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Synapse Loss in Cortex of Agrin-Deficient Mice after Genetic
Rescue of Perinatal Death
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Agrin-deficient mice die at birth because of aberrant development of the neuromuscular junctions. Here, we examined the role of agrin at
brain synapses. We show that agrin is associated with excitatory but not inhibitory synapses in the cerebral cortex. Most importantly, we
examined the brains of agrin-deficient mice whose perinatal death was prevented by the selective expression of agrin in motor neurons.
We find that the number of presynaptic and postsynaptic specializations is strongly reduced in the cortex of 5- to 7-week-old mice.
Consistent with a reduction in the number of synapses, the frequency of miniature postsynaptic currents was greatly decreased. In
accordance with the synaptic localization of agrin to excitatory synapses, changes in the frequency were only detected for excitatory but
not inhibitory synapses. Moreover, we find that the muscle-specific receptor tyrosine kinase MuSK, which is known to be an essential
component of agrin-induced signaling at the neuromuscular junction, is also localized to a subset of excitatory synapses. Finally, some
components of the mitogen-activated protein (MAP) kinase pathway, which has been shown to be activated by agrin in cultured neurons,
are deregulated in agrin-deficient mice. In summary, our results provide strong evidence that agrin plays an important role in the
formation and/or the maintenance of excitatory synapses in the brain, and we provide evidence that this function involves MAP kinase

signaling.
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Introduction

The molecular mechanisms involved in the formation of the
postsynaptic apparatus are well understood at the neuromuscu-
lar junction (NMJ), where spinal motor neurons synapse on
muscle fibers. The most important players involved in NMJ de-
velopment are the motor neuron-released molecule agrin and the
muscle-specific proteins MuSK, acetylcholine receptor (AChR),
and rapsyn (McMahan, 1990; Sanes and Lichtman, 2001; Beza-
kova and Ruegg, 2003). The receptor tyrosine kinase MuSK is the
signaling receptor activated by agrin, and rapsyn is a cytosolic
adaptor molecule that links MuSK signaling to AChR clustering.
Although agrin is not required to form AChR aggregates before
innervation, motor neuron-derived agrin is required to induce
and maintain the AChR aggregates that are closely associated
with the nerve terminal and that persist after the onset of electri-
cal activity (Sanes and Lichtman, 2001; Bezakova and Ruegg,
2003). Consistent with this concept, agrin-deficient mice die at
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birth because of respiratory failure. Similarly, inactivation of
MusSK or rapsyn causes respiratory failure.

Formation of synapses in the CNS shares many features with
the NMJ. For example, neurotransmitter release is not required
to form both presynaptic and postsynaptic specializations (Ver-
hage et al., 2000), suggesting that adhesive interactions are re-
sponsible for synapse assembly. Indeed, several adhesion mole-
cules have now been implicated in synapse formation in the brain
(for review, see Akins and Biederer, 2006). Although agrin is also
expressed in the brain, its role is controversial. For example, syn-
aptic deficits in agrin-deficient mice have only been observed in
the PNS (Gingras et al., 2002) but not in embryonic brain. Al-
though cortical neurons from heterozygous and homozygous
agrin knock-out mice are more resistant to damage triggered by
excitatory neurotransmitters (Hilgenberg et al., 2002), synapses
still form in such neurons (Li et al., 1999; Serpinskaya et al.,
1999). These experiments thus indicate that agrin signaling is not
required for the formation of neuron-to-neuron synapses.

In contrast, there is evidence that agrin may have a function at
neuron-to-neuron synapses. Most importantly, acute suppres-
sion of agrin expression by antisense oligonucleotides impairs
synapse formation and dendritic development in cultured hip-
pocampal neurons (Ferreira, 1999; Bose et al., 2000). Moreover,
agrin added to cultured neurons activates signaling pathways that
are known to be involved in synapse function, such as the tran-
scription factor cAMP response element-binding protein
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(CREB) (Jietal., 1998), the immediate-early gene c-fos (Hilgen-
bergetal., 1999), or the mitogen-activated protein (MAP) kinase
pathway (Karasewski and Ferreira, 2003; Hilgenberg and Smith,
2004). Finally, alternative splicing of the agrin transcript gener-
ates a protein isoform that is inserted into plasma membranes as
a type II transmembrane protein (Burgess et al., 2000; Neumann
et al., 2001). This form is highly expressed in neurons. Thus,
unlike the situation at the NM]J, agrin expressed in CNS neurons
does not require a structured basement membrane.

To clarify the role of agrin in the formation of synapses in the
CNS, we now examined the brain of agrin-deficient mice in
which perinatal death was prevented by the transgenic expression
of agrin in motor neurons. We find that there is a loss of synapses
in the cortex of these rescued mice and that agrin loss selectively
affects excitatory but not inhibitory synapses. These results are
thus the first to provide strong evidence for a role of agrin in the
formation and/or the maintenance of excitatory synapses in the
brain.

Materials and Methods

Generation of Tg/agrn™’~ mice. The cDNA encoding the 9-kb-long pro-
moter region of mouse Hb9 was cloned into pBluescript (pBS). To re-
lease the final Hb9-agrin construct (see Fig. 1a) from the pBS backbone,
we first inserted an additional Pacl restriction site at the 5" end of the
pBS-Hb9 construct by adaptor ligation. The cDNA encoding full-length
chick agrin was inserted downstream of this construct by Ascl/Xbal dou-
ble digestion. The final construct was then released by Pacl digestion and
injected into oocytes. Transgenic mice were identified by PCR and
Southern blot analysis using primers and probes from the 3’ untranslated
region of chick agrin mRNA. From six transgenic founders, three perma-
nent lines were established that expressed chick agrin. Each of the trans-
genic lines was mated with heterozygous agrin-deficient mice (Lin et al.,
2001), giving birth to transgenic heterozygous agrin-deficient mice (Tg/
agrn™’"). These mice were then mated with heterozygous agrin-deficient
mice. The line that gave rise to surviving Tg/agrn ™/~ mice first was used
for the analysis described here. For most experiments, 6- to 7-week-old
mice of both genders were used. Control animals were usually littermates
of the same age. Whenever possible, these animals were wild type or
transgenic for Hb9-agrin. In a few cases, heterozygous agrin knock-out
mice were used.

Antibodies. Anti-agrin antibodies included rabbit antisera raised
against the C-terminal half of chick (Gesemann et al., 1995) or mouse
(Eusebio et al., 2003) agrin and the mouse monoclonal antibody 5B1
(Reist et al., 1987). Antibodies to the al or the a2 subunits of GABA
receptors were raised in guinea pigs and were a kind gift from J.-M.
Fritschy (University of Zurich, Zurich, Switzerland). Anti-MuSK anti-
bodies were raised against the extracellular domain of mouse MuSK that
had been expressed in 293 EBNA cells (Invitrogen, San Diego, CA) as a
His-tagged fusion protein and were purified from culture medium using
a Ni-column. This antiserum recognizes MuSK in Western blots and
immunohistochemistry (see supplemental Fig. 2, available at www.jneu-
rosci.org as supplemental material). All of the other antibodies used were
from the following commercial sources: rabbit antibodies against synap-
tophysin (Dako, High Wycombe, UK), neurofilament (Sigma, St. Louis,
MO), S-100 (Dako), glial fibrillary acidic protein (Dako), and SynGAP
(Affinity Bioreagents); and mouse monoclonal antibodies against
CaMKIl« (calcium/calmodulin-dependent protein kinase Ila; 6G9; Af-
finity Bioreagents, Golden, CO), gephyrin (Mab7a; Connex, Martin-
sried, Germany), phospho-c-jun N-terminal kinase (JNK; Cell Signaling
Technology, Danvers, MA), mitogen-activated protein kinase kinase 7
(MKK7; 611246; BD Biosciences, Franklin Lakes, NJ), NR1 (54.1;
PharMingen, San Diego, CA), synaptophysin (MAB5258; Chemicon,
Temecula, CA), and postsynaptic density protein-95 (PSD-95; K28/86;
Upstate Biotechnology, Lake Placid, NY). Detection was done using the
appropriate, affinity-purified secondary antibodies coupled to either Cy3
(Jackson ImmunoResearch, West Grove, PA) or Alexa 488 (Invitrogen).

