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PERSPECTIVE

Use and abuse of correlation analyses in microbial ecology
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Abstract
Correlation analyses are often included in bioinformatic pipelines as methods for inferring taxon–taxon interactions. In this
perspective, we highlight the pitfalls of inferring interactions from covariance and suggest methods, study design
considerations, and additional data types for improving high-throughput interaction inferences. We conclude that correlation,
even when augmented by other data types, almost never provides reliable information on direct biotic interactions in real-
world ecosystems. These bioinformatically inferred associations are useful for reducing the number of potential hypotheses
that we might test, but will never preclude the necessity for experimental validation.

Introduction

Correlation (i.e., normalized covariance), the measure of
statistical dependence between two variables, can be a
useful summary of the associations between features across
a dataset. Often, correlation refers to the linear relationship
between two random variables, which can be captured by
Pearson’s correlation coefficient, or nonparametric mea-
sures of dependence, like Spearman’s ρ, Kendall’s τ, or
mutual information. The degree of dependence between
variables can indicate a predictive relationship that can be
exploited, whether or not these variables are causally related
to one another. Overall, correlation is a useful statistical tool
for identifying apparent interdependencies among many
variables. Many researchers, implicitly or explicitly, use
correlation structure in microbial community datasets to

infer underlying ecological interactions. In general, these
inferences are fraught with challenges.

While useful, correlation-based approaches are inher-
ently limited when it comes to ecological interaction
inference. Complex nonlinear dynamics, compositionality
of sequencing data, environmental heterogeneity, latent
confounders, indirect associations, and batch effects all
hinder the usefulness of these correlation metrics when
inferring direct species–species associations. A variety of
newer metrics and methodologies have been developed in
recent years to address some of these challenges [1–9].
However, newer methods are far from infallible, and the
underlying assumptions of these approaches need to be
carefully considered when applied to data. Any method that
claims to accurately capture underlying biotic interactions
of a system using longitudinal or cross-sectional correlation
of taxon abundances or co-occurrences should be viewed
with a generous dose of skepticism.

The proliferation of correlation-based methods for
inferring ecological networks is understandable. In micro-
bial ecology, we are often limited in our ability to directly
observe interactions between microbial species. The most
definitive work on microbial interactions has been done
experimentally. For example, microscopy and staining
techniques, along with stable isotope labeling, have been
employed to observe co-localization and cross-feeding
between methanotrophic archaea and sulfate reducing bac-
teria [10]. In addition to mutualistic interactions, direct
bacterial antagonism through type VI secretion systems has
been demonstrated using a combination of genomics,
microscopy, and co-culturing assays [11]. Entire interaction
networks have been determined in simplified microbial
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consortia consisting of a few species, where community
membership can be manipulated to assess pairwise and
higher-order interactions [12, 13]. While these experimental
approaches represent gold standards for inferring interac-
tions between microorganisms, they are difficult and time
consuming. Furthermore, laboratory-based studies can fail
to capture the environmental context in which natural
interactions occur. Recent work has demonstrated just how
important this context can be in mediating interactions [14].
Thus, it is not practical to apply these experimental methods
to all potential interactions between thousands of taxa,
many of which cannot be cultured. As such, there is a strong
incentive for identifying bioinformatic methods for inter-
action inference.

While interactions are difficult to observe directly, rela-
tive fluctuations in population sizes can be readily quanti-
fied for thousands of bacterial phylotypes at once.
Bioinformaticians have developed a wide array of tools to
infer putative associations from these high-throughput
measures of relative abundance [15, 16]. In general, these
methods tend to generate correlation or covariance matrices,
which are often used to infer hypothetical interactions. At
their best, these inferences represent tentative hypotheses
that can be combined with other data types to help experi-
mentalists guide or constrain their work. At their worst,
these inferences are fundamentally flawed due to incorrect
assumptions about what they tell us about biotic interac-
tions. In this perspective, we review the application of
correlation-based methods in microbial ecology, the
strengths and limitations of these analyses, the pitfalls sur-
rounding how correlation can be misused or misinterpreted,
and how we might augment these analyses to improve our
inferences.

