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and of brown adipose tissue (BAT) in nonshivering ther-
mogenesis have long been appreciated (1). The concept 
that adipose tissue could serve as an endocrine organ, how-
ever, was only shaped after the discovery of its two most 
characteristic secretory products, leptin and adiponectin.

Leptin, identified in 1994, is a protein primarily pro-
duced by mature adipocytes (2, 3). It signals through the 
long isoform of the leptin receptor (LEPRb) and exerts the 
majority of its effects acting on the brain (2, 4–6). Its circu-
lating levels reflect the filling state of adipose tissue depots 
and thus relate directly to the body’s long-term energy 
stores (7, 8). The lowering of circulating leptin levels due 
to a reduction in adipose tissue mass triggers behavioral, 
metabolic, and endocrine responses that aim at replenish-
ing and preserving the body’s fuel reserves (9, 10). Among 
these responses are an increase in energy intake, a decrease 
in energy expenditure, and a reduction or elimination of 
highly energy-demanding processes, such as reproduction 
and immune-related processes (9, 10).
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Adiponectin, originally described in 1995 as “Acrp30” 
with additional reports following in 1996, is a protein ex-
clusively produced by mature adipocytes (11–15). It forms 
low molecular weight trimers, intermediate molecular 
weight hexamers, and high molecular weight dodeca- to 
octadecamers (16). It signals through adiponectin recep-
tor (AdipoR)1 and AdipoR2 and binds to the nonsignaling 
interacting protein, T-cadherin (15). It is found in circula-
tion and critically involved in many signaling events from 
the adipocyte to other cell types and tissues (11). Its circu-
lating levels are closely tied to the functional integrity of 
adipose tissue and decline with obesity (17, 18). Adiponec-
tin functions as a powerful insulin sensitizer and suppressor 
of cell death and inflammation, directly promoting anti-
diabetic and anti-atherosclerotic outcomes (16). It acts on 
the liver to decrease gluconeogenesis, on skeletal muscle to 
increase fatty acid oxidation, and on pancreatic -cells and 

cardiac muscle cells as a key anti-lipotoxic agent, exerting 
many of these functions on the basis of its effects on sphin-
golipids (19–22).

Adiponectin and leptin are clearly the two most widely 
studied adipocyte-derived factors with nearly 50,000 com-
bined citations in PubMed identified with the name of 
these two adipokines as key search terms. Many reviews 
cover them extensively, so we do not want to belabor these 
two adipokines in detail here. However, suffice it to say that 
much still remains to be learned about both of these fac-
tors. While they are unquestionably important, their de-
tailed mechanisms of action at the level of their target cells 
and organs, the underlying systemic resistance to the ef-
fects of these hormones, and their mutual effects on each 
other are yet to be better understood.

ADIPOSE TISSUE-SECRETED SIGNALING 
MEDIATORS

Screening endeavors undertaken in the wake of the dis-
covery of leptin and adiponectin have revealed a vast spec-
trum of adipose tissue-secreted signaling mediators (see 
Fig. 1 and Table 1 for a compilation of central factors, 
some of which are portrayed in detail below) (23). The 
large diversity of adipose tissue secretory products may par-
tially stem from the complex cellular composition of the 
tissue, which includes lipid-laden adipocytes, adipose tissue 
stromal cell populations of different adipogenic potentials, 
various immune cell populations, endothelial cells, peri-
cytes, and neurons (24). While the term “adipokine” is 
commonly used to refer to adipose tissue-derived proteins 

Fig. 1. Adipose tissue is a highly dynamic secretory organ that em-
ploys a plethora of adipokines (proteins, lipids, metabolites), non-
coding RNAs, and EVs to relay information to other organs of the 
body.
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TABLE 1. Collection of various adipose tissue-derived proteins, lipids, and metabolites with information on essential  
characteristics and several references for further reading

Class Name (Abbreviation) Characteristics References

Proteins Angiotensin II (AII) Extracellular, generated (453–455, 456–467)
 Generated from serine protease inhibitor A8/angiotensinogen  

(SERPINA8/AGT) by combined activity of renin or cathepsins  
and angiotensin-converting enzyme 1 (ACE1) or chymases

 Signals through G protein-coupled angiotensin receptor (ANGTR)1 
and ANGTR2

 Regulates adipose tissue stromal cell adipogenesis
Regulates adipose tissue thermogenesis
Regulates blood pressure
Regulates cardiac and vascular functions
Regulates energy expenditure
Regulates fluid homeostasis
Regulates glucose tolerance and insulin sensitivity
Regulates inflammation
Regulates WAT browning
May regulate body weight
Increases adipocyte lipid uptake and lipogenesis
Increases adipose tissue stromal cell proliferation
Decreases adipocyte lipolysis

Proteins Adiponectin (ACRP30/
ADIPOQ)

Extracellular, secreted
May be intracellular
Signals through AdipoR1 and AdipoR2
Binds T-cadherin
Improves glucose tolerance and insulin sensitivity
Maintains cardiac and vascular functions
Regulates angiogenesis
Regulates ceramide metabolism
May regulate cancer growth and metastasis
Increases adipocyte and skeletal muscle cell glucose uptake
Increases adipocyte lipogenesis
Increases adipose tissue stromal cell adipogenesis
Increases -cell survival
Increases energy expenditure
Increases hepatocyte and skeletal muscle cell fatty acid oxidation
May increase -cell glucose-stimulated insulin secretion
Decreases adipose tissue stromal cell proliferation
Decreases atherosclerosis
Decreases hepatocyte lipogenesis
Decreases inflammation
Decreases liver gluconeogenesis
Decreases liver steatosis

(15, 16, 22, 156, 321, 468–476)

Proteins Angiopoietin 1 (ANG1) Extracellular, secreted (27, 28, 30, 33, 477–486)
Signals through TIE2 and integrin v5
Improves glucose tolerance
Regulates atherosclerosis
Regulates cancer growth and metastasis
Regulates inflammation
Regulates vascular development and functions
Increases angiogenesis
Increases lymphangiogenesis
Increases wound healing
Decreases body weight gain

Proteins Angiopoietin 2 (ANG2) Extracellular, secreted (27, 28, 31, 482, 483, 485, 
487–494)Signals through TIE2, integrin 31, and integrin 51

Improves glucose tolerance and lipid metabolism
Regulates atherosclerosis
Regulates cancer growth and metastasis
Regulates inflammation
Regulates vascular development and functions
Increases angiogenesis
Increases lymphangiogenesis
Decreases fibrosis

Proteins Angiopoietin-like protein 2 
(ANGPTL2)

Intracellular and extracellular, secreted (34, 35, 37, 38, 495–503)
Signals through LILRB2 and integrin 51
Binds the G protein-coupled angiotensin receptor 1 (AGTR1) 

(intracellular)
Furthers glucose intolerance and insulin resistance (chronic 

exposure)
Regulates vascular functions
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TABLE 1. Continued.

Class Name (Abbreviation) Characteristics References

Regulates hematopoiesis
Increases atherosclerosis (chronic exposure)
Increases cancer development, growth, and metastasis
Increases inflammation
Increases tissue integrity (acute exposure)
Decreases tissue integrity (chronic exposure)

Proteins Angiopoietin-like protein 4 
(ANGPTL4)

Extracellular, secreted (39, 43, 44, 53, 54)
Inhibits LPL and pancreatic lipase
Cleavage fragments may have signaling functions
May further glucose intolerance and insulin resistance
Regulates lipid trafficking
May increase atherosclerosis
May increase inflammation
Decreases lipoprotein breakdown in adipose tissue during fasting

Proteins Angiopoietin-like protein 8 
(ANGPTL8)

Extracellular, secreted (39, 50–52)
Acts in concert with ANGPTL3
Inhibits LPL and endothelial lipase
May further insulin resistance
Regulates lipid trafficking
Decreases lipoprotein breakdown in nonadipose tissues during  

feeding

Proteins Apelin (APLN) Extracellular, secreted (504–506, 507–518)
Signals through G protein-coupled APLN receptor (APLNR)
Improves glucose tolerance and insulin sensitivity
Maintains cardiac functions
Regulates fluid homeostasis
May regulate bone mass
Increases adipocyte and skeletal muscle cell glucose uptake
Increases adipose tissue thermogenesis
Increases angiogenesis
Increases energy expenditure
Increases lymphangiogenesis
Increases skeletal muscle cell mitochondrial biogenesis and fatty  

acid oxidation
Increases white adipocyte browning
Decreases adipose tissue stromal cell adipogenesis
Decreases blood pressure
Decreases body weight
May decrease adipocyte lipolysis
May decrease inflammation
May decrease liver steatosis

