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Abstract

Monocytes are evolutionally conserved innate immune cells that play essential roles for the protection of the 
host against pathogens and also produce several inflammatory cytokines. Thus, the aberrant functioning of 
monocytes may affect not only host defense but also the development of inflammatory diseases. Monocytes 
are a heterogeneous population with phenotypical and functional differences. Most recent studies have shown 
that monocytes are divided into three subsets, namely classical, intermediate and non-classical subsets, both 
in humans and mice. Accumulating evidence showed that monocyte activation is associated with the disease 
progression in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis 
(RA). However, it remains to be determined how monocytes contribute to the disease process and which subset 
is involved. In this review, we discuss the pathogenic role of monocyte subsets in SLE and RA on the basis of 
current studies by ourselves and others to shed light on the suitability of monocyte-targeted therapies in these 
diseases.
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Introduction

Monocytes originate from hematopoietic precursor cells in 
bone marrow in a CD115-dependent manner [CD115 is also 
known as the colony-stimulating factor-1 receptor (CSF1R) 
or c-fms] (1). A common progenitor that is committed to the 
monocyte lineage was recently identified in both humans and 
mice (2, 3). Bloodstream monocytes are recruited into periph-
eral tissues during both homeostasis and inflammation and 
differentiate into macrophages and dendritic cells (DCs) in 
response to the local milieu of cytokines and microbial prod-
ucts (1, 4). Monocytes and macrophages can perform mul-
tiple functions including phagocytosis, antigen presentation 
and cytokine production.

Aberrations of monocyte/macrophage phenotype and func-
tion are increasingly being recognized in murine lupus as well 
as in patients with systemic lupus erythematosus (SLE). A de-
fective phagocytic function may underlie the pathogenesis of 
SLE since mice lacking molecules associated with apoptotic 
cell clearance develop SLE-like disease (5). Other studies, 
however, show an active role of monocytes in accelerating 
inflammation and injury in kidney glomerular lesions (6–8).

There has also been a focus on the involvement of mono-
cytes in the pathogenesis of rheumatoid arthritis (RA). 
Monocytes/macrophages accumulate in arthritic synovial-joint 

tissues and produce large amounts of inflammatory cytokines 
(9). Furthermore, monocytes have the potential to differen-
tiate into osteoclast precursors, which are an essential cell 
type for osteoclastogenesis (10, 11).

Recent studies have identified three types of monocyte 
subsets with different phenotypes and functions (12, 13). 
Thus, a knowledge of this broadening field is required to thor-
oughly understand the pathological role of monocyte subsets 
in SLE and RA.

Monocyte heterogeneity

Monocytes are a heterogeneous population, and each sub-
population differently mediates host defense and inflammation 
(1, 4). They were initially divided into two sub-populations (1, 
11, 14) and more recently into three sub-populations according 
to the differences in cell surface markers and functions (Table 
1) (4, 12, 13). According to CD14 [Lipopolysaccharide (LPS) 
co-receptor] and CD16 (FcγRIII) expression levels, human 
monocytes are divided into the following three subsets: the 
CD14++CD16– classical, CD14++CD16+ intermediate and 
CD14lowCD16++ non-classical (4, 12). A subdivision into three 
subsets is also reported for mouse monocytes (Table 1) (13). 
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However, murine monocytes are usually examined by dividing 
into two subsets namely Gr-1+ (Ly6C+) classical and Gr-1– 
(Ly6C-) non-classical subsets in contemporary studies, be-
cause it is difficult to discriminate an intermediate subset (4).

The murine classical and non-classical monocyte subsets 
are CCR2+CX3CR1low and CCR2–CX3CR1high, and the human 
classical and non-classical monocyte subsets are like-
wise CCR2highCX3CR1low and CCR2lowCX3CR1high respect-
ively (Table 1), indicating that murine and human monocyte 
subsets are functionally similar. Thus, studies conducted in 
mice are suitable for understanding the role of human mono-
cytes, although we should be cautious because differences 
between species have been reported in gene expression pro-
files of the corresponding subsets (15). For instance, whereas 
human classical and non-classical monocyte subsets are 
CD16– and CD16++, respectively, both subsets in mice are 
CD16+, although the expression level is higher on the non-
classical subset compared with the classical subset (15).