Theoretical considerations

Symmetric correlations and asymmetric interactions

To begin, we must recognize the inherent symmetry of
correlation metrics and the frequent asymmetry of ecolo-
gical interactions. It is impossible to identify the directed-
ness of interactions from cross-sectional associations
[3, 8, 17, 18]. By incorporating the ordering of events in
time and space into an analysis, it becomes somewhat
possible to infer directedness [8]. However, even when the
order of events is incorporated into association analyses,
biological, experimental, technical, and sampling noise can
greatly reduce the sensitivity and accuracy of our infer-
ences. Prior work has demonstrated that we are much more
likely to detect strong, symmetric interactions, like obligate
mutualisms or direct competition, and less likely to detect
weaker, directed interactions, like parasitism or amensalism
[16, 19, 20].

Dynamic models and mechanistic constraints can improve
inferences

In principle, when the underlying biochemical processes
that mediate microbial interactions are known, mechanistic
models can be developed and tested against data. When
applicable, this approach provides a powerful means of
predicting population dynamics and inferring interaction
structure. However, a priori knowledge of interaction
mechanisms is generally not available. Even when some of
these mechanistic details are known, building these models
is surprisingly challenging, even for simple two-species
systems [21]. Thus, while desirable, this approach is not
generally applicable when taxon abundances are the only
information available.

Lotka-Volterra (LV) models can be fit to longitudinal
data, where fluctuations in taxon abundances reflect growth
and death processes, without knowing the underlying
mechanisms that mediate interactions. LV models are
composed of nonlinear differential equations that describe
temporal changes in species abundance that result from
growth, death, and interspecies interactions. These models
take into account the temporal ordering of events, can
capture both positive and negative interactions, and can be
used to model arbitrary numbers of directed interactions
between species with the assumption that interactions are
additive and pairwise. When log-transformed, LV models
can be fit using linear regression, making the interaction
terms somewhat analogous to correlation coefficients [8].
Depending on the number of species and the para-
meterization, these models can have fixed steady-states,
limit cycles, or more complex behaviors. LV models can
provide a useful means of inferring species interactions and
predicting community dynamics in some contexts but have
limitations. For instance, if growth dynamics are not cap-
tured by sampling or the assumptions of the model are
violated (e.g., interactions are not additive and pairwise) the
application of LV is inappropriate. Furthermore, theoretical
and empirical studies have shown that LV models are
fundamentally incapable of accurately capturing all types of
pairwise interactions and can be a poor predictor of
dynamics under realistic conditions [13, 22]. Thus, while
these models are useful in certain systems, like in vitro
communities, their application is not always appropriate and
depends on the features of the system being studied
[12, 13, 20].

In the basic two-species predator–prey form of the LV
model (alternatively, the parasite–host model), the prey
species x is described by the equation dx

dt ¼ αx� βxy and the
predator y is described by dy

dt ¼ δxy� γy, where α and δ are
the growth rates and β and γ are the death rates for the prey
and predator species, respectively. Over a wide range of
parameter values in this system we observe oscillations in
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both predator and prey abundance as a function of time
(Fig. 1a). As the prey population grows, the predator
population has more food and also increases in abundance.
However, predation eventually out-paces the growth of the
prey population and drives the prey toward near-extinction,
until there are too few prey to sustain the predator popu-
lation. Once the predator population crashes, the few
remaining prey are able to recover, and the cycle begins
anew. Over the course of time, predator and prey popula-
tions transition between windows of positive covariance
and negative covariance (Fig. 1a). Contemporaneous cor-
relation is not capable of identifying this asymmetric
interaction between x and y inherent to the underlying
model [8]. However, if we time-lag x relative to y, we find

that a lag exists where the two variables are consistently
positively or negatively correlated over all time windows
(Fig. 1b). By observing the temporal ordering of this time-
lagged relationship, we see that the crash in the prey
population is preceded by a spike in the predator popula-
tion, which implies a directedness consistent with y pre-
dating upon x. These types of time-lagged interactions can
be formally assessed using Granger causality, which cap-
tures the degree of linear prediction of one variable (say,
species y) on the future values of another variable (say,
species x) and can provide directed relationships [6].
Similarly, transfer entropy is a nonparametric extension of
Granger causality that can be applied to infer nonlinear,
time-asymmetric associations between variables [18]. While