Proteins Autotaxin (ATX) Extracellular, secreted (229, 236, 240–245)
Exhibits PLD activity
Generates most extracellular LPAs

Proteins Bone morphogenic  
protein 2 (BMP2)

Extracellular, secreted (59, 65, 67, 519–526)
Signals through ALK3 or ALK6 in complex with BMPR2, ACVR2a,  

or ACVR2b
Maintains bone functions
Regulates embryonic development
May regulate cancer development, growth, metastasis, and 

chemoresistance
May skew adipogenesis toward either white or brown phenotype
Increases adipose tissue stromal cell adipogenesis

Proteins Bone morphogenic  
protein 3B (BMP3B)

Extracellular, secreted (65, 79, 80, 527–529)
Signals through ALK4 in complex with ACVR2a or ACVR2b
Improves glucose tolerance and insulin sensitivity
Maintains neural functions
Regulates bone development
Increases activity
Increases BAT activity
Increases energy expenditure
Increases food intake
Decreases adipose tissue stromal cell adipogenesis
Decreases body weight gain
May decrease bone mass
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TABLE 1. Continued.

Class Name (Abbreviation) Characteristics References

Proteins Bone morphogenic  
protein 4 (BMP4)

Extracellular, secreted (59, 65, 67, 68, 76–78,  
530–534)Signals through ALK3 or ALK6 in complex with BMPR2, ACVR2a,  

or ACVR2b
Improves glucose tolerance and insulin sensitivity
Regulates embryonic development
May regulate cancer development, growth, metastasis, and 

chemoresistance
May skew adipose tissue stromal cell adipogenesis toward either  

white or brown phenotype
Increase adipose tissue stromal cell adipogenesis
Increases angiogenesis
Increases BAT whitening
Increases energy expenditure
Increases food intake
Increases WAT browning
Increases WAT thermogenesis
Decreases body weight gain
Decreases brown adipocyte lipolysis
Decreases BAT thermogenesis

Proteins Bone morphogenic  
protein 8B (BMP8B)

Extracellular, secreted (65, 81, 82, 535–537)
Signals through ALK2, ALK3, or ALK6 in complex with BMPR2,  

ACVR2a, or ACVR2b
Maintains reproductive functions
Increases adipocyte lipolysis
Increases adipose tissue thermogenesis
Increases angiogenesis
Increases brain sympathetic output to adipose tissue
Increases energy expenditure
Increases WAT browning
May increase food intake
Decreases body weight gain

Proteins C1q/TNF-related  
protein 3 (CTRP3)

Extracellular, secreted (538, 539–550)
May inhibit signaling of bacterial lipopolysaccharide (LPS) through  

toll-like receptor 4 (TLR4)
May bind lysosomal-associated matrix protein 1 (LAMP1) and  

lysosome membrane protein 2 (LIMP2)
May improve insulin sensitivity
Maintains cardiac and reproductive functions
May maintain vascular functions
May regulate fibrosis
May regulate liver size
Increases angiogenesis
Increases cardiac muscle cell survival
May increase bone mass
May increase skeletal muscle stromal cell proliferation
Decreases adipose tissue stromal cell adipogenesis
Decreases inflammation
Decreases liver gluconeogenesis
Decreases liver steatosis
May decrease skeletal muscle stromal cell myogenesis

Proteins Chemerin Extracellular, secreted (92–94, 106, 109–116)
Signals through G protein-coupled CMKLR1 and GPR1
Binds chemokine (C-C motif) receptor-like 2 (CCRL2)
Acts as immune cell chemoattractant
Impairs vascular functions
May regulate adipose tissue stromal cell adipogenesis
May regulate glucose tolerance and insulin sensitivity
Increases bone mass loss
Increases skeletal muscle cell insulin resistance

Proteins Chemokine (C-C motif)  
ligand 2/monocyte  
chemoattractant  
protein 1 (CCL2/MCP1)

Extracellular, secreted (551, 552–563)
Signals through G protein-coupled chemokine (C-C motif)  

receptor 2 (CCR2)
Binds Duffy antigen/chemokine receptor (DARC)
May further glucose intolerance and insulin resistance
Acts as immune cell chemoattractant
Regulates immune cell functions
May regulate body weight gain
Increases angiogenesis
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Class Name (Abbreviation) Characteristics References

Increases cancer growth and metastasis
Increases inflammation
Increases liver steatosis
Increases wound healing
Decreases adipocyte and skeletal muscle cell glucose uptake

Proteins Complement factor D/ 
adipsin (CFD)

Extracellular, secreted (564, 565, 566–573)
Cleaves complement factor B (CFB) in complex with complement 

factor 3b (C3b), yielding the C3 convertase (C3bBb) of the 
alternative pathway of complement activation

Accelerates C3 cleavage, C3a and C3b generation, as well as C3a 
signaling through G protein-coupled C3a receptor (C3aR)

Improves glucose tolerance
Fulfills crucial functions in immune defense
Increases adipose tissue stromal cell adipogenesis
Increases -cell glucose-stimulated insulin secretion
Increases cancer stemness and growth

Proteins Dipeptidyl peptidase 4  
(DPP4)

Extracellular, membrane-bound and secreted (574, 575, 576–587)
Exhibits serine protease activity, processing a variety of other  

Proteins
Binds and/or signals through adenosine deaminase (ADA),  

caveolin 1 (CAV1), caspase recruitment domain-containing  
protein 11 (CARD11), dipeptidyl peptidase fibroblast activation  
protein  (FAP), and others (membrane-bound)

Binds and/or signals through mannose-6-phosphate/insulin-like 
growth factor 2 receptor (M6P/IGF2R) and G protein-coupled 
protease-activated receptor 2 (PAR2) (secreted)

Binds different extracellular matrix components
Furthers glucose intolerance and insulin resistance
Alters gastrointestinal microbiome
Impairs -cell functions
Impairs gastrointestinal functions
May impair cardiac and vascular functions
Regulates immune cell functions
May regulate bone mass
Increases adipose tissue stromal cell proliferation
Increases atherosclerosis
Increases body weight gain
Increases cancer development
Increases fibrosis
Increases inflammation
Increases liver steatosis
Decreases adipocyte, skeletal muscle cell, and vascular smooth  

muscle cell insulin sensitivity
Decreases adipose tissue thermogenesis
Decreases energy expenditure
Decreases white adipocyte browning

Proteins endotrophin (ETP) Extracellular, generated (118, 123–129, 588)
C-terminal cleavage fragment of COL6A3
Furthers glucose intolerance and insulin resistance
Increases angiogenesis
Increases cancer growth, metastasis, and chemoresistance
Increases fibrosis
Increases inflammation
Increases liver steatosis
May increase adipose tissue stromal cell adipogenesis
Decreases energy expenditure
May decrease adipocyte lipolysis

Proteins Fatty acid binding  
protein 4 (FABP4)

Intracellular and extracellular, secreted (589, 590, 591–602)
Binds diverse lipids
Binds hormonse-sensitive lipase (HSL), PPAR, and keratin 1  

(KRT1) (intracellular)
Furthers glucose intolerance and insulin resistance
May maintain brown adipocyte thermogenesis
Regulates immune cell functions
Regulates lipid trafficking
Regulates lipolysis
Increases angiogenesis
Increases atherosclerosis
Increases -cell glucose-stimulated insulin secretion

TABLE 1. Continued.
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Class Name (Abbreviation) Characteristics References

Increases cancer growth and metastasis
Increases cardiac dysfunction
Increases inflammation
Increases liver steatosis
Decreases adipose tissue stromal cell adipogenesis

Proteins Fibroblast growth factor 21 
(FGF21)

Extracellular, secreted (130, 134–136, 140, 141, 147, 
151–155, 158)Signals through FGFR1c and FGFR3c in complex with -klotho