The classical monocytes migrate into inflammatory sites 
through interactions between CCR2 and its ligand MCP-1 ex-
pressed in inflamed sites, and is known as the ‘inflammatory’ 
subset (11). Most of the ‘inflammatory’ monocytes differen-
tiate into macrophages and DCs in inflamed tissues and pro-
tect the host against infection. The non-classical monocytes 
show CX3CR1-dependent recruitment to resting tissues. 
They patrol blood vessels to survey endothelial cells and sur-
rounding tissues for damage and are known as the ‘resident’ 
or ‘patrolling’ subset (16). Although classical monocytes are 
known to be the major players for host protection from patho-
gens, accumulating results in the past decade indicate the 
important roles of non-classical or intermediate monocyte 
subsets in the development of SLE and RA. Thus, the valid-
ated phenotypic and functional characterization of monocyte 
subsets should be essential to clarify the pathogenic roles in 
these diseases.

Monocyte subsets arise from a common precursor (2, 3), 
but show the different phenotypes and functions as men-
tioned above. Although the ontogenic relationship of these 
subsets was under debate for a time, it has been reported 
that Gr-1+ classical monocytes mature in the circulation and 
are the precursors for Gr-1– non-classical monocytes (13, 
17–19). Stimulation with TLR7 or TLR9 can induce the mat-
uration of a fraction of Gr-1high monocytes towards Gr-1low 
monocytes, indicating that the Gr-1– subset is in a more ma-
ture and active stage compared with the Gr-1+ subset (18). 
Consistently, the Gr-1– subset, but not the Gr-1+ subset, ex-
presses the ‘activating’ IgG Fc receptor FcγRIV (i.e. ligation 
of this receptor activates the cell on which it is expressed, as 

does ligation of FcγRIII/CD16) (18). As in the case of murine 
monocytes, fate-mapping studies have shown that human 
classical monocytes differentiate sequentially into the inter-
mediate subset and then into the non-classical subset (20).

The contribution of monocyte subsets in autoimmune 
diseases

The contribution of monocytes to the development of disease 
has long been studied in atherosclerosis (21). Atherosclerosis 
is an inflammatory vascular disease characterized by the for-
mation of an atherosclerotic plaque that consists of a well-
defined structure of lipids, calcified regions and foam cells 
(i.e. lipid-rich macrophages). Macrophages account for the 
majority of the cellular component in this lesion and they dif-
ferentiate from circulating monocytes. Intriguingly, a raised 
incidence of accelerated atherosclerosis was reported in pa-
tients with SLE and RA (22, 23), indicating the possible con-
tribution of monocyte dysfunction in the disease process of 
SLA and RA.

Genetic studies also suggest the possible role of mono-
cytes in the pathogenesis of SLE and RA. Both SLE and 
RA are the genetically determined autoimmune diseases, 
and genome-wide association studies (GWAS) have identi-
fied >100 risk loci that are robustly associated with SLE and 
RA (24, 25). Among them, the most critical alleles are in the 
class  II major histocompatibility complex (MHC) locus both 
in SLE and RA. Thus, MHC class  II-mediated antigen pres-
entation by DCs, T-cell activation and subsequent B-cell 
activation are supposed to be essential processes in the 
breakdown of self-tolerance in these diseases, and studies 
on the pathology have long been focused on the adaptive 
immune system in studies especially on SLE. However, since 
many GWAS loci reside outside of protein-coding regions, it 
is difficult to identify the cell types where these GWAS loci 
function. To clarify the involved cell types, expression quan-
titative trait loci (eQTLs) experiments are performed. These 
results have implicated aberrant regulation of not only adap-
tive but also innate immune cells including monocytes in the 
pathogenesis of SLE and RA (26, 27).

Recent studies have identified three types of monocyte 
subsets with different phenotypes and functions. The re-
mainder of this review focuses on the pathogenic role of 
monocyte subsets in SLE and RA, especially in murine 
models, to understand whether they are suitable therapeutic 
targets in human diseases.

Systemic lupus erythematosus
SLE is a chronic autoimmune disease characterized by 
the production of anti-nuclear auto-antibodies and immune 
complex (IC)-mediated tissue inflammation such as lupus 
nephritis, a major cause of death of SLE patients. Multiple 
susceptibility genes determine the disease occurrence. Like 
human SLE, the haplotype of the H-2 locus, the murine MHC, 
strongly affects the disease severity in murine lupus (28, 29). 
The gene for the inhibitory IgG Fc receptor, FcγRIIB, is also 
an additional susceptibility locus for SLE both in humans 
and mice (30–32). There are three types of polymorphisms 
in the murine Fcgr2b gene, and lupus-prone strains, such as 
NZB, BXSB and MRL, all share an autoimmune-type deletion 

