamentally
distinct, as the individual taxa membership was drastically
changed during the initial response to the rain, but stayed
unchanged during the recovery (Fig. 4b, c).

The two different mechanisms by which the halite
communities achieved almost identical net change in their
functional potential as they entered and then exited their
intermediate state [11, 12] offered a uniquely detailed view
of microbial adaptation dynamics. These two types
responses, or modes, allowed for inference of a general
microbiome adaptation model, which can be potentially
applied to explain and predict the taxonomic and functional
flux in other ecosystems following major environmental
changes (Fig. 5). The first mode (Type I; Fig. 5a) is a
community shift, resulting from adaptations to an acute
major perturbation. In the halite nodules, the rain presented
a major stress on the preexisting communities by tem-
porarily lowering external osmotic conditions and exerting a
strong selective pressure on the salt-in strategists. This
produced gaps in existing functional niches and presented
an opportunity for new organisms from the seed bank to
come in through niche intrusion [56]. The Type I shift is
driven by neutral (random) processes characterized by
changes in fine-scale (i.e., strains) taxonomic composition,

which results in a high taxonomic turnover index (TTI=
0.89 ± 0.12 in the model).

The second mode (Type II; Fig. 5b) is an adjustment in
existing community structure, and results from gradual
changes in environmental conditions. After the rain passed
and the osmotic conditions within the halite nodules returned
to their initial levels, the halite community gradually returned
to its previous functional potential. However, because there
were no major stress events to reset the strain composition of
the communities, the newly dominant strains remained rela-
tively unchanged during the recovery period. Instead, the
functional potential of the community is achieved through
gradual changes in relative abundances of major taxa (Fig. 2;
S4, S5), the strain composition of which remained unchanged.
The taxonomic mechanism behind the Type II response is
relatively deterministic, as the relative abundances of cur-
rently dominant taxa is adjusted based on fitness under the
new selective pressures, preventing new organisms to take
over. As a result, the strain composition of these major taxa
remain largely unchanged, resulting in a low taxonomic
turnover index (TTI= 0.28 ± 0.17 in the model). In the halite
microbiome, the Type I and a Type II shifts occurred in
succession, leading the community first through an unstable
intermediate state and then into an alternate equilibrium state
[4]. This intermediate dis-equilibrium intermediate has been
reported in a number of communities after disaster events [57]
or antibiotic administration [56, 58], but until now was dif-
ficult to investigate closely in natural ecosystems because of
compounding complexity and fast microbial growth rates
[1, 4]. We postulate that Type I and Type II shifts observed in
our model microbiome are integral to analogous structural
rearrangement in other systems.

It is important to note that Type I and Type II functional
shifts do not necessarily follow one another. If the initial
environmental conditions are not re-established after a per-
turbation, such as after a permanent introduction of irrigation
to desiccated soils, a Type I shift will most likely be the main
mechanism for community adaptation, driven by the changes
in environmental conditions. Alternatively, in systems where
environmental conditions shift gradually, such as aquatic
microbiomes during seasonal changes, Type II shifts will
likely drive the changes in the community’s functional
potential. We propose that TTI measurements of such shifts
may be useful in future studies to categorize such dynamics.

In conclusion, the tractable nature of our model micro-
biome allowed us to extrapolate general mechanisms of
community response and resilience to acute shock. We
demonstrated that a major disturbance can result in sto-
chastic re-population of the community’s functional niches,
forcing a microbial community structure into an unstable
intermediate. During the succeeding recovery period, the
newly dominant taxa adjust in abundance to reproduce the
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initial functional potential, allowing the community to enter
an alternative equilibrium. Understanding the mechanisms
behind the response and recovery components of microbial
perturbation responses are vital to generally model and
predict the taxonomic and functional flux of ecosystems
following natural and man-made ecological disasters. Our
proposed characterization and quantitation of two types of
community shifts and our two-step model for community
resilience can provide a framework for future work in pre-
dictive modeling of microbial communities.

Data availability

Raw sequencing data are available from the National Centre
for Biotechnology Information under project ID
PRJNA484015. All analysis pipelines, processed data,
analysis and visualization scripts, and reconstructed MAGs
are available at https://github.com/ursky/timeline_paper.
The metagenome co-assembly and functional annotation are
available from the JGI Genome Portal under IMG taxon
OID 3300027982.

Fig. 5 Microbial community resilience model. Models of a micro-
biome adapting its functional potential in response to changing
environmental conditions either with (a) a rapid shift of the commu-
nity’s taxonomic composition resulting from new organisms from the
seed bank displacing previously dominant taxa through niche intrusion
(as seen in the initial shock from the rainfall), or with (b) a gradual
adjustment in relative abundance of major taxa (as seen in the halite
community recovery). On the y-axis, the vertical spread represents the

abundance of a given taxon (A through H) and on the x-axis, darker
colored bars show which functional category is encoded in their
genomes. The seed bank (black bars) represents rare taxa in the
community. The functional landscape curves at the top of each figure
visualize the relative total abundance of each functional category,
calculated by adding the abundances of the organisms that carry that
function. Taxonomic turnover (TTI) rates were calculated for each
model community in (a) and (b)
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