Binds FGFR4 in complex with -klotho
Improves glucose tolerance and insulin sensitivity (not in humans)
Regulates circadian rhythm
Regulates brain sympathetic output to different tissues
Increases adipose tissue glucose and fatty acid uptake,  

mitochondrial activity, and thermogenesis
Increases -cell glucose-stimulated insulin secretion (acute exposure)
Increases bone mass loss
Increases energy expenditure
Increases hepatocyte fatty acid oxidation
Increases life span
Increases liver gluconeogenesis (acute exposure)
Decreases -cell glucose-stimulated insulin secretion (chronic 

exposure)
Decreases body weight
Decreases bone mass
Decreases circulating triglycerides
Decreases food intake
Decreases growth
Decreases hepatocyte lipogenesis
Decreases liver gluconeogenesis (chronic exposure)
Decreases liver glycogenolysis
Decreases sugar and alcohol intake

Proteins Intelectin 1/omentin  
(INTL1/OMT)

Extracellular, secreted (603, 604–615)
Scarcely expressed in mouse adipose tissue
Binds bacterial glycans
Binds lactoferrin (LF)
May partake in bacterial surveillance
Maintains bone mass
Maintains cardiac and vascular functions
Increases adipocyte insulin sensitivity
Increases adipose tissue stromal cell proliferation and survival
May increase cancer cell death
Decreases angiogenesis
Decreases atherosclerosis
Decreases inflammation
May decrease cancer growth

Proteins Interleukin 1 (IL1) Intracellular and extracellular, secreted or generated (616–618, 619–630)
Generated from pro-IL1 by the NLRP1, NLRP3,  

NLR family CARD domain-containing 4 (NLRC4), and absent in 
melanoma 2 (AIM2) inflammasomes

Alternatively generated from pro-IL1 by various proteases  
such as proteinase 3 (PRTN3), granzyme A (GZMA),  
cathepsin G (CG), elastases, chymases, or chymotrypsin

Signals through IL1 receptor  (IL1R) in complex with IL1  
receptor accessory protein (IL1RAP)

Binds IL1 receptor  (IL1R) either alone or in complex with  
IL1RAP

Binds soluble IL1R
Binds soluble IL1 either alone or in complex with IL1RAP
Furthers glucose intolerance and insulin resistance
Impairs -cell functions
Regulates immune cell functions
May regulate brain sympathetic output to different tissues
Increases activity
Increases adipocyte insulin resistance and lipolysis
Increases -cell death
Increases body temperature
Increases BAT activity
Increases energy expenditure
Increases inflammation
Increases liver steatosis
May increase adipose tissue stromal cell proliferation

TABLE 1. Continued.
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Class Name (Abbreviation) Characteristics References

Decreases adipocyte glucose uptake
Decreases adipose tissue stromal cell adipogenesis
Decreases body weight
May decrease adipose tissue lipid uptake
May decrease gastrointestinal lipid uptake

Proteins Interleukin 4 (IL4) Extracellular, secreted (631, 632–643)
Signals through IL4 receptor  (IL4R) in complex with IL2  

receptor  (IL2R) or IL13 receptor 1 (IL13R1)
Binds soluble IL4R
Improves glucose tolerance and insulin sensitivity
Skews adipose tissue stromal cell adipogenesis toward brown  

phenotype
Regulates adipocyte lipolysis
Regulates adipose tissue and skeletal muscle stromal cell  

adipogenesis
Regulates body weight gain
Regulates immune cell functions
Regulates inflammation
May regulate atherosclerosis
Increases WAT browning
May increase adipose tissue stromal cell proliferation
May increase energy expenditure

Proteins Interleukin 6 (IL6) Extracellular, secreted (198, 644–654)
Signals through glycoprotein 130 (GP130) in complex with  

membrane-bound or soluble IL6 receptor (IL6R)
Binds soluble GP130 and soluble IL6R
Regulates - and -cell functions
Regulates body weight
Regulates glucose tolerance and insulin sensitivity
Regulates immune cell functions
Regulates inflammation
Regulates liver steatosis
Increases adipocyte lipolysis
Increases body temperature
Increases cancer development, growth, metastasis, and 

chemoresistance
Increases energy expenditure
Increases skeletal muscle cell fatty acid oxidation
Increases WAT browning
Decreases activity
Decreases food intake

Proteins Interleukin 10 (IL10) Extracellular, secreted (558, 645, 650, 655, 656–664)
Signals through through IL10 receptor  (IL10R) in complex with  

IL10 receptor  (IL10R)
Maintains cardiac functions
Regulates glucose tolerance and insulin sensitivity
Regulates immune cell functions
Regulates liver steatosis
May regulate body weight gain
May increase cancer stemness, growth, and chemoresistance
Decreases fibrosis
Decreases inflammation
May decrease adipose tissue stromal cell adipogenesis
May decrease adipose tissue thermogenesis
May decrease energy expenditure
May decrease WAT browning

Proteins Leptin (LEP) Extracellular, secreted (5, 9, 665, 666, 667–677)
Signals through leptin receptor isoform b (LEPRb)
Binds short and soluble leptin receptor isoforms (e.g. LEPRa)
Informs brain on long-term energy stores
Regulates body weight gain
Regulates bone mass
Regulates brain sympathetic output to different tissues
Regulates food intake and energy expenditure
Regulates glucose tolerance and insulin sensitivity
Regulates immune cell functions
Regulates reproduction
May regulate body temperature
May regulate hematopoiesis

TABLE 1. Continued.
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Class Name (Abbreviation) Characteristics References

Increases adipocyte lipolysis
Increases adipocyte, hepatocyte, and skeletal muscle cell fatty acid  

oxidation
Increases angiogenesis
Increases BAT activity
Increases inflammation
Increases skeletal muscle cell glucose uptake
Increases wound healing
May increase adipose tissue stromal cell proliferation
May increase blood pressure
May increase WAT browning
Decreases adipocyte glucose uptake
Decreases adipocyte, hepatocyte, and skeletal muscle cell  

lipogenesis

Proteins Lipocalin 2 (LCN2) Intracellular and extracellular, secreted (167, 173, 174, 178, 183–187, 
190, 192–194)Binds iron-chelating siderophores

Binds LCN2 receptor and LRP2
Regulates intracellular iron stores
May regulate adipose tissue stromal cell adipogenesis
May regulate adipocyte glucose uptake
May regulate body weight gain
May regulate BAT activity
May regulate fibrosis
May regulate glucose tolerance and insulin sensitivity
May regulate liver steatosis
May regulate vascular functions

Proteins Neuregulin 4 (NRG4) Extracellular, membrane-bound and secreted (200, 201, 203–205, 212, 213, 
678, 679)Signals through ErbB4

Improves glucose tolerance and insulin sensitivity
Maintains neural functions
May regulate immune functions
Increases angiogenesis
May increase BAT activity
May increase hepatocyte survival
Decreases body weight gain
Decreases hepatocyte lipogenesis
Decreases inflammation
Decreases liver steatosis
May decrease fibrosis

Proteins Nicotinamide 
phosphoribosyltransferase/
visfatin (NAMPT)

Intracellular and extracellular, secreted (680–682, 683–694)
Generates nicotinamide mononucleotide (NMN) for NAD  

synthesis (intracellular)
Acts as immune cell chemoattractant (extracellular)
Regulates body weight gain
Regulates food intake
Regulates glucose tolerance and insulin sensitivity
Regulates inflammation
Increases -cell glucose-stimulated insulin secretion
Increases brown adipocyte thermogenesis
Increases cancer growth and chemoresistance
Increases immune cell survival
Increases physical activity
Decreases fibrosis
Decreases liver steatosis

Proteins Resistin (RETN) Extracellular, secreted (695, 696–707)
May bind and/or signal through TLR4, cleaved decorin (cDCN),  

receptor tyrosine kinase-like orphan receptor 1 (ROR1), and  
adenylyl cyclase-associated protein 1 (CAP1)

Expressed in mouse adipocytes, but scarcely expressed in  
human adipocytes

May be expressed in human immune cells
Furthers glucose intolerance and insulin resistance  

(not in humans)
May regulate brain sympathetic output to different tissues
Increases adipocyte lipolysis
Increases angiogenesis
Increases atherosclerosis
Increases inflammation

TABLE 1. Continued.
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May increase adipose tissue stromal cell proliferation
Decreases adipocyte and skeletal muscle cell glucose uptake
Decreases adipocyte insulin sensitivity
Decreases adipose tissue stromal cell adipogenesis

Proteins Retinol-binding protein 4 
(RBP4)