Table 1. Monocyte subsets in humans and mice

Subset Markers Chemokine receptors

Human
 Classical CD14++CD16– CCR2highCX3CR1low

 Intermediate CD14++CD16+ CCR2lowCX3CR1high

 Non-classical CD14lowCD16++ CCR2lowCX3CR1high

Mouse
 Classical Ly6C+ (Gr-1+) CCR2+CX3CR1low

 Intermediate Ly6Cint CCR2intCX3CR1int

 Non-classical Ly6C– (Gr-1–) CCR2–CX3CR1high
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polymorphism in the Fcgr2b promoter region (30). This poly-
morphism causes down-regulation of FcγRIIB expression 
particularly on activated B cells, which results in increased 
IgG antibody production (33, 34). The signaling lymphocytic 
activation molecule (SLAM)-family genes located down-
stream of Fcgr2b are also polymorphic. SLAM-family mem-
bers are known to be critical players in interactions between 
B cells and T cells during the germinal center reaction (35). 
In mice, there are two haplotypes of SLAM-family genes, and 
haplotype 2 associates with defective B-cell tolerance and 
the development of autoimmune disease (36). An association 
of a specific SLAM haplotype with human SLE has also been 
reported (37).

In addition to the aberrant activation of the adaptive im-
mune system, the importance of the innate immune system 
is now emerging for the pathogenesis of SLE since convin-
cing susceptibility genes are implicated in not only T-/B-cell 
signaling but also Toll-like receptors (TLRs) and type 1 inter-
feron signaling (38). Innate immune cells express TLRs that 
recognize not only foreign nucleic acids, originating from 
intruding viruses and bacteria, but also self-derived nu-
cleic acids from apoptotic cells in the host body and thus 
may contribute to the autoimmune responses against nu-
clear antigens. Accumulating evidence shows that among 
several TLRs, TLR7—a receptor for single-stranded RNA—
plays an essential role in the development of SLE. The Yaa 
(Y chromosome-linked autoimmune acceleration) locus, 
a duplication of the TLR7 gene due to a translocation of 
the TLR7-containing region of the X-chromosome to the Y 
chromosome (39, 40), induces spontaneous lupus nephritis 
in male BXSB mice. Furthermore, TLR7-transgenic mice de-
velop spontaneous lupus-like autoimmunity (41). TLR7 is an 
endosomal sensor and is mainly expressed on B cells and 
DCs. TLR7 over-expression on B cells renders RNA-reactive 
B cells hyper-active to produce anti-RNA auto-antibodies 
via TLR7 stimulation by RNA-containing antigens taken up 
through RNA-specific B-cell antigen receptors (42). Besides, 
TLR7 over-expression on CD11c+ DCs contributes to severe 
lupus nephritis because of the enhanced ability of these DCs 
to produce chemokines, resulting in increased recruitment of 
inflammatory monocytes into kidney lesions (43).

Monocytosis is one of the unique features of SLE-prone 
mice. Monocytes constitute ~4% of blood leukocytes in 
healthy mice, whereas the frequency of monocytes is >50% in 
aged BXSB male mice, and this age-associated monocytosis 
predominantly consists of the Gr-1– non-classical mono-
cyte subset (44). A  previous association study has shown 
that there is a remarkable correlation between monocytosis 
and serum levels of auto-antibodies in Yaa-locus associated 
lupus mice (45), suggesting a possible role for monocytes in 
B-cell activation. Monocytosis is dependent on FcRγ, which 
is a common component shared by some activating Fc re-
ceptors, since FcRγ-deficient BXSB mice do not develop 
monocytosis (44).

Whereas the Yaa locus in the normal C57BL/6 (B6) back-
ground induces neither monocytosis nor lupus nephritis, in 
mice deficient for the inhibitory IgG Fc receptor FcγRIIB, 
the Yaa locus induces both monocytosis and lupus neph-
ritis (46, 47). Although FcγRIIB is the major negative regu-
lator of B cells, FcγRIIB is also expressed on a wide variety of 

myeloid lineage cells (48). To study the cell type-specific role 
of FcγRIIB in lupus-prone B6.FcγRIIB–/–.Yaa mice, we estab-
lished three strains of FcγRIIB-deficient B6.Yaa mice: B-cell-
specific deficiency, myeloid cell-specific deficiency and 
CD11c+ DC-specific deficiency. The B-cell-specific and mye-
loid cell-specific FcγRIIB-deficient mice developed milder 
lupus than B6.FcγRIIB–/–.Yaa mice, whereas surprisingly 
DC-specific deficient mice stayed disease free (47). These 
findings indicate that FcγRIIB deficiency on not only B cells 
but also myeloid cells except DCs synergistically contributes 
to spontaneously occurring lupus nephritis in B6.FcγRIIB–/–