Stereological analysis. The analysis was performed as described previ-
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ously (Calhoun et al., 1998). Briefly, mice were perfused with 0.1 M PBS,
pH 7.4, followed by 4% paraformaldehyde (PFA) in PBS, and the brains
were dehydrated in ethanol (70, 83, and 96% for 1 h each). After 15 min
in 100% ethanol, the brains were kept in a 1:1 cedarwood oil/ethanol
mixture and then in cedarwood oil at 60°C, each for 1 h. Excess oil was
removed by immersion in a 1:1 cedarwood oil/methyl salicylate mixture
overnight and in 100% methyl salicylate for 1 h. Brains were embedded
into paraffin using standard procedures, and 25-um-thick coronal sec-
tions were cut using a rotatory microtome. Total numbers of neocortical
neurons and synaptophysin-positive puncta were counted on cresyl
violet- and synaptophysin-stained sections, respectively. A systematic
random series of every 20th section throughout the entire cortex was
selected, yielding 10—15 sections per animal. To stain for synaptophysin,
sections were quenched with 0.3% H,O, in methanol, followed by block-
ing in 5% goat serum. Sections were incubated with primary antibodies
overnight at 4°C and then with biotinylated secondary antibodies, ABC
solution (Vector Laboratories, Burlingame, CA), and 0.08% diamino-
benzidine/0.03% H,O, in PBS. Quantification was performed by esti-
mating the volume of the cortex according to the Cavalieri method (grid
point area, 500 um *) and multiplying it by the numerical density, which
was determined by counting objects within three-dimensional optical
dissectors (16 p,m3 for boutons, 4200 me3 for neurons), systematically
spaced throughout the neocortex. On average, 75 * 23 and 103 * 21
dissectors per mouse were counted for synapses and neurons, respec-
tively. Only cells with a typical neuronal morphology (clear nucleolus or
discrete, darkly stained synaptophysin-positive boutons) were counted
(100X; 1.3 numerical aperture objective; on-screen magnification,
2759X). Analysis was performed with stereological software (SPA, Alex-
andria, VA).

Golgi—Cox impregnation. Freshly isolated brains were impregnated ina
15:5:4 mixture of potassium dichromate, mercuric chloride, and potas-
sium chromate solutions (5% each) for 3 weeks in the dark. After dehy-
dration in ethanol (70% for 12 h, 96 and 100% for 24 h each), brains were
impregnated with celloidin solution (2, 4, and 8% for 24, 48, and 72 h,
respectively) and cut into 80- to 100-um-thick coronal sections, which
were then processed for Golgi—Cox staining. Staining was visualized by
incubation in 25% NH,OH for 30 min, followed by 0.5% phenylenedi-
amine for 4 min, 1% Dektol (Eastman Kodak, Rochester, NY) for 2 min,
5% fixative solution (G305) for 5 min, and acetate buffer at pH 4.1 for 5
min. After dehydration in ethanol, sections were mounted, and well
impregnated pyramidal neurons were reconstructed using Neurolucida
software.

Locomotion. Exploratory locomotion was examined in an open-field
test. Mice were placed into a new cage, and the time they spent moving
during the first 10 min was measured manually.

Immunohistochemistry. Double immunofluorescence for excitatory
synaptic markers was performed by the antigen-unmasking method with
pepsin pretreatment (Watanabe et al., 1998). Other stainings on brain
tissue were performed as described previously (Fritschy et al., 1998).
Whole-mount staining of muscle was performed as described previously
(Bezakova and Lomo, 2001). Cultured neurons were washed with PBS,
fixed with 4% PFA in PBS, permeabilized with 0.1% Triton X-100, and
blocked with 10% fetal calf serum in PBS for 1 h at room temperature.
Cells were incubated with primary antibodies overnight at 4°C, washed,
and further incubated with secondary antibodies for 2 h at room temper-
ature. All images were analyzed using fluorescence or confocal laser-
scanning microscopy (Leica, Nussloch, Germany) and the appropriate
imaging software.

Immunoelectron microscopy. Mice were perfused with PBS, followed by
4% PFA in PBS. Cortices were postfixed in the same fixative overnight,
followed by 0.5% OsO,, for 30 min. After dehydration in ethanol (50 and
70% for 10 min each), tissue was infiltrated with a 2:1 mixture of ethanol
and LR White, followed by pure LR White (1 h each), and polymerized at
70°C for 24 h. Sixty-nanometer-thick microtome sections were first in-
cubated with agrin antiserum (1:500) and then with 10 nm gold-coupled
secondary antibodies (1:20). For quantification, all gold particles within
100 nm of the middle of the synaptic cleft of randomly selected synapses
were counted.

Electrophysiological measurements. Recordings were made from visu-
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ally identified pyramidal neurons located in layer II/III of the motor
cortex. Slices were prepared from 4- to 5-week-old mice. Parasagittal
slices (300 wm thick) were cut with a Leica VT1000S in ice-cold artificial
CSF (aCSF) containing (in mMm) 119 NaCl, 1 NaH,PO,, 26.2 NaHCO,,
2.5KCl, 2.5 CaCl,, 1.3 MgCl,, and 11 glucose, pH 7.3, equilibrated with
95% 0,/5% CO,. Slices were then kept in oxygenated aCSF at room
temperature for at least 1 h before starting recordings at 30-32°C. Pyra-
midal neurons were visualized using an infrared-sensitive camera (Hita-
chi, Tokyo, Japan) and oblique illumination optics (BX51WTI; Olympus,
Tokyo, Japan). Synaptic activity was recorded from cortical pyramidal
cells by a whole-cell voltage-clamp technique using an Axopatch 200B
amplifier (Molecular Devices, Union City, CA). Patch electrodes (3-5
M(Q) were filled with a solution containing (in mm) 135 CsMeSO,, 8
NaCl, 10 HEPES, 0.5 EGTA, 4 Mg-ATP, and 0.3 Na-GTP, pH 7.25 (ad-
justed with CsOH). Series resistance was not compensated. Currents
were digitized at 20 kHz using a Digidata 1322A interface (Molecular
Devices) driven by pClamp 9.2 software (Molecular Devices). Slices were
continuously superfused (1.5-2 ml/min) with oxygenated aCSF supple-
mented with 0.5 um TTX (Latoxan, Valence, France) to record miniature
EPSCs (mEPSCs) and miniature IPSCs (mIPSCs). mEPSCs and mIPSCs
were recorded at a holding potential of —70 and 0 mV, respectively. All
mEPSCs were measured in the presence of 100 uM picrotoxin (a selective
GABA,, receptor antagonist; Sigma), and mIPSCs were measured in the
presence of 2 mM kynurenic acid (a selective glutamate receptor antago-
nist; Sigma). The detection and analysis of miniature currents were
achieved by the Minianalysis software (version 6.0.3; Synaptosoft, Deca-
tur, GA). For statistical analysis, the one-way ANOVA test was used. All
values are given as mean * SEM.