Extracellular, secreted (708, 709–720)
Binds retinol
Binds and signals through stimulated by retinoic acid 6 (STRA6)
Binds RBP4 receptor 2 (RBPR2)
Signals through TLR4
May further glucose intolerance and insulin resistance
Regulates adipose tissue stromal cell adipogenesis
Regulates immune cell functions
Increases cancer stemness and growth
Increases inflammation
May increase blood pressure
May increase liver steatosis
May increase mitochondrial dysfunction
Decreases adipocyte insulin sensitivity

Proteins Secreted frizzled-related  
protein 5 (SFRP5)

Extracellular, secreted (721, 722–731)
Inhibits wingless-related integration site (WNT)5a, WNT5b, and 

WNT11
May exhibit additional signaling capacities
May bind different extracellular matrix components
Maintains cardiac and vascular functions
May regulate adipocyte insulin sensitivity
May regulate adipocyte mitochondrial function
May regulate adipose tissue stromal cell adipogenesis
May regulate body weight gain
May regulate glucose tolerance and insulin sensitivity
Increases angiogenesis
Decreases -cell proliferation
Decreases inflammation
Decreases liver steatosis and fibrosis

Proteins Serine protease inhibitor  
A12/vaspin (SERPINA12/ 
VASP)

Extracellular, secreted (732, 733–744)
Inhibits kallikrein 7 (KLK7)
May inhibit acetylcholine esterase (AChE)
Signals through GRP78 in complex with DnaJ heat shock protein 

family member C1 (DNAJC1) and/or voltage-dependent anion 
channel (VDAC)

Binds different extracellular matrix components
Improves glucose tolerance and insulin sensitivity
Maintains vascular functions
Maintains -cell functions
Increases adipose tissue stromal cell adipogenesis
Increases skeletal muscle cell glucose uptake and insulin sensitivity
Increases -cell glucose-stimulated insulin secretion
May increase bone mass
Decreases atherosclerosis
Decreases food intake
Decreases ER stress
Decreases inflammation
Decreases liver steatosis

Proteins Serine protease inhibitor E1/ 
plasminogen activator  
inhibitor 1 (SERPINE1/ 
PAI1)

Extracellular, secreted (278, 745, 746, 747–757)
Inhibits tissue-type plasminogen activator (tPA) and urokinase-type 

plasminogen activator (uPA)
Signals through LRP1
Binds and signals through uPA in complex with uPA receptor  

(uPAR) and LRP1
Binds vitronectin and inhibits its binding and signaling through 

integrin V3, integrin V5, and uPAR
May further glucose intolerance and insulin resistance
Maintains cellular senescence
Regulates angiogenesis
Regulates cancer growth and metastasis
Regulates cell migration
Regulates wound healing
May regulate adipose tissue stromal cell adipogenesis
May regulate bone mass
May regulate ceramide metabolism

TABLE 1. Continued.
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Increases atherosclerosis
May increase body weight gain
May increase inflammation
Decreases fibrinolysis
Decreases hematopoiesis
Decreases life span
May decrease adipocyte glucose uptake

Proteins Serine protease inhibitor  
F1/pigment epithelium-
derived factor  
(SERPINF1/PEDF)

Extracellular, secreted (758, 759, 760–771)
May be intracellular
No known protease inhibitory functions
Binds and/or signals through PEDF receptor/adipose tissue 

triglyceride lipase (PEDFR/ATGL), laminin receptor (LAMR),  
LRP6, and plexin domain-containing protein (PLXDC)1 and  
PLXDC2

Inhibits cell surface F1-ATPase
May regulate PPAR (intracellular)
Binds different extracellular matrix components
Maintains neuronal functions
Regulates fibrosis
Regulates immune cell functions
Regulates inflammation
May regulate glucose tolerance and insulin sensitivity
Increases adipocyte, hepatocyte, and skeletal muscle cell lipolysis
Increases cancer cell death and differentiation
Decreases adipose tissue stromal cell adipogenesis
Decreases angiogenesis
Decreases cancer growth and metastasis
Decreases liver steatosis

Proteins Serum amyloid A3 (SAA3) Extracellular, secreted (772, 773–783)
Not expressed in humans
Signals through TLR2 and TLR4
May bind to HDL
Acts as immune cell chemoattractant
May regulate immune cell functions
May increase body weight gain
May increase inflammation
May increase liver steatosis

Proteins Transforming growth factor  
(TGF)

Extracellular, secreted (784–786, 787–793)
Signals through ALK1, ALK2, ALK3, or ALK5 in complex with  

TGF receptor 2 (TGFBR2)
Binds connective tissue growth factor (CTGF)
Binds different extracellular matrix components
Furthers glucose intolerance and insulin resistance
Increases adipose tissue stromal cell proliferation
Increases fibrosis
Increases inflammation
Increases liver steatosis
Decreases adipocyte fatty acid oxidation
Decreases adipose tissue stromal cell adipogenesis
Decreases adipose tissue thermogenesis

Proteins TNF ligand superfamily  
member 10/TNF-related 
apoptosis-inducing ligand 
(TNFSF10/TRAIL)

Extracellular, membrane-bound and secreted (794, 795, 796–807)
Signals through TRAIL receptor (TRAILR)1 and TRAILR2
Binds TRAILR3, TRAILR4, and osteoprotegerin (OPG)
Improves glucose tolerance and insulin sensitivity
Regulates adipocyte metabolism
Regulates immune cell functions
Increases adipose tissue stromal cell proliferation
Increases adipose tissue stromal cell and adipocyte inflammation
Decreases adipose tissue stromal cell adipogenesis
Decreases atherosclerosis
Decreases body weight
Decreases liver steatosis
Decreases systemic inflammation

Proteins TNF ligand superfamily  
member 2/TNF  
(TNFSF2/TNFA)

Extracellular, membrane-bound and secreted (802, 808–810, 811–821)
Signals through TNF receptor (TNFR)1 and TNFR2
Furthers glucose intolerance and insulin resistance
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Regulates immune cell functions
Increases adipocyte lipolysis
Increases adipose tissue stromal cell proliferation
Increases atherosclerosis
Increases body weight loss
Increases ER stress
Increases inflammation
Increases mitochondrial dysfunction
Decreases adipose tissue stromal cell adipogenesis
Decreases adipose tissue thermogenesis

Proteins TNF ligand superfamily  
member 6/Fas ligand 
(TNFSF6/FASL)

Extracellular, membrane-bound and secreted (802, 822, 823–827)
Signals through FAS
Furthers glucose intolerance and insulin resistance
Regulates immune cell functions
Increases adipocyte insulin resistance
Increases adipose tissue stromal cell proliferation
Increases body weight
Increases brown adipocyte lipolysis
Increases inflammation
Increases liver steatosis
Increases mitochondrial dysfunction

Proteins Vascular endothelial growth  
factor A (VEGFA)

Extracellular, secreted (828, 829, 830–841)
Maybe intracellular
Signals through VEGF receptor (VEGFR)1 and VEGFR2
May bind to neuropilin 1 (NRP1)
May bind different extracellular matrix components
Regulates glucose tolerance and insulin sensitivity
Regulates vascular permeability
May regulate adipose tissue stromal cell osteogenesis and  

adipogenesis
Increases adipose tissue stromal cell proliferation
Increases angiogenesis
Increases brown adipocyte mitochondrial function and survival
Increases energy expenditure
Increases vasculogenesis
Increases white adipocyte browning
Increases white adipocyte lipolysis
Increases WAT sympathetic innervation
Increases WAT vascularization
May increase inflammation

Proteins Vascular endothelial growth 
factor D (VEGFD)

Extracellular, secreted (828, 829, 842–845)
Signals through VEGFR2 and VEGFR3
Acts as immune cell chemoattractant
Regulates glucose tolerance and insulin sensitivity
Regulates lymphangiogenesis
Regulates WAT inflammation
May regulate liver steatosis
May regulate vascular permeability
May increase angiogenesis
May increase vasculogenesis

Proteins Xanthine oxidoreductase  
(XOR)

Intracellular and extracellular, secreted (371, 372, 376, 379, 384, 403, 
404, 405, 409–414)Exhibits dehydrogenase and oxidase activities

Interconvertible dehydrogenase and oxidase forms (XDH and XO)
Generates uric acid
Can generate reactive oxygen and nitrogen species
Regulates adipose tissue stromal cell adipogenesis