Fig. 1 Correlation alone cannot be used to infer drivers of species
dynamics. a Lotka-Volterra (LV) predator-prey oscillatory dynamics.
b Time-lagged LV predator–prey dynamics, with arrows indicating the
time lag used for shifting the prey dynamics backwards in time. In
both a and b blue rectangular boxes are used to indicate regions in
time where the dynamics show significant positive correlation (r > 0,
p < 0.05) and red boxes indicate significant negative correlation (r < 0,
p < 0.05). The symbols above each time window reflect the color
categorization, where “+” indicates a significant positive correlation,
“−” indicates a significant negative correlation and “ø” indicates an

insignificant correlation. Also shown is the overall correlation across
all time windows. c Hypothetical two-species community with mul-
tiple drivers of oscillatory dynamics operating at different frequencies.
For each of the hypothetical species, dynamics were simulated using a
linear combination two sine functions with different amplitude and
frequency. Noise was added to each abundance trajectory by sampling
from a normal distribution. d Spectral decomposition (i.e., Fourier
transform) of abundance data in (c) and species abundance relation-
ships for both high and low-frequency signal components
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these approaches suggest direct causal relationships, they do
not guarantee them. Latent factors, like pH, temperature, or
another unmeasured species, could indirectly drive similar
time-lagged population dynamics. However, if known a
priori, these associations can be accounted for [6]. Another
popular approach for inferring directed associations is
extended local similarity analysis [7]. Like transfer entropy,
this method provides a useful means of capturing both
temporal relationships and nonlinear associations. All of
these approaches work well in addressing the weakness of
contemporaneous correlations for the simple two-species
predator–prey relationship. However, in the more compli-
cated scenario of multispecies virus–microbe interactions,
time-lagged association inference methods have been
shown to be incapable of accurately capturing the features
of these complex networks [20].

Latent drivers of dynamics confound inference of species
associations

Interspecies interactions are not the only drivers of dynam-
ics. Complex population dynamics can arise due to latent
variables. In particular, environmental drivers, like changes
in nutrient availability or temperature, have a profound
influence on microbial population dynamics. These drivers
can operate over different spatial and temporal scales. When
these drivers are not taken into account they can lead to
inaccurate inferences of interspecies relationships. For
example, marine bacterial populations can exhibit both low-
frequency oscillations (e.g., seasonal changes) and high-
frequency oscillations (e.g., species–species competition or
day–night cycles). Martin-Plantera et al. [23] recently
applied spectral decomposition methods to marine microbial
communities to isolate the different frequencies embedded
within species population dynamics. They found that low-
frequency oscillations grouped species together that share a
similar seasonal niche, which reflected environmental fil-
tering and likely had nothing to do with species–species
interactions. Higher-frequency oscillations revealed negative
correlations between related species, which may be more
reflective of biotic interaction, although these dynamics
could also be driven by the environment [23]. Because the
low-frequency seasonal signal was much stronger than the
high-frequency signal, traditional correlation analyses were
dominated by seasonal effects and missed the higher-
frequency signals (e.g., see simulation data presented in
Fig. 1c, d). While this kind of environmental filtering can
mask putative species interactions, this information is still
valuable for inferring shared environmental niches within a
community and, when properly accounted for, can help
researchers to decouple the biotic and abiotic components of
community variance [6, 23, 24].

Neutral processes can drive covariance in the absence of
species interactions and environmental drivers

In some scenarios fluctuations in species abundance cannot
be attributed to interspecies interactions, changes in envir-
onmental factors, or niche constraints. In these cases,
observed fluctuations may simply be due to stochastic
variation in community structure. Neutral models simulate
changes in community structure with stochastic birth, death,
migration, and speciation. Methods have been developed
that allow the application of neutral models to both cross-
sectional and time-series data [25, 26]. These methods,
along with other types of neutral models, can provide an
effective null hypothesis when trying to fit interaction
models like LV or when trying to infer species associations
with correlative analyses [27].

Analytical considerations

Complex structure of microbiome data

Many of the assumptions of established statistical methods
are violated by microbiome sequencing datasets. Microbial
community species-abundance distributions are extremely
fat-tailed, with a large number of low-abundance taxa
detected in very few samples. Thus, microbiome data
matrices are highly sparse. Unfortunately, we do not yet
understand the functional form of this rare tail of microbial
diversity, which makes imputation and normalization diffi-
cult. It is hard to assess whether zeros represent true
absences of species or nondetection due to sampling lim-
itations. The presence of these zeros introduces artifacts into
rank-based correlation analyses [27]. Existing approaches
have not yet addressed the ambiguity of zeros in amplicon
and metagenomic sequencing datasets. In the absence of a
clear consensus, more conservative approaches, like
injecting random low-value pseudocounts to break zero
rank ties or removing low-abundance taxa, seem to be the
most appropriate when calculating correlations [27, 28].