.Yaa mice. The above three lupus-prone strains developed 
monocytosis. Intriguingly, in B6.FcγRIIB–/–.Yaa mice and mye-
loid cell-specific FcγRIIB-deficient B6.Yaa mice, monocytosis 
predominantly consisted of Gr-1– monocytes, whereas in 
B-cell-specific FcγRIIB-deficient B6.Yaa mice, monocytosis 
mostly consisted of Gr-1+ monocytes. These observations 
suggest that the lack of FcγRIIB expression on monocytes 
likely accelerates the FcRγ-mediated monocyte differenti-
ation process from the Gr-1+ subset into the Gr-1- subset (Fig. 
1).

The frequency of Gr-1– monocytes was associated with 
the frequencies of activated B cells and plasma cells, sug-
gesting a possible contribution from Gr-1– monocytes in 
B-cell activation/differentiation (47). Tanscriptome analysis 
of sorted monocyte subsets obtained from B6.FcγRIIB–/–. 
Yaa and cell-type-specific FcγRIIB-deficient B6.Yaa mice 
showed that, compared with Gr-1+ monocytes, Gr-1– mono-
cytes have higher expression levels of several immuno-
logically interesting genes as shown in Table 2. The critical 
point to note is that, while there is no difference in the ex-
pression level of interferon α (IFNα), CLCF1 [also known as 
B-cell stimulating factor-3 (BSF-3)], IL-1β, B-cell activating 
factor (BAFF) and IL-10—all of which have the potential to 
activate B cells—were up-regulated predominantly in Gr-1– 
monocytes. Moreover, anti-apoptotic Bcl2 and Bcl6 and 
DC markers, such as CD11c, Adamdec1 and CD83, were 
markedly up-regulated in Gr-1– monocytes, suggesting that 
Gr-1– monocytes are long-lived and committed to differentiate 
into DCs (47). Since the splenic marginal zone around B-cell 
follicles is CX3CL1+ (Fig. 2), CX3CR1+ Gr-1– non-classical 
monocytes are most likely recruited into the marginal zone, 
where they activate B cells and subsequently may differen-
tiate into DCs in the splenic white pulp (Fig. 1). This notion 
is consistent with the result reported in an adoptive transfer 
experiment, showing that both classical and non-classical 
monocyte subsets can differentiate into DCs in inflamed and 
non-inflamed tissues, respectively (14).

Experimental lupus induced by 2,6,10,14-tetramethyl-
pentadecane (commonly known as pristane) is the experi-
mental mouse model of IFNα-induced SLE. The injection of 
pristane into the peritoneal cavity of BALB/c mice induces the 
accumulation of Gr-1+ classical monocytes in the peritoneal 
cavity, which produce high amounts of IFNα and promote 
DC maturation, T-cell survival, B-cell maturation into plasma 
cells, and auto-antibody production (49). While plasmacytoid 
DCs are known to be the specialized cells to produce type 1 
interferons (50), Gr-1+ monocytes intriguingly produce IFNα 
through TLR7 signals in this model (51). Thus, spontaneous 
and induced lupus models both demonstrate the importance 
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of monocytes and TLR7 signals, but the involved monocyte 
subsets and TLR7-mediated pathway differ in each model.

The possible contribution of TLR7 signaling has been re-
ported in human SLE (52). The association of monocyte 
subsets with the disease severity has also been studied. 
Contributing subsets vary among studies (53–58); however, 
several reports show a contribution of non-classical monocytes 
in the disease (53, 55–57). Biesen et al. (53) have reported that 
serum levels of anti-dsDNA antibodies highly correlate with 
the percentage of sialoadhesin+ CD14lowCD16++ non-classical 
monocytes in circulation. Furthermore, Cros et  al. (59) have 
shown that non-classical monocytes secrete high amounts of 
IL-1β in a TLR signaling-dependent manner. Also, the contri-
butions of non-classical monocytes to the antigen presentation 
and the activation of T cells and B cells have been reported in 
SLE patients (56, 57). These findings are consistent with those 
in Yaa-associated lupus models. As SLE is a heterogeneous 
autoimmune disease, in which different combinations of mul-
tiple susceptibility genes and a variety of environmental factors 
may result in the development of SLE via different mechanisms. 
Thus, further studies are needed to clarify the role of monocyte 
subsets for disease development in each type of SLE.