Lipids 12,13-Dihydroxy-9Z- 
octadecenoic acid 
(12,13-diHOME)

Intracellular and extracellular (846–849)
Generated from linoleic acid by combined activity of cytochrome P450 

oxidases (CYPs) and epoxide hydrolase (EH)1-4
May act as peroxisome PPAR ligand (intracellular)
Regulates immune cell functions
Increases brown adipocyte and skeletal muscle cell fatty acid uptake 

and oxidation
Increases BAT and skeletal muscle lipid uptake
Decreases atherosclerosis

TABLE 1. Continued.
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Lipids 2-Arachidonoylglycerol  
(2-AG)

Intracellular and extracellular (850, 851, 852–863)
Generated from arachidonic acid (AA)-containing diacylglycerols 

(DAG) by DAG lipases (DAGL)
Signals through G protein-coupled cannabinoid receptor (CB)1 

and CB2, GPR55, and transient receptor potential cation channel 
subfamily V member 1 (TRPV1)

Binds to FABP3, FABP5, and FABP7
May act as PPAR and/or PPAR ligand (intracellular)
Acts as immune cell chemoattractant
Regulates brain sympathetic output to different tissues
Regulates glucose tolerance and insulin sensitivity
Regulates immune cell functions
Regulates social and food reward
Increases adipocyte insulin sensitivity and glucose uptake
Increases adipose tissue stromal cell adipogenesis
Increases atherosclerosis
Increases -cell glucose-stimulated insulin secretion
Increases body weight
Increases food intake
Increases gastrointestinal energy absorption
Increases liver steatosis
Decreases adipose tissue thermogenesis
Decreases energy expenditure
Decreases mitochondrial biogenesis
Decreases white adipocyte browning
Decreases WAT, liver, and skeletal muscle glycogenesis

Lipids 4-Hydroxynonenal (4-HNE) Intracellular and extracellular (864–866, 867–878)
Generated from unsaturated lipid acyl chains by reactive oxygen 

species-mediated peroxidation followed by nonenzymatic 
decomposition

Strong electrophile that covalently modifies lipids, Proteins, and 
nucleic acids

May further glucose intolerance and insulin resistance
Increases apoptosis
Increases autophagy
Increases body weight gain
Increases ER stress
Increases mitochondrial dysfunction
Increases mitophagy
Increases oxidative stress
Decrease -cell glucose-stimulated insulin secretion
Decreases adipose tissue and skeletal muscle insulin sensitivity
Decreases adipose tissue stromal cell adipogenesis
Decreases adipose tissue stromal cell proliferation

Lipids Ceramide-1-phosphates  
(C1Ps)

Intracellular and extracellular (251, 296, 345, 879–886)
Generated from ceramides by CERK
Stimulate AA-releasing cytosolic PLA2
Inhibit TNF-releasing TACE
Inhibit acid SMase
Bind to C1P transfer protein (CPTP)
Further glucose intolerance
Regulate immune cell functions
Regulate inflammation
Increase body weight gain
Increase inflammation

Lipids Ceramides Intracellular and extracellular (251, 256, 261, 264, 268, 273, 
290, 296, 297, 299, 301–304, 

316)
Generated by multiple mechanisms, de novo synhesis and salvage
Stimulate PP1, PP2A, and PP2C
Stimulate PKC
Stimulate the NLRP3 inflammasome
Bind ceramide transfer protein (CERT)
Further glucose intolerance and insulin resistance
Increase cancer development
Increase ER stress
Increase inflammation
Increase liver steatosis
Increase mitochondrial dysfunction
Increase cell death (various cell types)
Decrease adipose tissue stromal cell adipogenesis

TABLE 1. Continued.



Adipokines in inter-organ communication 1661

Class Name (Abbreviation) Characteristics References

Decrease adipose tissue thermogenesis
Decrease -cell glucose-stimulated insulin secretion
Decrease insulin sensitivity (various cell types)
Decrease WAT browning

Lipids cis-Palmitoleic acid Intracellular and extracellular (311, 887–889, 890–900)
Generated from palmitate by stearoyl-CoA desaturase 1 (SCD1)
Alternatively generated from stearate or cis-oleate by desaturation  

and/or chain shortening
Inhibits SCD1
Improves glucose tolerance and insulin sensitivity
Maintains cardiac and vascular functions
May regulate liver steatosis
Increases -cell proliferation and glucose-stimulated insulin secretion
Increases hepatocyte and skeletal muscle cell insulin sensitivity
Increases hepatocyte, skeletal muscle cell, and -cell survival
May increase adipocyte and skeletal muscle cell glucose uptake
May increase adipose tissue stromal cell proliferation and survival
May increase cancer growth
Decreases atherosclerosis
Decreases inflammation

Lipids Glucosylceramides Intracellular and extracellular (251, 337–344)
Generated from ceramides by GCS
Bind pleckstrin homology domain-containing family A member 8 

(PLEKHA8)
Substrate for complex glycosphingolipid synthesis
May further glucose intolerance and insulin resistance
May increase fibrosis
May increase inflammation

Lipids Lysophosphatidic acids  
(LPAs)

Intracellular and extracellular (223, 224, 226, 227, 229–231, 
233, 236, 238, 239)Generated by multiple mechanisms

Signal through G protein-coupled LPAR1–6 (extracellular)
May act as PPAR ligands (intracellular)
Intermediates of glyceroplipid synthesis
Further glucose intolerance and insulin resistance
Increase adipose tissue stromal cell proliferation
Decrease adipose tissue stromal cell adipogenesis
Decrease -cell glucose-stimulated insulin secretion

Lipids Palmitic acid Intracellular and extracellular (628, 901–903, 904–914)
Taken up from ingested food (exogenous)
Also generated by multiple mechanisms (endogenous)
Signals through GPR40
Signals through TLR4 (high exposure)
Also stimulates different PKC isoforms (e.g., PKC and PKC) (likely 

indirect, high exposure)
Also stimulates PKR (likely indirect, high exposure)
Also stimulates the NLRP3 inflammasome (likely indirect, high 

exposure)
Binds diverse FABPs, fatty acid transport proteins (FATPs), and fatty  

acid translocase (FAT)
Affects lipid membrane properties (e.g., fluidity and permeability)
Prime substrate for ceramide synthesis
Substrate for energy generation
Substrate for structural component and signaling mediator synthesis
Regulates glucose tolerance and insulin sensitivity
Regulates immune cell functions
May regulate adipose tissue stromal cell proliferation and adipogenesis
May regulate atherosclerosis
May regulate body weight gain
May regulate energy expenditure
May regulate food intake
May regulate liver steatosis
Increases -cell glucose-stimulated insulin secretion (low exposure)
Increases cell death (various cell types, high exposure)
Increases ceramide generation (high exposure)
Increases enteroendocrine cell hormone release (low exposure)
Increases ER stress (high exposure)
Increases inflammation (high exposure)
Increases mitochondrial dysfunction (high exposure)
Increases oxidative stress (high exposure)
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Lipids Palmitic acid ester of 
5-hydroxystearic acid 
(5-PAHSA)

Intracellular and extracellular (215–221, 222)
Produced by unknown mechanisms
May signal through GPR40 and GPR120
May improve glucose tolerance and insulin sensitivity
May increase adipose tissue stromal cell adipogenesis
May increase adipocyte glucose uptake
May increase -cell glucose-stimulated insulin secretion
May increase L-cell GLP1 secretion
May decrease inflammation

Lipids Palmitic acid ester of 
9-hydroxystearic acid 
(9-PAHSA)

Intracellular and extracellular (215–221, 222)
Produced by unknown mechanisms
May signal through GPR40 and GPR120
May improve glucose tolerance and insulin sensitivity
May increase adipose tissue stromal cell adipogenesis
May increase adipocyte glucose uptake
May increase -cell glucose-stimulated insulin secretion
May increase L-cell GLP1 secretion
May decrease inflammation