Data transformations can introduce spurious correlations

When analyzing microbiome data from high-throughput
sequencing platforms, differences in library sizes across
samples must be dealt with prior to analysis. These differ-
ences in library sizes are technical artifacts and do not
contain biological information. The most common nor-
malizations are total sum scaling (i.e., converting counts to
proportions by dividing each species count in a sample by
the total sum of counts from within that sample) and sub-
sampling [29], which both effectively convert counts into
relative measures of abundance. Relative abundances are
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non-Euclidean and cannot vary independently from one
another. Changes in the relative abundance of one species
will necessarily influence the relative abundances of the
other species due to the zero-sum constraint (Fig. 2). As
such, relative measures of abundance violate the assumption
of independence inherent to classical statistics.

The most relevant repercussion to interaction inference in
compositional data is the introduction of spurious correla-
tion structure (Fig. 2). Compositionally aware methods for
analyzing relative abundances were developed by Aitchison
in the 1980s, based around log-ratio transformations of
compositional features. Isometric log-ratio (ILR) transforms
provide the most stringent way of breaking composition-
ality, but they can be difficult to interpret, because they
involve comparing ratios of multiple data features, rather
than pairwise associations between individual features.
Recent work has extended these methods to microbiome
data, improving the interpretability of ILR results by taking
advantage of the placement of species on a phylogenetic
tree (i.e., ratios of species from one branch of the tree over
species on another branch) [30]. Others methods use log-
ratio transform procedures that approximate pairwise linear
correlations between individual taxon relative abundances

[2]. This later approach, implemented in SparCC, is a
popular choice for mitigating spurious, compositionally
driven correlation structure (Fig. 2c) [2]. While SparCC
provides a useful approach for dealing with composition-
ality, as with any method, it is important to keep the
assumptions it relies upon in mind to avoid potential pit-
falls. When SparCC’s sparsity assumption is violated (i.e.,
the assumption that there are very few underlying correla-
tions) it can yield erroneous results (Fig. 2b). Performance
is also hindered when there are few pairwise comparisons
with which it can estimate the underlying feature variances
and pairwise associations (Fig. 2a). When the sparsity
assumption is not violated and there are more than a few
pairwise comparisons with which it can produce estimates,
SparCC is able to accurately recapitulate much of the
known correlation structure from relative abundance data
(Fig. 2c). While we highlight the use of SparCC, it is worth
noting that there are several other valid choices for network
inference that can mitigate the issue of compositionality.
For a comprehensive review of network inference tools and
their performance characteristics see the following reviews
[16, 31]. Simulations and empirical analyses have shown
that the correlation structure in compositional data begins to

Fig. 2 Transformation from absolute to relative abundances introduces
spurious correlations, which can be mitigated by employing log-ratio
transformations (e.g., SparCC). a Simulated fluctuations in absolute
and relative abundance across a set of samples for a hypothetical six-
species community with one positive linear association. b Hypothe-
tical six-species community with one negative and two positive linear
associations. c Hypothetical fifteen-member community with three
positive and two negative linear associations. For each of these model
communities positive and negative associations are illustrated with
yellow and dark blue connecting lines, respectively. Mean abundances
of each species were chosen arbitrarily and random fluctuations were
simulated by sampling from a Poisson distribution centered around a
species’ mean abundance. Species associations were simulated using
linear relationships where the abundance of species Y was made a

function of its own random fluctuations about a mean and an additive
component that increased or decreased its abundance with respective
to another species x depending on the sign of the coefficient used.
Hypothetical community correlation matrices were generated using
Pearson correlation with absolute and relative abundance data. Also
shown is the correlation matrix inferred from relative abundance data
using SparCC with its default settings. Colored borders around cells in
the correlation matrices indicate associations where the p values were
<0.05 and the Benjamini–Hochberg false discovery rate (FDR) q
values were <0.1. Red borders indicate significant associations not
present in the model community (i.e., false positives), blue borders
indicate significant associations present in the model community (i.e.,
true positives), and yellow boarders indicate nonsignificant associa-
tions present in the model (i.e., false negatives)
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converge toward what we would expect from Euclidean
data as the Shannon diversity of the system increases (i.e.,
as the effective number of species increases) [2]. Thus,
compositional effects should be relatively weak in a typical,
diverse gut microbiome, but these effects can completely
overwhelm the correlation structure of the vaginal micro-
biome, which is often dominated by a single Lactobacillus
species [2]. However, even in very diverse communities, the
system is often positioned near the edge of the simplex (i.e.,
a single species is often dominant), which ensures that many
low-magnitude compositional correlations will always be
present. Overall, compositional effects inherent to micro-
biome data must be reckoned with prior to statistical
inference.