Preparation of brain lysates, brain membranes, synaptic plasma
membranes, and immunoblotting. For total brain lysates, tissue was
homogenized in radioimmunoprecipitation assay buffer (150 mm NaCl,
50 mm Tris-HCI, pH 8.0, 1% NP-40, 0.5% sodium deoxycholate, and
0.1% SDS; 3 ml/g tissue) with a protease inhibitor mixture on ice. Sam-
ples were centrifuged at 10,000 X g for 10 min at 4°C, and supernatants
were collected. For brain membranes, cortices were homogenized with a
glass-Teflon homogenizer in 10 vol of ice-cold 10 mm Tris-HCL, pH 7.4,
containing 320 mM sucrose and protease inhibitors. The homogenate was
centrifuged at 700 X g for 10 min at 4°C, and the pellet was resuspended
and spun again at 700 X g. Supernatants were combined and centrifuged
at 37,000 X g at 4°C for 40 min. This high-speed pellet (P2) was resus-
pended in 10 mwm Tris-HCI, pH 7.4, containing protease inhibitors. Pro-
tein concentration was determined using the BCA protein assay (Pierce,
Rockford, IL). Further purification of synaptic plasma membranes
(SPMs) was performed as described previously (Jones and Matus, 1974).
Separation of proteins by SDS-PAGE was done using 7.5% or 4—8%
polyacrylamide gels.

Microarray analysis. Total RNA was prepared by Trizol extraction
(Sigma) from triplicate samples of cortices of 4-week-old Tg/agrn™/~
and control littermates. For microarray analysis, RNA was reverse
transcribed using Superscript II reverse transcriptase (Invitrogen)
and oligo-dT as primers. Resulting cDNA was used as a template for
the production of biotin-labeled cRNA using a RNA transcript label-
ing kit (Affymetrix, Santa Clara, CA). Finally, the labeled cRNA was
purified using RNeasy spin columns (Qiagen, Chatsworth, CA), frag-
mented, and hybridized to Affymetrix Mouse Genome 430 2.0 Arrays,
as recommended by the manufacturer. Raw expression signals for
each transcript were computed using the algorithm implemented in
MAS 5.0 (Affymetrix). The robust multichip average method, imple-
mented as a part of the BioConductor package affy, was used for data
normalization, background correction, and summarization. The hy-
bridization signal intensity was analyzed with Gene Spring 6.1 soft-
ware (Silicon Genetics, Fremont, CA). In this study, the fold-change
analysis method was used to select genes differentially expressed in
each genotype. The increase or decrease in mRNA level was consid-
ered reliable if the difference in hybridization signal intensity between
a control and Tg/agrn™’~ samples yielded at least a twofold change
(<0.5 or >2.0) as described previously (Soriano et al., 2000; Matzi-
levich et al., 2002). For each genotype, three gene chips were used.
Only genes showing a less than twofold or more than twofold change
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in at least 83% (five of six) of comparisons were selected as differen-
tially expressed for further analysis. The fold-change value for each
gene was calculated based on the mean and SD of comparisons that
had the highest, more reliable, individual fold-change values. These
selected genes were then subjected to extensive, gene-by-gene litera-
ture research and divided into functional classes based on their puta-
tive functions reported in the literature.

RNA extraction and reverse transcription-PCR for MuSK. Total RNA
was extracted from 50 mg of cortex tissue using 1 ml of TRI reagent and
the Fast Prep FP120 apparatus (Savant, Hicksville, NY) for homogeniza-
tion. Residual proteins were extracted by chloroform. RNA was pre-
cipitated with isopropanol, washed with ice-cold 75% ethanol, and
recentrifuged for 5 min at 7500 X g (4°C). The RNA pellet was air dried
and dissolved in 80 ul of DEPC-treated water. Single-stranded cDNA
was prepared from 5 ug of total RNA using SuperScript II Reverse
Transcriptase (Invitrogen) according to the supplier’s instruction.
PCR was performed for 33 cycles using the forward primer 5'-
CTGGATCAAGGGGGACAAT-3"and the reverse primer 5'-CTCT-
GGTACCGGAAGGAGA-3'. PCR products were analyzed on a 2%
agarose gel.

Results

Restoration of nerve-muscle synapse in agrin-deficient mice
Neural agrin secreted from motor neurons is required for the
formation of NMJs (Gautam et al., 1996; Burgess et al., 1999).
Because neural agrin injected into muscle is sufficient to induce
postsynaptic structures (Cohen et al., 1997; Jones et al., 1997), we
hypothesized that neural agrin released from motor neurons in
otherwise agrin-deficient mice might prevent the perinatal death.
To test this idea, we generated transgenic (7g) mice that express
the cDNA encoding neural chick agrin under the control of the 9
kb promoter region of the motor neuron-specific homeobox
transcription factor Hb9 (Arber et al., 1999; Thaler et al., 1999)
(Fig. 1a). Using antibodies that recognize chick but not mouse
agrin, we found that NMJs of Tg mice were positive for the trans-
gene (Fig. 1) and that the transgene did not alter the structure of
the NMJs (see supplemental Fig. 1, available at www.jneurosci.
org as supplemental material). In a few muscles, such as soleus or
the diaphragm, chick agrin was also detected in extrasynaptic
regions, and these agrin deposits often induced aggregation of
AChRs at nonsynaptic sites (Fig. 1b), as does neural agrin injected
into the muscle (Bezakova et al., 2001). The Tg mice were then
bred with heterozygous agrin knock-out mice (Lin et al., 2001) to
generate offspring that were homozygous for the agrin deletion
and expressed the transgene (called herein Tg/agrn™'~). Tg/
agrn”~’~ mice were born with the expected Mendelian frequency
and, in contrast to agrin-deficient mice, were able to move and
breathe. NMJs of 6- to 7-week-old Tg/agrn’/ ~ mice looked nor-
mal in most muscles including extensor digitorum longus (EDL)
or tibialis anterior (TA) (Fig. 1¢). In some muscles, such as soleus
and diaphragm, AChR clusters were found throughout the entire
muscle, and the motor nerve terminals strongly sprouted (soleus)
(Fig. 1c). These muscles also atrophied, indicative of denervation.
Tg/agrn™'~ mice were also considerably smaller than their con-
trol littermates (Hausser et al., 2006), and half of the mice had
died after 50 d (Fig. 1d). Death was often preceded by impairment
of locomotory behavior (Fig. le) and some fibrillation (data not
shown), suggesting that neuromuscular defects may contribute
to lethality but central defects may also play a role. For our anal-
ysis of the brain phenotype (see below), we took 30- to 50-d-old
mice that did not show signs of fibrillation or locomotory
impairment.
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Agrin localizes to excitatory but not a
inhibitory synapses in the brain

Agrin staining in the brain is most promi-
nent in the blood vessels and in pial base-
ment membranes (Barber and Lieth, 1997;
Halfter et al., 1997). Moreover, neurons in
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the CNS have been shown to express

mRNA encoding agrin isoforms that con-
tain amino acid inserts at the B/z site
(O’Connor et al.,, 1994; Stone and Ni-
kolics, 1995). Because we focused in this
work on the role of agrin at synapses, we
first examined the distribution of agrin in
different regions of the adult brain that are
rich in synapses using antibodies raised
against mouse agrin (Eusebio et al., 2003).
We examined the neuropil of the CA3 re-
gion, the dentate gyrus, and the cortex,
where we found agrin-like immunoreac-
tivity associated in puncta (Fig. 2a). In
agreement with other studies, the stron-
gest immunoreactivity was found in blood
vessels (Fig. 2a, arrow). In Tg/agrn /™
mice, the antiserum stained neither blood
vessels nor the puncta (Fig. 2a), confirm-
ing the specificity of the anti-mouse agrin
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antiserum. As shown in Figure 2b, agrin-
positive puncta (red) often overlapped
with staining obtained with antibodies
against the presynaptic marker synapto-
physin (green). This colocalization of
agrin- and synaptophysin-like immunore-
activity (Fig. 2b, arrowheads), together
with the fact that the synaptophysin-
positive puncta outnumbered those for
agrin, indicates that agrin is localized to a