Lipids Prostaglandin E2 (PGE2) Intracellular and extracellular (915, 916–927)
Generated from AA by combined activity of cyclooxygenase (COX)1 

and COX2 and PGE synthase (PGES)1, PGES2, or PGES3
Signals through G protein-coupled PGE receptor (EP)1-4
May improve glucose tolerance and insulin sensitivity
Regulates atherosclerosis
Regulates fibrosis
Regulates immune cell functions
Regulates inflammation
Regulates liver steatosis
May regulate lipid trafficking
Skews adipose tissue stromal cell adipogenesis toward brown 

phenotype
May increase activity
May increase BAT activity
May increase WAT browning
Decreases adipose tissue stromal cell adipogenesis
Decreases white adipocyte lipolysis
May decrease body weight gain
May decrease food intake

Lipids Sphingomyelins Intracellular and extracellular (251, 262, 289, 331–334, 335, 
336)Generated from ceramides by SMSs

May regulate adipose tissue development
May regulate glucose tolerance and insulin sensitivity
May regulate liver steatosis
May regulate mitochondrial functions

Lipids Sphingosine-1-phosphate  
(S1P)

Intracellular and extracellular (251, 276, 296, 348–350, 353, 
355–357, 360, 361, 363, 365)Generated from sphingosine by sphingosine kinases

Signals through G protein-coupled S1PR1–5
Also stimulates CIAP2
Also stimulates TRAF2
Also inhibits HDAC1 and HDAC2
May regulate glucose tolerance and insulin sensitivity
May regulate vascular functions
May regulate liver steatosis
May increase adipose tissue stromal cell proliferation
May increase -cell glucose-stimulated insulin secretion
May increase hepatocyte and skeletal muscle cell glucose uptake
May increase hepatocyte and -cell survival
May increase hepatocyte lipogenesis
May increase inflammation
May decrease adipose tissue stromal cell adipogenesis

Metabolites Uric acid Intracellular and extracellular (371, 372, 376, 379, 385, 393, 
395–402)Product of purine base degradation

Acts as anti-oxidant (extracellular)
Acts as pro-oxidant (intracellular)
Stimulates the NLRP3 inflammasome (intracellular)
Stimulates NOX (intracellular)
Furthers glucose intolerance and insulin resistance
Impairs vascular and kidney functions
Increases blood pressure
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Increases inflammation
Increases liver steatosis
Increases mitochondrial dysfunction

Metabolites Uridine Intracellular and extracellular (418, 419, 421, 424–429)
May require metabolism for signaling
Substrate for RNA and DNA synthesis
Substrate for glycogen deposition
Substrate for protein and lipid glycosylation
Improves glucose tolerance (acute exposure)
May regulate glucose tolerance and insulin sensitivity (chronic 

exposure)
Essential for fasting-induced decrease in body temperature (acute 

exposure)
Increases body weight gain (chronic exposure)
May increase body temperature (low concentration exposure)
May increase cancer development (chronic exposure)
May increase liver steatosis (chronic exposure)
Decreases body temperature (high concentration)
Decreases energy expenditure (acute exposure)

References in bold indicate reviews.

TABLE 1. Continued.

exclusively, it has occasionally been used to refer to the en-
tirety of signaling mediators secreted by adipose tissue, and 
it is this latter definition that will be applied here.

Adipose tissue forms circumscribed depots in the body 
that differ in their cellular composition and character (24, 
25). Whereas dermal, subcutaneous, and visceral depots 
exist in both humans and mice, the occurrence of depots 
in the bone marrow, skeletal muscle, and pancreas de-
pends on several factors, including species, sex, age, and 
nutritional state (25). While the cellular differences be-
tween these adipose tissue depots immediately suggest 
quantitatively and possibly even qualitatively distinct pat-
terns of adipokine secretion, thorough assessments of de-
pot-specific production have been carried out for only few 
adipose tissue-derived factors.

Adipose tissue is highly dynamic and able to respond to 
changes in nutritional state (e.g., during feeding or fasting 
or with obesity) with acute and chronic adjustments in 
both its metabolism and cellularity (26). These metabolic 
and cellular adjustments are usually accompanied by pro-
nounced shifts in adipokine secretion with immediate ef-
fects on systemic homeostasis (26). With obesity, such shifts 
in adipokine secretion may directly contribute to the devel-
opment of insulin resistance, hepatic steatosis, type 2 dia-
betes, and cardiovascular disease (26).

PROTEINS

Angiopoietins and angiopoietin-like proteins
The family of angiopoietins (ANGs) and ANG-like pro-

teins (ANGPTLs) consists of several structurally similar but 
functionally distinct proteins.

ANG1 and ANG2 regulate angiogenesis and vascular 
function and exert their effects by signaling through the 
tyrosine kinase with Ig and epidermal growth factor (EGF) 
homology domains 2 (TIE2) expressed by endothelial cells 
and certain populations of monocytes and macrophages, 
as well as integrins v5, 31, and 31 expressed by a 

variety of cells (27, 28). Obesity and fasting decrease ANG1 
and ANG2 expression in WAT, while cold exposure in-
creases ANG2 expression in BAT (29–31). Overexpression 
of ANG1 from injected plasmid DNA slows the body weight 
gain in obese leptin-deficient ob/ob mice, whereas overex-
pression of a stabilized ANG1 variant from a viral vector 
reduces diabetic nephropathy and improves glucose toler-
ance in obese leptin receptor-deficient db/db mice (30, 32, 
33). Inducing adipocyte-specific overexpression of ANG2 
in mice elicits increased WAT angiogenesis and an anti-in-
flammatory secretion profile, offering protection from 
high-fat diet-induced obesity and improving glucose and 
lipid metabolism (31). Treating mice with an ANG2-neu-
tralizing antibody conversely decreases WAT angiogenesis, 
increases WAT inflammation and fibrosis, and results in 
metabolic deterioration (31). ANG1 and ANG2 thus ap-
pear to have beneficial effects on systemic metabolism.

ANGPTL2 also affects vascular function, but does so in a 
TIE2-independent fashion by engaging integrin 51 and 
the leukocyte Ig-like receptor B2 (LILRB2) (34). ANGPTL2 
expression in WAT and BAT is increased with hypoxia, ER 
stress, and obesity (35, 36). Its circulating levels correlate 
positively with adiposity and markers of inflammation and 
insulin resistance (35, 36). In mice, endothelial cell-
specific overexpression of ANGPTL2 results in vascular 
dysfunction and facilitates vascular inflammation and ath-
erosclerosis when combined with ApoE deficiency, whereas 
adipocyte-specific overexpression causes increased WAT 
inflammation, glucose intolerance, and insulin resistance 
(35, 37). ANGPTL2-deficient mice, in turn, exhibit im-
proved insulin sensitivity and are protected from high-fat 
diet-induced metabolic and vascular deterioration (35, 37, 
38). ANGPTL2 thus has detrimental effects on systemic 
metabolism, at least under the conditions tested.

ANGPTL3, ANGPTL4, and ANGPTL8 regulate triglyc-
eride trafficking and metabolism (39). ANGPTL3 and 
ANGPTL8 act in concert to inhibit LPL and endothelial 
lipase, while ANGPTL4 acts alone to inhibit LPL and pancre-
atic lipase (39–41). ANGPTL3 and ANGPTL4 also undergo 
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proteolytic cleavage, generating C-terminal fragments that 
may exert alternative signaling functions (42–44). ANGPTL3 
is primarily produced by the liver, ANGPTL4 primarily by 
WAT and BAT, and ANGPTL8 by WAT and BAT as well as 
the liver (45–47). Fasting increases ANGPTL4 expression 
in WAT and BAT, suppressing local LPL activity and thus 
hydrolytic release of fatty acids from triglyceride-rich lipo-
proteins, redirecting them to other energy-demanding 
tissues (47). Conversely, upon feeding, ANGPTL3 and 
ANGPTL8 mediate the suppression of lipases in energy-
demanding tissues, allowing white and brown adipocytes 
to replenish their lipid reserves (39). ANGPTL3- and 
ANGPTL8-deficient mice display improved triglyceride 
clearance, but no or only slight improvements in insulin 
sensitivity, even upon high-fat challenge (48–52). In line 
with its role in redirecting triglyceride-rich lipoproteins 
from WAT and BAT to other organs, mice lacking ANGPTL4 
exhibit increased fatty acid uptake into WAT during fasting 
(47). Adipocyte-specific deletion of ANGPTL4 in mice im-
proves triglyceride clearance and glucose tolerance with 
increased triglyceride uptake into WAT, BAT, and liver 
(53). In the setting of a high-fat diet, adipocyte-specific de-
letion of ANGPTL4 improves glucose tolerance and insulin 
sensitivity, while curbing inflammation and atherosclerosis 
(53). Specific overexpression of ANGPTL4 in adipocytes, 
in turn, causes dyslipidemia and exacerbates the detrimen-
tal metabolic effects of a high-fat diet (54). Similarly, 
humans harboring loss-of-function alleles of ANGPTL3, 
ANGPTL4, or ANGPTL8 display decreased triglyceride lev-
els and increased triglyceride clearance (55–58).