Defective clearance of ICs and apoptotic cells by macro-
phages is detected in some patients with SLE (60). However, 
accumulating observations suggest that aberrant activation, 
but not defective function, of monocytes may be a more ap-
propriate concept and plays a dynamic role in the initiation and 
progression of disease both in human SLE and murine lupus 
(61). Current non-specific immunosuppressive treatments 
for SLE sometimes cause serious side effects. Moreover, the 

clinical trials of biotherapies targeting IFNα receptor or ac-
tivated lymphocytes did not meet the successful end-point 
(62). Monocyte targeting may provide an alternative treat-
ment approach (63). A pilot study for monocyte and neutro-
phil depletion was associated with clinical improvement in 
patients with SLE (64), and the therapeutic effects of the in-
hibition of monocyte activation, differentiation and migration 
were reported in murine lupus models (65–67). Strategies to 
manipulate FcγR function to overcome IC-mediated auto-
immune diseases are additional but challenging options (68); 
for example, the treatment of lupus nephritis with a soluble 
decoy FcγR was applied in lupus-prone NZB/NZW F1 mice 
(69). These trials are summarized in Table 3. Further thera-
peutic approaches will be helpful to design suitable strategies 
without side effects.

Rheumatoid arthritis
RA is characterized by marked synovial hyperplasia in mul-
tiple synovial joints associated with pannus formation, which 
contains a massive infiltration of cytokine-producing inflam-
matory cells, proliferating fibroblasts and increased num-
bers of mature osteoclasts. The generation and activation of 
osteoclasts in inflamed joint tissues are essential for the pro-
gressive destruction of cartilage and bone. Osteoclasts are 
multinucleated giant cells positive for tartrate-resistant acid 
phosphatase (TRAP) and cathepsin K and they resorb bone 
matrix. These cells differentiate from osteoclast precursors, 
which originate from monocytes in the bone marrow and per-
ipheral blood (10, 11). The process of osteoclastogenesis is 
controlled by the interaction of receptor activator of NF-κB 
(RANK) expressed on osteoclast precursors with its ligand 
RANKL expressed on synovial fibroblasts, osteoblasts 
and Th17 cells (78). RANKL expression on these cells is 
up-regulated by inflammatory cytokines such as TNFα, IL-1, 
IL-6 and IL-17 (78).

RA is also a complex autoimmune disease, and multiple 
susceptibility genes and environmental factors are involved 
in the disease susceptibility. The most important risk factor is 

Fig. 2. In situ hybridization for CX3CL1 expression in the marginal 
zone around B-cell follicles in the spleen from 6-mo-old B6 mice. 
The antisense probe used is the mouse CX3CL1 (NM_009142.3, se-
quence position 1151–1951) and positive areas are shown by the 
blue color. The bar in the picture represents 100 µm.

Fig. 1. A model for the accelerated maturation of Gr-1+ monocytes 
into active Gr-1– monocytes in lupus-prone B6.FcγRIIB–/–.Yaa mice. 
(A) In non-autoimmune B6.Yaa mice, monocytosis is not observed, 
and the differentiation process from Gr-1+ monocytes to Gr-1– mono-
cytes is suppressed because of the negative signal from FcγRIIB. (B) 
In B6.FcγRIIB–/–.Yaa mice, because of the lack of FcγRIIB expression 
on monocytes, monocytosis occurs through the activation signals 
from IgG IC-stimulated FcγRIII (CD16) and the differentiation pro-
cess from Gr-1+ monocytes to Gr-1– monocytes is accelerated. These 
increased Gr-1– monocytes with high expression of CX3CR1 can be 
recruited into the splenic marginal zone that is positive for CX3CL1, 
and activate B cells through their higher potential to produce BSF-3, 
IL-10 and IL-1β. Gr-1– monocytes are long-lived and may be com-
mitted to differentiate into DCs in the spleen since they are positive 
for DC markers such as CD11c, CD83 and Adamdec1 (47).
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the class  II MHC locus, as in the case of SLE. Intriguingly, it 
has been suggested that RA-associated class II alleles present 
citrullinated peptides efficiently to T cells, and subsequently ac-
tivate B cells to produce anti-cyclic citrullinated peptide (CCP) 
antibodies (79), suggesting the essential role of the adaptive 
immune system in the disease progression since anti-CCP 
antibodies provide the diagnostic marker for RA (80, 81). Auto-
antibody production and the resultant IC formation are sug-
gested to be involved in the disease process. Several studies 
have shown that vascular endothelial cells increase vascular 
permeability, adhesion molecule expression and inflammatory 
cytokine production after the deposition of circulating ICs (82–
84). Recently, it has been shown that IgG ICs sensitize mono-
cytes for inflammatory hyperactivity in RA patients (85).