Figure 1.  Characterization of mice used in this study. a, Schematic representation of neural chick agrin (top) and of the DNA
construct (bottom) used to generate Tg/agrn "~ mice. A 9-kb-long genomicregion encoding the promoter of the motor neuron-
specifichomeobox gene Hb9 was cloned upstream of the agrin cDNA. b, Soleus muscle from Tg mice stained for chick agrin (red)
and AChRs (green). At the NMJ, the transgenic chick agrin (arrow) colocalized with AChR clusters (right, merge in yellow). Deposits
of chick agrinimmunoreactivity were also detected outside of the NMJ (arrowhead), and they often induced ectopic postsynaptic-
like structures as indicated by aggregation of AChRs. Scale bar, 10 m. ¢, NMJs of Tg/agrn "~ and control mice stained with
anti-neurofilament antibodies (red) and ce-bungarotoxin to label AChRs (green). Muscle fibers are properly innervated in EDL and
TA muscles but notin soleus where AChRs are spread throughout the muscle. Moreover, motor neurons sprouted exuberantly and
eventually left the muscle denervated. Occasionally, AChR clusters were matched by a nerve terminal (arrow). Scale bars: top row,
40 wm; middle and bottom rows, 10 um. d, Survival analysis of Tg/agrm ™ mice. The mean survival time of the mice was 50 d.
Note the rather large variation in survival time. e, Exploratory locomotion of Tg/agrn "~ (filled circles) and control (open circles)
mice. Thereis no difference between the two genotypes, except at a higher age (=50 d) at which Tg/agrm "~ are close to dying.

subset of synapses. As shown in Figure 2,
agrin-like immunoreactivity was detected
in brain homogenates (lysate) and in subcellular fractions en-
riched for SPMs that were isolated by differential centrifugation
in a sucrose gradient, according to Jones and Matus (1974).
Agrin-like immunoreactivity migrated on SDS-PAGE as a smear
with an apparent molecular mass between 400 and 600 kDa (Fig.
2¢, arrowhead). As observed in other tissues, the anti-agrin anti-
bodies also recognized several smaller bands (Fig. 2¢, asterisks)
that are likely the product of proteolytic degradation. In sum-
mary, our results indicate that agrin in the adult brain is localized
to synapses and that the synaptically localized agrin is also a pro-
teoglycan as it is in other tissues (Tsen et al., 1995).

To assure that the agrin-immunoreactive puncta indeed rep-
resented synapses, we also used postembedding immunoelectron
microscopy. First, we confirmed that the anti-agrin antiserum
was also specific in immunoelectron microscopy. To this end, we
examined blood vessels, which are strongly positive for agrin (Fig.
2a), and compared the staining in the basal lamina of wild-type
and Tg/agrn™’~ mice. Indeed, many immunogold particles were
found in wild-type controls but not in Tg/agrn™~’~ mice (Fig. 3a).
In the cerebral cortex from wild-type controls, agrin immuno-
staining was associated with both presynaptic and postsynaptic
membranes, and it often appeared within the synaptic cleft (Fig.
3b). We could not detect any preference of the gold particles to
either the presynaptic or the postsynaptic site of the synapses,
which is probably attributable to the fact that agrin is a large,

95-nm-long particle as determined by rotary shadowing (Denzer
et al., 1998). Thus, depending on the plane of the section, agrin
could be at either side of the synapse. In contrast to the staining in
wild-type mice, only few immunogold particles were detected in
sections from Tg/agrn '~ mice (Fig. 3b). To get a quantitative
measure for the synaptic localization of agrin, we counted the im-
munogold particles within a 100-nm-wide area (i.e., the size of
agrin) surrounding the synaptic cleft. This quantification yielded an
average of 1.4 gold particles per synapse (Fig. 3¢). In contrast, Tg/
agrn™’~ mice contained only ~0.6 gold particles in synaptic regions,
which is not significantly different from the number of particles
in nonsynaptic regions of control mice (Fig. 3¢c). From these re-
sults, we conclude that agrin is indeed enriched at synapses.
During these electron microscopic studies, we noticed that
agrin-like immunogold particles were predominantly associated
with asymmetric (excitatory) but not with symmetric (inhibi-
tory) synapses. To validate this impression, we stained cross sec-
tions from cerebral cortex for agrin and for the a2 subunit of the
GABA, receptors. Strong immunoreactivity for both proteins
was detected around the soma and in the neuropil (Fig. 3d).
However, the dot-like staining for either protein did not overlap
significantly (Fig. 3d, merge). The same results were obtained in
other regions of the brain, including hippocampus and dentate
gyrus (data not shown). Similarly, agrin-like immunoreactivity
did not colocalize with gephyrin (data not shown), an adaptor
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Figure 2.  Agrin-like immunoreactivity in the brain. a, In control animals, agrin staining is most prominent in blood vessels
(arrow). Agrin-like protein also shows a dot-like pattern in the CA3 region of the hippocampus, the dentate gyrus (dg), and the
cerebral cortex (ctx). No agrin-like immunoreactivity was detected in agrin-deficient mice (Tg/agm ™~ ctx). b, Sections of
cerebral cortex of control mice were stained with antibodies against agrin (red) and the presynaptic marker synaptophysin
(green). The bottom picture represents a higher-power view of the framed region. A fraction of the synaptophysin-positive puncta
is also positive for agrin-like immunoreactivity (see examples highlighted by arrowheads). ¢, Western blot analysis using anti-
agrin antibodies of crude brain lysates (lysate) and of preparations enriched for SPMs. Agrin-like protein in control mice appears as
a smear with an apparent molecular mass of 400 — 600 kDa (arrowhead) and in several smaller bands (asterisks). None of these
bands were visible in samples isolated from Tg/agrn "~ mice. The line indicates marker size of 250 kDa. Scale bars, 20 um.
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apses (for review, see Kim and Sheng,
2004), showed some overlap with the
puncta that were positive for agrin-like
immunoreactivity (Fig. 3e, arrowheads).
Colocalization between agrin and PSD-95
was not seen in all cases, and the PSD-95-
positive puncta outnumbered those posi-
tive for agrin (Fig. 3¢, arrow). These exper-
iments are thus strong evidence that agrin
localizes to a subset of excitatory but not
inhibitory synapses in the adult mouse
cortex.

The number of synapses is reduced in
Tg/agrn™’~ mice

Next, we examined how agrin deficiency
affected the brain. As shown in Figure 4, a
and b, the overall morphology of the brain
as visualized in serial cresyl violet-stained
paraffin sections was unchanged. Like-
wise, no significant change in the overall
morphology of pyramidal neurons in the
hippocampus could be detected by Golgi
impregnation (Fig. 4c,d). Thus, unlike
other main components of the pial base-
ment membranes, such as perlecan or
some of the laminin chains (Miner et al.,
1998; Costell et al.,, 1999; Halfter et al.,
2002), agrin seems not to be essential for
the development of the laminar structure
of the brain and for the proper differenti-
ation of neurons.