Bone morphogenic proteins
The bone morphogenic protein (BMP) family belongs to 

the transforming growth factor  (TGF) superfamily, and 
its members have central functions in the development and 
maintenance of many tissues (59). They signal through 
complexes of one of seven different type I receptors, the 
activin receptor-like kinases 1–7 (ALK1–7), with one of 
three different type II receptors, the BMP receptor 2 
(BMPR2) and the activin receptor (ACVR)2a and ACVR2b, 
that are expressed by a wide range of cells (59). In mice, the 
specific deletion of ALK3 in brown adipocyte progenitors 
impairs BAT formation, while its deletion in mature white 
adipocytes alleviates high-fat diet-induced WAT inflamma-
tion and insulin resistance (60, 61).

BMP2 and BMP4 regulate the commitment and differen-
tiation of adipose tissue stromal cells and the maintenance 
of adipocytes. They signal through ALK3 or ALK6 in con-
junction with BMPR2, ACVR2a, or ACVR2b (62–65). BMP2 
and BMP4 are expressed in WAT and BAT, and the expres-
sion of BMP4 correlates positively with adiposity and adipo-
cyte size (66–68). Both promote the commitment of adipose 
tissue stromal cells to the adipogenic lineage, which involves 
the repression of the anti-adipogenic zinc finger protein 
521 (ZFP521) and activation of the pro-adipogenic zinc fin-
ger protein 423 (ZFP423) (69–73). They also appear to 
skew adipogenesis toward either a white or brown adipocyte 
phenotype, although in vitro experiments have been unsuc-
cessful to determine what combination of factors (e.g., 

dose, time, and duration of treatment, or cell type) deter-
mines the exact outcome (66, 68, 74–77). Adipocyte-specific 
overexpression of BMP4 in mice results in decreased WAT 
and increased BAT weights, increased WAT angiogenesis 
and browning, BAT whitening, yet overall increased energy 
expenditure and improved glucose tolerance and insulin 
sensitivity (66, 78). Intriguingly, the specific deletion of 
BMP4 in adipocytes causes increased WAT and BAT weights, 
decreased WAT angiogenesis, and BAT whitening, as well as 
disturbed glucose tolerance and insulin sensitivity (66, 78). 
Similar effects are observed using viral vectors to overex-
press BMP4 either systemically or locally in BAT (68, 77).

Another member of the BMP family that is implicated in 
the regulation of adipose tissue stromal cell adipogenic dif-
ferentiation is BMP3B. It signals through ALK4 and ACVR2a 
or ACVR2b, and its production in WAT and BAT increases 
with obesity (65, 79). Suppressing BMP3B expression in 
adipose tissue stromal cells increases their adipogenic po-
tential, while overexpressing BMP3B decreases it (79). On 
a high-fat diet, mice with adipocyte-specific overexpression 
of BMP3B display decreased WAT weight and adipocyte 
size, increased BAT thermogenic marker expression, food 
consumption, activity, and energy expenditure, and im-
proved glucose tolerance and insulin sensitivity (80).

BMP8B is a BMP family member that may particularly 
regulate BAT function. It signals through a combination of 
ALK2, ALK3, or ALK6 and BMPR2, ACVR2a, or ACVR2b 
(65). It is expressed in WAT and BAT, and its expression in 
BAT is decreased during fasting and increased during feed-
ing and with obesity, as well as upon cold exposure (67, 
81). Mice lacking BMP8B display decreased body tempera-
ture and impaired cold-induced thermogenesis with re-
duced oxygen consumption and BAT sympathetic input 
(81). On a high-fat diet, these mice furthermore exhibit 
increased body weight gain, but also decreased food intake 
(81). Apart from directly acting on adipocytes to increase 
their lipolytic capacity, BMP8B augments the vessel density 
and neuronal innervation of adipose tissue and prompts 
the brain to increase the sympathetic output to it (81, 82).

BMP2, BMP3B, BMP4, and BMP8B thus appear to have 
favorable effects on metabolic homeostasis.

While BMP7 has also been described to have a role in the 
regulation of BAT formation and function, it has, to our 
knowledge, never been unambiguously established that it 
is produced by adipose tissue (67, 74, 76, 83–86).

Chemerin
Chemerin acts as a chemokine and is produced as a pro-

protein that undergoes stepwise C-terminal proteolytic pro-
cessing to generate multiple variants differing greatly in 
their respective activity (87–90). Chemerin signals through 
the chemokine-like receptor 1 (CMKLR1) and the G pro-
tein-coupled receptor (GPR)1 and also binds to the nonsig-
naling C-C chemokine receptor-like 2 (CCRL2), all of which 
are expressed by a variety of cells (91–94). It circulates 
mostly in its pro-form, and its total circulating levels corre-
late positively with age, adiposity, triglycerides, and blood 
pressure (95–102). Apart from its role in immune cell che-
motaxis, in vitro experiments implicate chemerin to act on 
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endothelial and vascular smooth muscle cells, promoting 
vascular dysfunction on skeletal muscle cells fueling insulin 
resistance and on osteoclasts instigating bone resorption 
(98, 103–108). A direct action of chemerin on adipose tis-
sue stromal cell adipogenic differentiation or on adipocyte 
function has remained controversial though (91, 109–111). 
Chemerin-deficient mice display increased skeletal muscle 
but decreased WAT insulin sensitivity, as well as mild glu-
cose intolerance; whereas mice overexpressing chemerin 
specifically in the liver exhibit improved glucose tolerance 
(112). In contrast, treatment with chemerin exacerbates 
the obesity-associated glucose intolerance in ob/ob mice, 
db/db mice, and mice fed a high-fat diet (113). The deletion 
of CMKLR1 was reported to either not affect or, in another 
study, decrease glucose tolerance in mice on regular or 
high-fat diets, while the deletion of GPR1 decreases glucose 
tolerance in mice on a high-fat diet (110, 111, 114–116). 
More advanced mouse models may need to be used to clar-
ify the effects of this signaling axis on metabolic homeosta-
sis, such as overexpression or deletion of chemerin or its 
receptors in a time- and cell type-controlled manner. Such 
approaches are essential to effectively deconvolute devel-
opmental effects from effects on mature cells and tissues 
(38, 117).

Endotrophin
Endotrophin (ETP) constitutes a C-terminal cleavage 

fragment of the collagen VI 3 chain (COL6A3) that is re-
leased from mature collagen VI (COL6) following secre-
tion (118). While diverse integrins and the chondroitin 
sulfate proteoglycan 4 (CSPG4) may act as receptors for 
COL6, a specific receptor for ETP has not yet been identi-
fied (118, 119). ETP levels are strongly associated with adi-
pose tissue dysfunction. Similarly, COL6A3 expression in 
WAT correlates positively with adiposity and with markers 
of WAT inflammation and is decreased upon anti-diabetic 
thiazolidinedione treatment (120, 121). Following this 
pattern, the circulating ETP levels correlate positively with 
adiposity and markers of insulin resistance, and actually 
predict the therapeutic response to thiazolidinedione 
treatment (121). Adipocytes have the unique ability to sup-
port the growth of breast cancer cells not only in vitro but 
also in vivo in the local microenvironment of the mammary 
gland. COL6A3-derived ETP was singled out as one of the 
key adipokines involved in this process (122, 123). Studies 
in the mouse mammary tumor virus/polyomavirus middle 
T antigen (MMTV-PyMT) model of breast cancer high-
lighted ETP as a major driver of tumor growth, metastasis 
formation, and chemoresistance (123–125). In MMTV-
PyMT mice, functional elimination of COL6 or treatment 
with an ETP-neutralizing antibody or with thiazolidine-
diones decreases tumor growth, metastasis, and chemo-
resistance (123–125). Mammary epithelial cell-specific 
overexpression of ETP, in turn, increases tumor inflamma-
tion, angiogenesis, and fibrosis, while it also decreases tu-
mor hypoxia and promotes tumor metastasis by initiating 
epithelial-mesenchymal transition (123–125). Intact TGF 
signaling is required for ETP’s effects on tumor epithelial-
mesenchymal transition and is partially required for its 