Monocytes/macrophages are the major producer of inflam-
matory cytokines in arthritic lesions and some of these cyto-
kines promote the polarization of CD4+ T cells to Th1 cells and 
Th17 cells, which are considered to be critical mediators of RA 

(86). Intriguingly, monocytes include precursors of osteoclasts, 
the specialized cell type for osteoclastogenesis (10, 11). Thus, 
monocytes are an essential cell type in both increased in-
flammation and bone destruction. The binding of IgG ICs 
to the activating Fcγ receptors is essential for inflammatory 
myelomonocytic cell activation to produce inflammatory cyto-
kines. Moreover, it has been shown that the cross-linking of 
FcγRIV on osteoclasts by ICs is critical for osteoclast devel-
opment in inflammatory arthritis (87). The activating signal 
through the FcRγ is counterbalanced by the inhibitory signal 
mediated by FcγRIIB. Thus, the lack of FcγRIIB may augment 
IC-mediated inflammation and bone loss. We previously found 
that a subline of FcγRIIB-deficient strains (designated as KO1) 
spontaneously developed severe arthritis closely resembling 
human RA (88). This strain was established by backcrossing of 
the initially constructed FcγRIIB–/– mice on a hybrid (129 × B6) 
background into a B6 background and was carrying a 129-de-
rived autoimmune-susceptible SLAM haplotype 2 locus in the 
vicinity of the Fcgr2b gene (88). FcγRIIB–/– mice on a pure B6 
background did not develop arthritis, suggesting that the com-
bined effect of FcγRIIB-deficiency and SLAM haplotype 2 is 
responsible for the development of arthritis. An association of 
gene polymorphisms of FCGR2B and the SLAM family with RA 
was also reported in studies of humans (89–91).

It has been shown that the mouse Gr-1+ classical mono-
cyte subset, but not the Gr-1– non-classical subset, can 
differentiate into osteoclasts in vitro when stimulated with 
M-CSF and RANKL (87). However, when cultured in vitro to-
gether with osteoblasts, the interaction between CX3CR1 ex-
pressed on osteoclast precursors and CX3CL1 constitutively 
expressed on osteoblasts is essential for the osteoblast-
induced osteoclast differentiation, indicating that the Gr-1–

CX3CR1high non-classical monocyte subset is responsible for 
osteoclastogenesis in these culture conditions (92). CX3CL1 
exists as a soluble form and a membrane-bound form, and 
mediates migration and adhesion as well (93). Thus, CX3CL1+ 
osteoblasts attract CX3CR1high non-classical monocytes and 
induce firm adhesion by membrane-bound CX3CL1 (Fig. 3). 
These adherent CX3CR1high monocytes proliferate in response 
to M-CSF secreted by osteoblasts (94) and are activated by 
RANKL expressed on osteoblasts to produce MCP-1, which 
in turn attracts CCR2+ classical monocytes (95). Intriguingly, 

Table 2. Comparison of the expression levels of genes encoding immunologically interesting molecules between Gr-1+ and 
Gr-1– monocyte subsets

Gene Gr-1+ monocytes Gr-1– monocytes P value

Bcl2 4.084 ± 1.077 36.325 ± 2.756 0.0000232324
Fcgr4  45.473 ± 11.789  465.176 ± 38.713 0.0000343138
Bcl6 27.972 ± 2.818 66.939 ± 4.189 0.000166234
Clcf1 (BSF-3) 0.768 ± 0.385 8.752 ± 1.049 0.000348923
Itgax (CD11c) 2.066 ± 0.690 43.465 ± 7.543 0.00156422
Adamdec1 0.258 ± 0.947 18.910 ± 3.492 0.00218494
Il1b 89.141 ± 32.658 456.647 ± 66.449 0.00260974
Tnfsf13B (BAFF) 4.437 ± 1.273 7.950 ± 1.022 0.00487835
Cd83 1.766 ± 0.364 32.984 ± 7.656 0.00655325
Il10 0.632 ± 0.370 9.052 ± 2.046 0.0088057

RNAs were extracted from sorted Gr-1+ monocyte subsets (n = 4) and Gr-1– monocyte subsets (n = 5) obtained from 8-month-old, randomly 
selected B6.FcγRIIB–/–.Yaa mice and cell-type-specific FcγRIIB-deficient B6.Yaa mice (47). The gene expression levels (mean ± SE) are shown 
as FPKM (fragments per kilo base of exon per million reads).