Noninformative indirect associations are introduced when
taxa engage in many pairwise interactions

When associations are obtained using correlative ana-
lyses, any species that interacts with more than one
additional taxon can produce indirect associations
between the taxa it interacts with (e.g., see significant
indirect associations in Fig. 2b, c). This is a serious issue
that can turn correlation networks into hairballs of inter-
connected features that are challenging to interpret. Both
classical correlation methods and more contemporary
approaches like SparCC are susceptible to indirect asso-
ciations (Fig. 2b, c). To address this issue, newer methods
like SPIEC-EASI and FlashWeave have been developed
[1, 32]. These methods utilize the concept of conditional
independence, which assesses how informative an asso-
ciation between two features is given information about
all other features, to reduce the number of spurious
indirect relationships inferred from the data.

Inferring associations between specific microbes and
environmental properties, like host phenotype, can be con-
founded by dense correlation networks. In recent years
correlative analyses have been used to associate specific
microbes in the human gut microbiome with a wide array of
diseases. These microbiome wide association studies
(MWAS) have produced many putative connections
between human gut microbes and host phenotypes. The
issue with these studies is they often produce conflicting
results and the number of associations generated by any
given study can be so numerous that they thwart inter-
pretation and complicate follow-up efforts [9]. Menon et al.
(2018) recently demonstrated how correlations between
microbes can produce spurious indirect associations in
MWAS using simulated case control data and a hypothe-
tical interaction network. To address this issue the authors
developed a method based on the maximum entropy models
in statistical physics, which they call direct association
analysis [9]. Like SPIEC-EASI and FlashWeave, the

author’s approach utilizes conditional independence to
remove uninformative, indirect associations. When applied
to data from a large inflammatory bowel disease study, the
author’s method was able to reduce a set of almost one
hundred putative associations between various microbiota
and the disease previously obtained by a conventional dif-
ferential abundance analysis to a more informative set of
five species and four genera, several of which were sup-
ported by mechanistic insights from other studies [9].
Whether inferring interspecies associations or species
associations with environmental properties, indirect effects
should be considered and accounted for to avoid reporting
spurious, noninformative relationships.

Biases due to batch effects

Microbiome data are prone to batch effects (i.e., biases),
arising from both biological (e.g., geographic or genetic
differences between otherwise similarly defined host
cohorts) and technical variation (e.g., different DNA
extraction methods or 16S primers) between batches of
sequencing data [33, 34]. These effects are highly com-
plex and nonlinear, potentially making parametric batch-
correction methods designed for other ‘omics data types
inappropriate for microbiome data [28]. If correlation
analyses are run across batches, many of the strongest
associations can be attributed to biases and batch effects
rather than true biological signals [28]. Recent progress
has been made in developing bias and batch-correction
methods [28, 34]. However, the safest course of action is
to restrict statistical analyses to within a given batch and
compare the results of these independent analyses across
batches.

Empirical considerations

Changes in relative abundance may not reflect population
growth rates

Often times, the assumption of interaction inference meth-
ods is that relative changes in species population size are
indicative of population growth or decay and can be used to
infer growth or death rates. On its face, this seems to be a
reasonable assumption. However, in the absence of absolute
abundance information, we cannot distinguish whether one
population of organisms is truly increasing, or whether this
rise in relative abundance is occurring due to a concomitant
decrease in the population size of another species. To
address this issue, researchers can take measures of absolute
biomass (e.g., quantitative polymerase chain reaction or cell
counts) for the samples that they sequence [35], or they can
use controlled spike-ins during sequencing to break the
compositionality of the data [36]. Methods for directly
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inferring growth rates from shotgun metagenomic data have
also been developed [37].

In addition to the challenges associated with relative
abundance data, temporal and spatial scales should be
considered prior to any analysis. For example, temporal
sampling resolution in the human gut is limited by defe-
cation frequency (~1 bowel movement per day), which is
generally too coarse to capture microbial population
dynamics (i.e., bacterial doubling times of 1–10 times
per day), despite the common assumption that population-
dynamics models can be fit to these data [3, 8, 38].
Consequently, most of the bacterial population dynamics
in the gut happen internally. Thus, fecal samples represent
the endpoint of dynamics. With the exception of major
perturbations that reduce standing populations in the gut
by several orders of magnitude and require days to
recover from (e.g., due to antibiotics or diarrhea) [3], we
probably cannot infer population growth rates from
human fecal 16S amplicon sequencing data. Therefore, it
is important to carefully consider whether or not the
spatiotemporal scale of sampling can capture relevant
dynamics for any system under investigation. If interac-
tion model assumptions are violated by the input data,
then any inferences dependent upon these assumptions are
suspect (Fig. 3).