Next, we wanted to see whether syn-
apse number and/or structure was af-
fected. One complication in determining
synapse number is the fact that Tg/
agrn~’~ mice are significantly smaller
than control mice. Because size differ-
ences can be caused by either changes in
cell number or in cell volume, we first
quantified the total number of neurons
in the cortex using cresyl violet-stained
sections in combination with modern,
unbiased stereology (Calhoun et al.,
1998). As shown in Figure 4e, neuronal
cell bodies (arrowheads) were smaller
and more densely packed in Tg/agrn /"~
mice, which resulted in a significantly
higher density of neurons in Tg/agrn™’~
mice (Fig. 4f). Because the total volume
of the cortex, as determined by stereol-
ogy, was smaller in Tg/agrn™’~ mice
(Fig. 4g), the total number of neurons in
the entire cortex of Tg/agrn™’~ mice re-
mained the same as in control mice (Fig.
4h). By using the same method of unbi-
ased stereology in combination with
staining for the presynaptic marker pro-
tein synaptophysin, we then determined

protein required for the clustering of glycine and GABA, recep-  the density of synaptophysin-positive puncta in a given vol-
tors. Moreover, GABA, receptor a2 subunit and gephyrin re-  ume. As shown in Figure 4i, this parameter was the same in

mained coclustered in Tg/agrn /~ mice (data not shown). In  Tg/agrn™’

~ and control mice. Because the total volume of the

contrast, the staining for PSD-95, a marker for excitatory syn-  cortex is considerably smaller in Tg/agrn™’~ mice than in con-
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Figure 3.

contained agrin-like immunoreactivity (arrowheads) in control but not in Tg/agrm "~
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Agrin-like immunoreactivity in the cerebral cortex is enriched at synapses and is localized to a subset of excitatory synapses. a, Basal lamina surrounding blood vessels (arrows)
mice. Note that the basal lamina of Tg/agrn

~/~ mice was often thicker than that of control mice. b, Agrin

immunogold particles (arrowheads) were found near presynaptic (asterisk) and postsynaptic membranes and within the synaptic cleft. ¢, Quantification of the distribution of agrin immunogold
particles. In control mice, the number of gold particles was significantly higher at synaptic (syn) than at extrasynaptic (esyn) regions. No synaptic enrichment was detectedin Tg/agm /™ mice (*p <
0.001, Mann—Whitney test; n = 4 from two different mice per genotype and counting between 35 and 80 synapses per experiment). Error bars indicate mean == SE. d, Staining of sections from
wild-type cortex for the GABA, a2 subunit (green) and agrin (red). The puncta are primarily non-overlapping (merge). Right, High-power view of the boxed area. e, Considerable overlap of the
punctate staining for the PSD-95 (green) and agrin (red) was observed in control mice. Right, High-power view of the boxed area. Examples for the colocalization between agrin and PSD-95 are
indicated by arrowheads; lack of colocalization is shown with an arrow. Scale bars: a, b, 200 nm; d, e, 10 um.

trol mice (Fig. 4f), the total number of presynaptic terminals in
the cortex of Tg/agrn™’~ mice is ~30% lower than in controls (Fig.
4k). Thus, cortices of Tg/agrn™’~ mice have the same total number
of neurons but only 70% of the number of presynaptic terminals.
These results are thus evidence that the number of synapses per
neuron is significantly lower in agrin-deficient cortices.

Agrin affects dendrite length and spine number in cortical
pyramidal neurons

To examine whether postsynaptic elements were also affected, we
analyzed individual pyramidal neurons of the cortex. To this end,
neurons were visualized by Golgi staining. As noted in Figure 4,
the overall structure of the neurons did not differ between mu-
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Figure4. Brain phenotype of adult Tg/agm ™~ mice. a, b, Cresyl violet staining of cortical hemispheres (a) and of cortex and

hippocampus (b) does not reveal any overt difference between Tg/agm ™ and control mice. ¢, d, Similarly, the gross morphol-
ogy of the different neuronal cell types was unchanged as observed in Golgi-stained sections from hippocampus. In d, CA1
hippocampal neurons (arrows) were stained with Golgi impregnation (black) and cresyl violet (blue). e, Neuronal cell bodies were
considerably bigger and less packed in control mice compared with Tg/agrn "~ mice (arrowheads). - h, Stereological quanti-
fication of the number of neurons. f, The density of neurons is significantly higher in Tg/agrm "~ than in control mice. g, In
contrast, the total volume of the cortex is significantly smaller in Tg/agrn "~ than in control mice. h, Based in these two
parameters, the number of neurons in the cortex remains constant. i- k, Stereological quantification of synapse number after
staining for synaptophysin. i, The density of synaptic boutons is the same in control and Tg/agrn ™/~ mice. j, k, Because of the
significant decrease in the total volume of the cortex (7), the total number of boutons in the cortices of Tg/agrn ™~ mice decreases
by 30%. (k). Asterisks indicate a significant difference between the two groups of mice ( p value at least <<0.02; n = 5 or 6 mice
for each group). Note that the difference in the cortex volume measured in cresyl violet- and synaptophysin-stained sections is
caused by different tissue shrinkage during the experimental procedure. Valuesin g, h, , and k are calculated for one hemisphere.
Error bars indicate mean = SE. Scale bars: a-¢, 200 m; d, 100 um; e, 30 m.
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Figure 5.
pyramidal neurons localized to layer Il/1ll of the motor cortex from control and Tg/agrn
b, High-magnification images of dendritic spines in which individual spines (arrowheads) can be clearly identified. ¢, Measure-
ment of the total length of the dendrites (dendrite length), average density of spines (spine density), and the total number of
spines (spine number) in cortical neurons after reconstruction using a Neurolucida camera (see also supplemental Fig. 2, available
at www.jneurosci.org as supplemental material). The values for all these parameters were significantly lower in neurons from

The number of spines is decreased in Tg/agrn—~ mice but not in other mouse models. a, Overall morphology of

~/~ micevisualized by Golgiimpregnation.

Tg/agrn™’~ mice compared with control mice. In contrast, values do not differ from controls in neurons of mice that are either

deficient for ErbB2 and ErbB4 in skeletal muscle (ErbB-def.) or deficient for laminin-a:2 (dy"/dy™). For each genotype, at least
three mice were examined, and 10 neurons each were reconstructed. Data represent mean = SE (n = 3) where the values of the
control mice were set to 100%. Asterisks denote significant differences ( p << 0.01, Mann—Whitney test). Scale bars: a, 50 um; b,
10 um. See Table 1 for details and for additional parameters. See Material and Methods for experimental details.
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tants and controls (Fig. 5a). Examination
at high power suggested, however, that the
density of the spines (Fig. 5b, arrowheads)
was lower than in control mice. To mea-
sure different dendritic parameters and to
quantify them, we next reconstructed in-
dividual neurons using a Neurolucida
camera (see examples in supplemental Fig.
2, available at www.jneurosci.org as sup-
plemental material). As shown in Figure 5¢
and in Table 1, dendrite length and spine
density was significantly lower in pyrami-
dal neurons from Tg/agrn™’~ mice. This
resulted in a 30% loss of postsynaptic
spines per neuron compared with control
mice (Fig. 5¢). No significant alterations
could be found in the number of primary
dendrites, the number of dendritic
branching points, and the length of the
postsynaptic spines (Table 1). Despite the
change in synapse number, the remaining
synapses in Tg/agrn™’~ mice were mor-
phologically indistinguishable from syn-
apses in control littermates, as revealed by
electron microscopy (supplemental Fig. 3,
available at www.jneurosci.org as supple-
mental material). Together with the data
presented in Figure 4, these results indicate
that pyramidal neurons in the cortex of
Tg/agrn™’~ mice have ~30% less presyn-
aptic and postsynaptic specializations than
controls.