Table 3. Monocyte-targeting therapeutic approaches for SLE 
and RA in humans and mice

Ref.

Human SLE  
 Removal by cytapheresis (64)
Murine lupus models
  Migration inhibition by anti-MCP-1 gene therapy in 

MRL/lpr mice
(65)

 Migration inhibition by CX3CL1 antagonist in MRL/lpr mice (66)
 CSF1R signal inhibition by CSF1R inhibitor in MRL/lpr mice (67)
 Activation inhibition by soluble FcγR in NZB/NZW F1 mice (69)
Human RA
 Treatment with anti-RANKL antibody  (70, 71)
 Treatment with anti-CX3CL1 antibody  (72)
Murine arthritis models
  Migration inhibition and depletion by anti-CCR2 

antibody in CIA model
(73)

  CSF1R signal inhibition by anti-CSF1R antibody and 
by CSF1R inhibitor in CIA, CAIA, K/BxN serum transfer 
models

(74)

  CSF1R signal inhibition by anti-CSF1R antibody  in CIA 
and K/BxN serum transfer models

(75)

 Migration inhibition by anti-CX3CL1 antibody in CIA model (76)
  Migration inhibition and depletion by anti-CD11b 

antibody in KO1 mice
(77)
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the interaction between CCR2 and its ligand MCP-1 was 
shown to be essential for cell fusion to form multinucleated 
giant cells including mature osteoclasts (96). Thus, secreted 
MCP-1 promotes fusion of CCR2+ classical monocytes with 
the RANKL-stimulated CX3CR1high non-classical monocytes, 
resulting in the formation of multinucleated mature osteo-
clasts (Fig. 3). This process may be accelerated by large 
amounts of MCP-1 produced by activated inflammatory cells, 
resulting in the augmented bone loss in inflamed joint tissues.

Previous studies showed that classical monocytes differ-
entiate into macrophages in inflamed tissues (11); however, 
the more recent study indicates that non-classical monocytes 
give rise to inflammatory macrophages and are crucial for 
the initiation of joint inflammation in K/BxN serum transfer 
arthritis model (97). Recently, it has also been reported that 
non-classical monocytes are pivotal cells for osteoclast dif-
ferentiation in the same arthritis model (98). These findings 
suggest that non-classical monocytes have the potential to 
differentiate into both macrophages and mature osteoclasts 
in inflammatory arthritis.

Like lupus-prone B6.FcγRIIB–/–.Yaa mice, arthritis-prone 
KO1 mice also developed monocytosis that predominantly 
consists of the Gr-1– subset. The introduction of TNFα defi-
ciency into KO1 mice suppressed both monocytosis and 
arthritis, suggesting an essential role of TNFα for monocyte 
generation and also an association of monocytosis with the 
development of RA (99). When KO1 mice were treated with 
an anti-CD11b monoclonal antibody (5C6), the develop-
ment of arthritis was markedly suppressed with much less 
inflammatory cell infiltration and less osteoclast generation 
in joint tissues (77) (Table 3). This suppression is due to the 
5C6-mediated blockade of the recruitment of peripheral 
circulating CD11b+ inflammatory cells and osteoclast pre-
cursors into the arthritic lesions (100). The 5C6 treatment 
also suppressed monocytosis probably because of the 
5C6-mediated cytotoxic effect. Furthermore, in 5C6-treated 
KO1 mice, serum levels of auto-antibodies such as rheuma-
toid factor and anti-CCP antibodies were significantly sup-
pressed compared to the non-treated KO1 mice. It has been 
shown that a large amount of auto-antibody is secreted by 
age-associated B cells (ABCs), which uniquely express 
CD11c and also CD11b in mice (101, 102). Thus, it is pos-
sible that the suppression of auto-antibody levels is due to the 

decreased incidence of ABCs by the 5C6 treatment. Real-
time PCR studies revealed that the 5C6 treatment suppressed 
the expression levels of B-cell activation/differentiation-
related cytokines such as BAFF, IL-1β, BSF-3, IL-6 and IL-10 
in spleen and peripheral leukocytes (77), consistent with the 
lower level of auto-antibodies in 5C6-treated KO1 mice. The 
decreased expression of these cytokines may be due to the 
reduced frequency of monocytes in 5C6-treated mice since 
these cytokines are preferentially secreted by Gr-1− mono-
cytes as shown in Table 2, although the possible contribu-
tion of cytokine-producing CD11b+ other cell types including 
ABCs is not denied.