Environmental heterogeneity is usually the strongest driver
of correlation structure in natural environments

In soils, drastic shifts in pH, carbon availability, and water
content can occur over microns-to-centimeter scales. If
environmental conditions vary over the spatial or temporal
scales that are sampled, the organisms—often phylogen-
etically related—that are adapted to these conditions vary
along with them [3, 23]. Cofluctuation of taxa due to var-
iation in niche space is known as habitat filtering, and can
be useful information about the niche requirements of
species in an ecosystem. However, habitat filtering provides
us with little-to-no information about direct species–species
interactions. Habitat filtering is usually the dominant driver
of correlation structure in natural microbial ecosystems and
should be carefully considered when attempting to identify
direct species–species interactions from ‘omics data.

Berry and Widder [39] showed that correlation networks
generated from multispecies LV models only reflected true
interactions under a narrow range of conditions, and that
any amount of interaction complexity or environmental
heterogeneity made correlation a poor predictor of interac-
tion. Concordantly, recent empirical work from an intertidal
ecosystem demonstrated that co-occurrence analyses were
unable to recapitulate most known interactions in their

Fig. 3 Sampling strategies
should be optimized to span the
appropriate spatial or temporal
scales. Soils are notoriously
heterogeneous environments.
a Context-dependent
interspecies interactions in a
hypothetical soil community:
blue and green species only
interact during a perturbation
event. b Infrequent sampling
appropriately captures
correlations from slower
recovery process. c Infrequent
sampling does a poor job of
capturing correlation structure
from a rapid recovery process
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system, with the exception of certain strong mutualistic or
antagonistic interactions [19]. The deconvolution of direct
species–species interactions from habitat filtering due to
environmental heterogeneity is one of the most intractable
challenges facing bioinformatic interaction inference in
real-world ecosystems. Thus, researchers should be extre-
mely skeptical and avoid explicit or implicit assumptions of
species–species associations when applying the myriad
methods that have been developed to infer putative “inter-
actions”, “connectivity”, or “cohesion” from covariance
structure in real-world systems [1–4, 8, 40].

Conclusion

We provide a few illustrative examples of the challenges
associated with interpreting correlation networks in micro-
bial ecology and highlight several methods that have been
developed to address these challenges. For a more in depth
discussion of the latest network inference methods, please
see recent comprehensive reviews on the topic [15, 16, 31].
In this perspective, we focus on our various concerns
regarding the use of correlation to infer biotic interactions.
While correlation analyses are extremely useful for pro-
cessing and digesting ‘omics data, they can also lead us
astray in several important ways. We discuss how correla-
tion metrics are inherently symmetric and cannot be used to
identify asymmetric interactions without including addi-
tional information. We demonstrate how various types of
community dynamics and interaction structures are funda-
mentally opaque to correlation analyses and how use of
models that incorporate temporal and mechanistic details
can aid inference of meaningful associations. We reveal
how data transformations and analysis techniques can warp
data and introduce spurious correlation structure that does
not reflect the underlying biology and we introduce several
methodological strategies to mitigate these issues. We note
that indirect associations can be produced by environmental
factors or taxa engaging in multiple interactions and present
methods for addressing these latent confounders. Finally,
we discuss how real-world ecosystems and the data we use
to investigate them are messy and complex, and how this
heterogeneity can confound our ability to infer species-
species interactions. Even the simplest cases of interaction
inference from correlations can fall apart. More often than
not, the presence or absence of a correlation between vari-
ables tells the researcher almost nothing about biotic
interactions.

Integrating other types of data into correlation ana-
lyses, like measures of potentially confounding environ-
mental variables, accurate noise and bias estimates,
absolute biomass, the ordering of events in space or time,
multi-omic measurements, and mechanistic constraints

can greatly improve our inferences. Perturbation experi-
ments, which dislodge an environmental system from its
steady state, can be used to generate more informative
correlation structure [41, 42]. The use of mesocosms or
microcosms helps to overcome the confounding influ-
ences of environmental heterogeneity and higher-order
species interactions. However, even in these simplified
systems, researchers should be supremely skeptical of
inferred interactions. In the end, bioinformatic approaches
only generate hypotheses. In order for these inferred
interactions to be accepted as truth, the hard work of
experimental validation is required.
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