To ask whether the changes in synapse
number are a direct consequence of agrin
deficiency and not secondary to neuro-
muscular problems, changes in organ size,
or overall health, we also measured den-
drite length and spine number in pyrami-
dal neurons in the cortex of two additional
mouse models. The first model, called
dy"ldy", carries a targeted deletion of the
lama2 gene and represents a model for
MDCI1A congenital muscle dystrophy
(Kuang et al., 1998). Laminin-a2-like im-
munoreactivity and its integrin receptors
have been localized to spines in hippocam-
pal neurons (Tian et al., 1997; Shi and
Ethell, 2006). Moreover, dy”/dy” mice,
which also carry a mutation in the lama2
gene but display a milder form of MDCIA,
show deficits in long-term synaptic plas-
ticity in Purkinje cells (Anderson et al.,
2005). Most importantly, dy"/dy" mice
are small, strongly impaired in their loco-
motory activity, and often die at the age of
~8 weeks (Moll et al., 2001). The second
mouse model carries a muscle-specific dele-
tion of the two neuregulin receptors ErbB2
and ErbB4 (Escher et al., 2005). These mice
weigh ~30% less than control littermates
but have a normal locomotory activity and
do not die prematurely. Thus, both of these
mouse models reiterate some of the pheno-
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Table 1. Quantification of neuronal complexity

Control Tg/agm ™"~
Number of primary dendrites per neuron 56030 55031
Branching points per 100 .em of dendrite 1.10 = 0.04 1.17 = 0.04
Length of dendrites (.m) 1491 £ 73 1134 = 50*
Spine length (um) 1.841 £ 0.006 1.731 = 0.006
Spine density (.m ") 0.83 = 0.028 0.69 = 0.028*
Spine number per dendrite 401 = 305 253 *= 17.6%

Morphology of cortical pyramidal neurons in 7-week-old mice. Values derive from at least three mice of each
genotype and the full reconstruction of 10 neurons from each mouse. Values are mean = SE. *p << 0.01 compared
with control. For details, see also supplemental Fig. 2 (available at www.jneurosci.org as supplemental material)
and Materials and Methods.

types that are also found in the Tg/agrn '~ mice and are therefore
appropriate models to check whether the synaptic phenotype ob-
served in Tg/agrn™’~ mice is a direct consequence of the loss of
agrin. As shown in Figure 5, neither the length of the dendrites
nor the density of spines in dy"/dy"” or ErbB-deficient mice was
significantly different from control mice.

Agrin deficiency affects the function of excitatory but not
inhibitory synapses

Because our results strongly indicate that the synapse number in
Tg/agrn™'~ is lower, we next asked whether synaptic functions
were affected. To test this, we measured the frequency and am-
plitude of mEPSC and mIPSC currents of pyramidal neurons in
layer II/IIT of the motor cortex using whole-cell patch-clamp re-
cordings. mEPSCs were recorded in the presence of TTX (0.5 um)
and picrotoxin (100 uM) to block action potential firing and
GABA , activity, respectively. mIPSCs were recorded in the pres-
ence of TTX and the glutamate receptor antagonist kynurenic
acid (2 mMm). As shown in Figure 6a—c, we found a significant
decrease in the mEPSC frequency in Tg/agrn~’~ compared with
littermate controls, consistent with a decrease in the number of
glutamatergic synapses. mEPSCs were completely blocked by the
application of 2 mMm kynurenic acid, both in Tg/agrn’~ and con-
trol littermates (n = 5 and n = 7 for Tg/agrn™'~ and control mice,
respectively), thus confirming that mEPSCs are mediated by gluta-
mate receptors. The amplitudes of mEPSCs were similar between
control and Tg/agrn™'~ mice (Fig. 6¢), suggesting that the respon-
siveness and number of postsynaptic glutamate receptors are not
altered. Neither the mean mIPSC frequency (Fig. 6e) nor amplitude
(Fig. 6f) differed between the Tg/agrn’~ and control mice. In both
types of mice, mIPSCs were abolished by the application of 100 um
picrotoxin, indicating that mIPSCs are mediated by the activation of
GABA , receptors (n = 6and n = 5 for Tg/agrn~'~ and control mice,
respectively). In summary, the decrease in the mEPSC frequency and
the absence of changes in inhibitory synaptic transmission is consis-
tent with a selective loss of excitatory synapses in Tg/agrn™’~ mice.

The receptor tyrosine kinase MuSK is localized to

CNS synapses

At the NMJ, the receptor tyrosine kinase MuSK is required for
agrin-induced signaling (Glass et al., 1996). Using Northern blot
analysis, MuSK is not detected in rat brain (Valenzuela et al.,
1995). In contrast, transcripts for MuSK were found in the brain
of other species (Ganju et al., 1995; Fu et al., 1999; Garcia-Osta et
al., 2006). Because agrin signaling in the brain might be mediated
by MuSK, we looked at the expression of MuSK on the mRNA
and protein level. Reverse transcription (RT), followed by PCR
on RNA isolated from cortices of wild-type mice, revealed a prod-
uct of the expected size (Fig. 74, ctx). This product was specific
because it was absent when the reverse transcriptase was omitted
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Figure 6.  Spontaneous miniature currents recorded in layer II/Ill pyramidal neurons of the
motor cortex from Tg/agrn ™/~ and control littermates. a, Representative recordings of phar-
macologically isolated mEPSCs in pyramidal neurons of control and Tg/agrn ™~ mice. mEPSCs
were recorded at a holding potential of —70 mV in the presence of 1 um TTX and 100 rum
picrotoxin. b, ¢, The frequency of mEPSCs was significantly reduced in Tg/agrn ™/~ mice com-
pared with control littermates (control: 1.56 = 0.22 Hz,n = 17; Tg/agm_/_: 0.77 = 0.26 Hz,
n=12;p<<0.05, ANOVAtest). In contrast, the amplitude of the mEPSCs did not differ between
control (16.42 = 0.47 pA; n = 17) and Tg/agrn’/’ (17.99 = 0.85 pA; n = 12) mice. d,
Representative mIPSCs recorded in control and Tg/agrn /'~ mice at a holding potential of 0 mV
and in the presence of 1 um TTX and 2 mm kynurenic acid. e, f, Neither the frequency nor the
amplitude of the mIPSCs was changed between controls (frequency, 7.28 = 1.13 Hz; ampli-
tude, 19.77 = 0.94 pA; n = 12) and Tg/agrn_/_ mice (frequency, 8.9 = 1.21 Hz; amplitude,
18.12 % 0.31pA; n = 12). Control mice were always littermates of Tg/agrm ™~ mice. Data are
represented as means = SE.

(Fig. 7a, neg) and was also detected in skeletal muscle (Fig. 7a,
sm). Using a newly raised antiserum against the extracellular do-
main of mouse MuSK, which recognizes MuSK in Western blots
and immunohistochemistry (supplemental Fig. 4, available at
www.jneurosci.org as supplemental material) (Scotton et al,
2006), we detected MuSK-like protein in fractions enriched for
membranes in brains of wild-type mice (Fig. 7b). In contrast,
preimmune serum did not detect any such band. In cross sections
from the cortex of wild-type mice, MuSK-like protein was de-
tected as puncta (Fig. 7¢). Importantly, these MuSK-positive
puncta partially overlapped with puncta positive for PSD-95 (Fig.
7¢, yellow color in the merged images). Preimmune serum did
not stain (Fig. 7d). Quantitative assessment showed that 14.6 *
1.9% (mean = SE; n = 8) of the PSD-95-positive puncta were
also positive for MuSK and that 23.0 = 3.0% (mean * SE; n = 8)
of the MuSK-positive puncta were also positive for PSD-95. In
contrast, preimmune serum hardly stained any puncta (~10
times fewer than immune serum), and of those, only 2.4 = 0.7%
overlapped with PSD-95. Because the anti-agrin and anti-MuSK
antibodies were both raised in rabbits, we could not perform
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Figure7.
negative control (neg), and skeletal muscles (sm) of adult mice. MuSK mRNA is clearly detected in mouse cortex although at lower
levels than in skeletal muscle. b, In Western blot analysis of P2 brain membranes, anti-MuSK antiserum but not preimmune serum
detects a protein with an apparent M, of 115 kDa. Lines indicate 100 kDa marker band. ¢, Sections from wild-type cortex stained
for MuSK (red) and PSD-95 (green). MuSK partially colocalizes with PSD-95-positive synapses (merge; yellow). Right, Higher-
power view of the boxed area. d, No specific signal was detectable in cortical sections from wild-type mice that were stained with
MuSK preimmune serum (red) and PSD-95 (green). Right, Higher-power view of the boxed area. Scale bars, 20 um.