The expression level of CD64 (FcγRI; a high affinity 
activating receptor) is known to be elevated in monocytes 
in RA patients suggesting that monocytes from RA patients 
are in a more differentiated and active stage compared with 
those from the healthy individuals (103). Moreover, the as-
sociation of monocyte subsets with the development of 
arthritis has been examined in patients with RA. A previous 
study showed increased frequencies of CD14+CD16+ mono-
cytes in peripheral blood (104) and more recent studies 
have shown that the frequency of the CD14++CD16+ inter-
mediate subset is increased in peripheral blood (105–107) 
and in synovial fluid (108, 109). It has been shown that the 
frequency of intermediate monocytes in the periphery is sig-
nificantly associated with the disease severity (106, 107) and 
that intermediate monocytes are the predominant subset in 
the differentiation into inflammatory macrophages in arthritic 
joints (110). Also, it has been suggested that while classical 
monocytes are the main source of osteoclasts in physiology, 
osteoclasts generated from intermediate monocytes are re-
sponsible for the increased bone resorption in arthritic joints 
(111, 112).

Biotherapies targeting several inflammatory cytokines as 
well as those targeting T cells or B cells have been considered 
in RA (113, 114). TNFα is the master inflammatory element, 
and anti-TNFα biotherapy is effective in many patients; how-
ever, a proportion of patients remains resistant (115). These 
disadvantaged patients need alternatives to protect them 
from destructive arthritis, and the blocking of migration, ac-
tivation, differentiation and function of osteoclast precursor 
monocytes is the most promising approach as suggested 
(116, 117). Table 3 summarizes several of these approaches 

Fig. 3. A model for the generation of multinucleated mature osteoclasts from osteoclast precursor monocytes in inflammatory arthritis. Gr-1–

CX3CR1+ osteoclast precursor monocytes adhere to CX3CL1+ osteoblasts and are stimulated by secreted M-CSF and membrane-bound 
RANKL. Activated Gr-1–CX3CR1+ monocytes secrete MCP-1, which attracts Gr-1+CCR2+ monocytes and promotes fusion of these Gr-1+CCR2+ 
monocytes with the RANKL-stimulated Gr-1–CX3CR1+ monocytes, resulting in the formation of multinucleated mature osteoclasts. The cross-
linking of FcγRIV on osteoclasts by IgG ICs is critical for osteoclast development in inflammatory arthritis (87).
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ongoing in human RA and murine arthritis models such as 
collagen-induced arthritis (CIA), collagen antibody-induced 
arthritis (CAIA) and K/BxN serum transfer arthritis models, as 
well as KO1 mice (70–77).

Conclusions and future directions

SLE and RA are both IC-mediated autoimmune diseases, and 
IgG ICs activate the monocyte lineage through stimulating 
signals from FcRγ. These activation signals accelerate the 
monocyte differentiation process from the classical monocyte 
subset to the intermediate subset and the subsequent non-
classical subset. In SLE and RA, more differentiated monocyte 
subsets play an essential role for the disease progression. An 
association of the frequency of the non-classical monocyte 
subset with the production of auto-antibodies is reported in 
SLE patients and lupus mouse models. Intriguingly, murine 
non-classical monocytes have a high potential to produce 
B-cell-stimulating cytokines, suggesting a pathological role 
for non-classical monocytes in auto-antibody production. 
Furthermore, an antigen presentation capacity of non-classical 
monocytes is reported in SLE patients. In murine arthritis 
model, non-classical monocytes differentiate into both inflam-
matory macrophages and osteoclasts in arthritic joints. In RA 
patients, the intermediate monocyte frequency is associated 
with the disease severity, suggesting the essential role of these 
monocytes in both inflammation and osteoclastogenesis. 
These findings suggest that monocyte-targeting therapies 
are promising alternative therapeutic approaches for patients 
who are resistant to the immunosuppressive treatments or the 
biotherapies that are widely used at present. Our additional, 
broadening knowledge could be beneficial to bring about 
these approaches.
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