MuSKis expressed in the brain and is localized to a subset of excitatory synapses. a, RT-PCR of RNA from cortex (ctx),
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One of the candidates identified, MKK7,
has been shown to be involved in agrin
signaling at the NM]J (Lacazette et al.,
2003). Moreover, the MAP kinase pathway
has been implicated in the response of cul-
tured neurons to agrin (Karasewski and
Ferreira, 2003; Hilgenberg and Smith,
2004). We therefore concentrated our
work on characterizing this pathway. The
amount of MKK7 on the mRNA (data not
shown) and the protein level was consid-
erably lower in brain extracts from Tg/
agrn~’~ mice than in control or dy"/dy"
mice (Fig. 84). Moreover, the JNK, which
is the main substrate for MKK?7, became
phosphorylated in cultured hippocampal
neurons by the addition of neural agrin
(data not shown). In summary, these re-
sults strongly suggest that agrin can acti-
vate the MAP kinase pathway in neurons
and that the lack of agrin deregulates this
pathway through changes of some of its
regulators, such as SynGAP and MKK7.

Discussion

We show that transgenic expression of
neural agrin in motor neurons in agrin-

colocalization studies. The finding that agrin (Fig. 3e) and MuSK
both colocalize with PSD-95 suggests, however, that they proba-
bly also colocalize. We additionally tried to detect the two ho-
mologs of MuSK, Ror1, and Ror2, but the commercial antibodies
were not sensitive enough to detect any staining (data not
shown).

Alterations in the MAP kinase pathway

To get some understanding of the molecular mechanisms that
may underlie the synaptic changes in the cortex, we next quanti-
fied the amount of synaptic marker proteins in the cortices of
control and Tg/agrn™’~ mice. In 7-week-old mice, no change in
expression levels of markers for inhibitory synapses, such as the
al subunit and gephyrin was observed (Fig. 8a). Similarly, the
amount of the NMDA receptor subunit NR1, of PSD-95, and of
CAMKII was not changed (Fig. 8a). In strong contrast, a substan-
tial increase of the synaptic GTPase-activating protein SynGAP
was detected (Fig. 8b). Interestingly, SynGAP levels were not al-
tered in cortices isolated from dy"'/dy" mice, consistent with the
lack of synaptic phenotype in these mice. The increase in SynGAP
levels of Tg/agrn™'~ mice was even more pronounced in fractions
enriched for synaptic membranes (Fig. 8b), indicating that these
alteration are synapse specific.

To avoid any bias in our approach, we also examined gene
expression in cortices of 4-week-old control and Tg/agrn /"
mice on a genome-wide scale using the Affymetrix Mouse Ge-
nome 430 2.0 Array. Of the >39,000 transcripts, 255 were signif-
icantly regulated at least twofold (supplemental Table 1, available
at www.jneurosci.org as supplemental material). The majority of
the regulated genes falls into the class of signal transduction,
followed by genes involved in cell communication (Fig. 8¢). The
fact that most of the gene families are represented in the 255 genes
suggests that agrin affects many pathways. Moreover, agrin defi-
ciency is likely to influence gene expression not only in neurons
but also in non-neuronal cells (e.g., glial cells and blood vessels).

deficient mice is sufficient to assemble a

functional NMJ and to prevent perinatal
death. Thus, agrin expressed by the muscle is not required for the
formation of functional NMJs. We observed, however, that the
extent to which NMJs were restored greatly differed between in-
dividual muscles. Because we did not detect differences in the
levels of expression of the transgene between the motor neurons
innervating the different muscles (I. Ksiazek and M. A. Ruegg,
unpublished observation), our results suggest that there are
muscle-intrinsic differences that influence their response to neu-
ral agrin. Interestingly, the muscles where synapses were not well
restored (such as soleus and diaphragm) were those that have
recently been found to be “delayed synapsing” (Pun et al., 2002).
Thus, differential responsiveness to neural agrin might be the
basis for the phenomenon of delayed synapsing during muscle
innervation in the embryo.

Agrin deficiency affects excitatory but not inhibitory synapses
In our current work, we focus on the phenotype of Tg/agrn '~
mice in the brain. We find a highly significant loss of synapses in
the cortex. This conclusion is based on the decrease in the total
number of presynaptic terminals detected in cortex (Fig. 4) and a
decrease in the density of postsynaptic spines and the length of
dendrites (Fig. 5). This loss in synapses is unlikely attributable to
the smaller size or the premature death of the Tg/agrn™’~ mice be-
cause synapse number was not changed in the cortex of dy"/dy"” or
ErbB-deficient mice (Fig. 5). Importantly, our electrophysiological
studies on acute cortical slices show that the frequency but not the
amplitude of mEPSCs is strongly altered in Tg/agrn’~ mice. In
contrast, the mIPSC frequency and amplitudes remain normal in
Tg/agrn™'~ mice, revealing that functional alterations are confined
to excitatory synapses.

The presumed loss of excitatory synapses in the agrin-
deficient mice, as observed with electrophysiology, is also consis-
tent with the localization of agrin to excitatory (PSD-95 positive)
but not inhibitory synapses in wild-type mice (Fig. 3). These
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Figure 8.  Agrin affects the MAP kinase pathway. a, Western blot analysis from P2 mem-
branes isolated from cortices of 6- to 7-week-old mice. No change in the levels of several synaptic
proteins was observed. b, Compared with wild-type controls, the amount of SynGAP was higher in P2
membrane fractions and in fractions enriched for synaptic membranes (SPM) isolated from cortices of
Tg/agrn™"~ mice. Such change was not detected in dy"'/dy" mice. ¢, GeneChip analysis on
cortices from 4-week-old control and Tg/agm /™ mice. Genes with at least twofold altered
expression levels in Tg/agrn "~ compared with controls are classified into groups by their
biological function. d, MKK7 is downrequlated in Tg/agrn "~ but not in dy"//dy" mice.

results were unexpected because previous antisense experiments
provided evidence for a role of agrin at inhibitory synapses (Fer-
reira, 1999). In addition, a-dystroglycan, which is probably the
most abundant agrin-binding protein (Gesemann et al., 1998),
colocalizes with a subset of GABA , receptors (Brunig et al., 2002;
Levi et al., 2002). Thus, the finding that agrin does not colocalize
with inhibitory synapses and that deletion of the agrin gene does
not affect the function of inhibitory synapses strongly suggests
that the binding of agrin to a-dystroglycan might be compen-
sated for by other a-dystroglycan-binding molecules of the ex-
tracellular matrix, in particular by the neurexins (Sugita et al.,
2001), perlecan, or the laminins (Talts et al., 1999). Our observa-
tion that the pial basement membrane, the glia limitans, and the
laminar structures of the cortex are also not affected in Tg/
agrn™’~ mice is consistent with such a compensatory mechanism
because brain-specific inactivation of a-dystroglycan disrupts
these structures (Moore et al., 2002).

Receptors that may mediate agrin signaling

There are several candidate receptors for agrin in the CNS. One of
those is the receptor tyrosine kinase MuSK that mediates the
postsynapse-inducing activity of agrin at the NM]J. We find that
MuSK is also expressed in cortex and that the protein, like agrin,
partially overlaps with PSD-95-positive puncta (Fig. 7). Our data
are also supported by the recent report showing that MuSK is
expressed in brain (Garcia-Osta et al., 2006). At the NMJ, MuSK
can only be activated by agrin splice variants that are released
from the nerve terminal (called neural agrin) but not by those
synthesized by non-neuronal tissue including muscle (called
non-neuronal or muscle agrin), which are also inactive in induc-
ing AChR aggregation (for review, see Bezakova and Ruegg,
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2003). Previous work has shown that mRNA encoding neural
agrin is expressed in noncholinergic neurons of the brain
(O’Connor et al., 1994; Stone and Nikolics, 1995). Thus, it may
well be that the loss of synapses in the cortex of Tg/agrn™’~ mice
is only attributable to the loss of neural agrin. Consistent with the
possibility that agrin could signal through MuSK, knock-down of
MuSK expression by antisense oligonucleotides in rat brain leads
to impairment of memory consolidation and of the induction
and maintenance of long-term potentiation (Garcia-Osta et al.,
2006). This activity of MuSK appears to involve phosphorylation
of CREB and upregulation of expression of CCAAT enhancer-
binding protein 8. Phosphorylation of CREB has been shown to
be induced only by neural but not by non-neuronal forms of
agrin (Ji et al., 1998), and it is known to be downstream of the
MAP kinase pathway (for review, see Thomas and Huganir,
2004), which is also perturbed in the cortex of Tg/agrn™’~ mice
(see discussion below). Thus, our results would be in agreement
with the possibility that agrin also acts via MuSK at excitatory
synapses in the brain.

Other candidate receptors that have been suggested to medi-
ate agrin signaling in the brain are the two MuSK homologs Rorl
and Ror2, which are both highly expressed in developing and
adolescent brain (Yoda et al., 2003). Our own attempts to localize
Rorl and Ror2 to synapses in the mouse brain were not successful
(data not shown), which might be because of low sensitivity of the
antibodies used. No gross morphological abnormalities in the ner-
vous system were observed for Rorl- or Ror2-deficient mice (Yoda
et al.,, 2003). In addition, Rorl and Ror2 are rather enriched at
growth cones than at synapses in developing hippocampal neurons
(Paganoni and Ferreira, 2003), and they have been implicated in
affecting neurite outgrowth (Paganoni and Ferreira, 2005). Finally,
Ror2 was shown to be involved in the formation of filopodia induced
by wnt5a (Nishita et al., 2006). Thus, the current data make MuSK a
more likely candidate receptor for agrin than Ror1 or Ror2.

Another particularly attractive candidate receptor for agrin is
the a3 subunit of the Na */K *-ATPase (NKA) that was recently
shown to bind both neural and non-neuronal splice variants of
agrin (Hilgenberg et al., 2006). The a3 subunit of NKA is local-
ized to synapses in cultured cortical neurons, and agrin binding
to @3NKA inhibits its function and therefore causes a slight de-
polarization of the cell. Thus, the lack of agrin could result in
reduced neuronal activity and reduced responsiveness of neurons
to excitatory input. The fact that we find a strong decrease in the
frequency of the mEPSC but not the mIPSC would then suggest
that the function of agrin to antagonize a3NKA is selective for
excitatory synapses or that 3NKA expression is restricted to
excitatory synapses. Whether an increased activity of a3NKA be-
cause of the lack of its endogenous antagonist agrin will result in
a lower number of synapses remains unknown.

Agrin deficiency deregulates MAP kinase signaling

Several lines of evidence suggest that agrin activates the MAP
kinase pathway in cultured neurons (Karasewski and Ferreira,
2003; Hilgenberg and Smith, 2004). Moreover, one of its down-
stream targets, CREB, becomes phosphorylated after the addition
of agrin (Ji et al., 1998). We now find strong evidence that MAP
kinase signaling is indeed altered in the brain of Tg/agrn ~'~ mice
because they show a strong increase in the amount of the Ras
GTPase-activating protein SynGAP and a reduction in MKK7
mRNA and protein. SynGAP has been shown to dampen MAP
kinase signaling (Komiyama et al., 2002), and neurons cultured
from SynGAP-deficient mice have more AMPA receptor clusters
(Kim et al., 2003). Interestingly, transfection of constructs encod-
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ing green fluorescent protein—-SynGAP into neuronal cultures
causes a strong decrease in the frequency of the mEPSCs and a
dampening of extracellular signal-regulated kinase (ERK) activa-
tion compared with control cultures. Conversely, SynGAP-
deficient neurons show an increase in the frequency of the mEP-
SCsand increased ERK activation (Rumbaugh et al., 2006). Thus,
upregulation of SynGAP in the Tg/agrn™'~ mice could lower the
activity of MAP kinases and subsequently result in less synapses.
Similarly, the decrease in MKK?7, which is also highly enriched in
postsynaptic density fractions (Collins et al., 2005), is likely to
dampen signaling via the MAP kinase.

Although it is unknown how agrin activates MAP kinase sig-
naling in the brain, we have recently found that both ERK and
JNK are phosphorylated at the NMJ or at ectopic postsynaptic
structures induced by the injection of recombinant agrin into
muscle (G. Bezakova and Ruegg, unpublished data). Impor-
tantly, phosphorylation of JNK and ERK at the NM]J is a direct
consequence of the activation of MuSK by agrin because it does
not require ErbB-signaling (Bezakova and Ruegg, unpublished
data). Thus, the capability of agrin to activate MAP kinase signal-
ing in neurons could also be mediated by MuSK. Alternatively,
binding of agrin to «3NKA could trigger Ca** signaling in neu-
rons (Hilgenberg et al., 2006), which in turn can activate the MAP
kinase pathway.

Other pathways that might be regulated by agrin

Our gene expression studies in Tg/agrn™’~ mice show that ex-
pression of the GTPase-activating RANGAP domain-like 1 pro-
tein (also called TULIP1 or GARNLI (Schwarzbraun et al., 2004)
is increased by >20-fold. Although the function of GARNLLI is
not known, it is highly expressed in brain, and it is a close ho-
molog of tuberous sclerosis complex (TSC) 1 and TSC2. TSC1/2
have been shown to control cell size by inhibiting the mammalian
target of rapamycin (mTOR) pathway (Inoki et al., 2005). The
annotated gene, the expression level of which is >20-fold lower
in Tg/agrn™’~ mice than in control mice, is the ribosomal protein
S6, a substrate of S6 kinase 1, which is activated by mTOR. These
results suggest that agrin deficiency might affect protein transla-
tion via the mTOR pathway. Changes in protein synthesis might
be the reason for the smaller size of the neurons in Tg/agrn™’~
mice.

In conclusion, our work provides for the first time evidence
that agrin does play a role in the formation and/or maintenance
of CNS synapses in vivo. The synaptic deficits are detectable only
in adolescent and adult mice, whereas neurons from agrin-
deficient mice still form synapses in culture (Li et al., 1999; Ser-
pinskaya et al., 1999) and the brain of agrin-deficient embryos
have no synaptic defects (Gautam et al., 1996). Interestingly, a
similar situation was reported for the development of the NM]J,
where AChR clusters form in cultured myotubes independent of
agrin and where AChR clusters are detected in embryos that are
deficient for agrin, or where innervation of the muscle by the
motor neuron has been prevented by genetic ablation (Lin et al.,
2001; Yang et al., 2001). Thus, in both systems, the function of
agrin at synapses may become only apparent when synapses are
fully functional.
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