effect on tumor fibrosis (124). It is, however, not required 
for its effects on inflammation and angiogenesis (124). 
The negative impact of ETP on tumor progression and 
chemoresistance is in fact highly relevant for human breast 
cancer as well (126). ETP has more recently also been dem-
onstrated to aggravate the inflammatory and fibrotic con-
sequences of liver damage and advance the development 
of liver cancer (127). COL6A3 and ETP, moreover, act as 
drivers of metabolic deterioration in obesity (128). COL6-
deficient ob/ob mice and mice fed a high-fat diet exhibit 
increased WAT adipocyte size and decreased WAT inflam-
mation and liver steatosis, as well as improved triglyceride 
clearance, glucose tolerance, and insulin sensitivity (128). 
Consistent with ETP being the key constituent of COL6, 
adipocyte-specific overexpression of ETP aggravates WAT 
inflammation and fibrosis, enhances dyslipidemia, liver ste-
atosis, and impaired glucose tolerance and insulin sensitiv-
ity in mice fed a high-fat diet, while antibody neutralization 
of ETP results in the opposite effects (129). ETP thus ex-
erts unfavorable effects on systemic metabolism.

Fibroblast growth factor 21
Fibroblast growth factor (FGF)15/19, FGF21, and FGF23 

form the endocrine subgroup of the FGF family (130). 
They generally have a low heparin- and heparan sulfate-
binding capacity, allowing them to leave their place of pro-
duction and enter circulation (130). FGF21 signals through 
complexes of FGF receptor (FGFR)1c or FGFR3c with -
klotho as a coreceptor, and binds to, but does not signal 
through, complexes of FGFR4 with -klotho (131–133). 
FGF21 is primarily produced by the liver, but is also ex-
pressed in WAT, BAT, and the brain, and possibly skeletal 
muscle, cardiac muscle, and the pancreas [reviewed in 
(130)]. Under most conditions, circulating FGF21 primar-
ily derives from the liver where its production increases 
upon fasting and exercise as well as with high carbohydrate 
or low protein intake (130). Possible extra-hepatic contri-
butions to the circulating FGF21 levels may occur from 
BAT upon cold exposure or from skeletal and cardiac mus-
cle upon disturbances of cellular metabolism or mitochon-
drial function (130). The exact contributions of WAT to 
circulating pools of FGF21 remain to be clarified. Circulat-
ing FGF21 levels are increased with obesity, lipodystrophy, 
and pancreatitis (130). FGF21 has been extensively studied 
in mice, monkeys, and humans. Its main effects may relate 
to decreasing body weight (134–139), sugar and alcohol 
consumption (140, 141), circulating triglycerides and insu-
lin (134–139), and bone mass (139, 142, 143), while in paral-
lel increasing WAT and BAT glucose uptake, mitochondrial 
activity, and thermogenesis (136, 144–154) as well as cir-
culating adiponectin (138, 139, 155–157). FGF21 also de-
creases circulating glucose and improves glucose tolerance 
and insulin sensitivity in mice (134–136), but may not do so 
in non-human primates and humans (137–139). Effects on 
dyslipidemia seem to be preserved in all cases. While FGF21 
may exert many of its effects by direct action on the brain, 
local effects on WAT and BAT nonetheless occur and could 
be physiologically relevant (140, 141, 147, 150, 158–161). 
Direct FGF21 signaling was reported to increase white and 
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brown adipocyte glucose uptake (134, 153, 162, 163), ther-
mogenic marker expression (144, 146, 150), and adiponec-
tin secretion (153, 155–157), decrease white adipocyte 
lipolysis (153, 164), and promote white adipocyte-initiated 
cold-induced WAT beiging (154), partly through autocrine 
and paracrine effects of adipocyte-produced FGF21 (146, 
154, 157). Other studies failed to demonstrate such effects 
of direct FGF21 signaling or adipocyte-produced FGF21 
(148, 153, 165, 166). Adipocyte-specific deletions of either 
FGFR1 or -klotho abolish FGF21’s acute effects on glu-
cose tolerance and insulin sensitivity in mice (137, 145, 
153, 155, 161). Adiponectin has been identified as a crucial 
mediator of FGF21’s glucoregulatory actions (156, 157). 
We had proposed a direct linear relationship between the 
activation of PPAR by thiazolidinediones, local produc-
tion of FGF21, and local production as well as systemic re-
lease of adiponectin, eventually resulting in an effective 
reduction in blood and tissue ceramide levels with associ-
ated improvements in insulin sensitivity (156). It may thus 
be the absence of the FGF21-triggered adiponectin surge 
that explains how defects in adipose tissue FGF21 signaling 
impact its effects on glucose tolerance and insulin sensitiv-
ity. Taken together, FGF21 has mostly beneficial effects on 
systemic metabolism, some of which may, however, not 
fully translate from rodents to man.

Lipocalin 2
The lipocalin (LCN) family encompasses several struc-

turally similar proteins that bind and transport small hy-
drophobic molecules, such as retinol, fatty acids, and 
steroids (167). LCN2 binds iron-chelating siderophores 
produced by bacterial and mammalian cells, including 
2,3-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, and 
catechol (168–172). LCN2 binds to the LCN2 receptor 
(LCN2R) and the LDL receptor-related protein (LRP)2, 
which either increases or decreases intracellular iron stores 
depending on whether LCN2 is loaded with iron or not 
(168–172). Human LCN2 can also form covalent homodi-
mers as well as heterodimers with matrix metallopeptidase 
9 (MMP9), while murine LCN2 lacks the cysteine residue 
required for these interactions (173). The circulating LCN 
levels correlate positively with adiposity, markers of inflam-
mation, and markers of insulin resistance (174–182). Stud-
ies with LCN2-deficient mice on either a regular or high-fat 
diet yielded variable results in that these mice were re-
ported to have increased, decreased, or unchanged body 
weight gain, altered WAT, BAT, and endothelial cell 
function, cold intolerance, liver steatosis, and improved, 
worsened, or unchanged glucose tolerance and insulin 
sensitivity (178, 183–191). Studies involving either the over-
expression of LCN2 or treatment with LCN2 have equally 
failed to paint a clearer picture of LCN2’s effects on adi-
pose tissue stromal cell adipogenic differentiation, adipo-
cyte function, and metabolic homeostasis (167, 174, 182, 
184, 189–194). Surprisingly, despite the central role that 
iron plays in adipocyte function, the vast majority of these 
studies on LCN2 did not address iron homeostasis (167, 
174, 182, 184, 189–196). As in the case of chemerin, the use 
of more advanced mouse models enabling an inducible 

tissue-specific overexpression or deletion of LCN2 or its re-
ceptors may be required to refine our assessment of LCN2’s 
effects on systemic metabolism. We should not be surprised 
by the wide array of effects reported. This range of pheno-
types seen under different conditions is characteristic of 
what has been observed for many factors involved in in-
flammatory responses, where beneficial and detrimental 
effects are in a tug of war, and the net effects differ between 
acute and chronically challenged states (197–199).

Neuregulin 4
The neuregulin (NRG) family belongs to the EGF super-

family and its members are mostly known for their func-
tions in the development and maintenance of the nervous 
system (200). Akin to other NRGs, NRG4 is produced as 
a transmembrane pro-protein that undergoes N-terminal 
proteolytic processing to release a soluble ligand (201). It 
signals through the EGF receptor 4 (ErbB4) that is ex-
pressed by a wide range of cells (200, 201). NRG4 is ex-
pressed in WAT and BAT where its production increases 
upon cold exposure and decreases with obesity (201–205). 
Its circulating levels were reported to correlate positively, 
negatively, or not at all with adiposity and markers of insu-
lin resistance (206–211), yielding a rather unclear picture 
of its behavior. NRG4-deficient mice fed a high-fat diet dis-
play increased body weight gain, decreased WAT and BAT 
vessel density, increased WAT inflammation, liver steato-
sis, and impaired glucose tolerance and insulin sensitivity 
(201, 204, 205). While similar effects occur in high-fat-
challenged ErbB4-deficient mice, opposite effects can be 
achieved by adipocyte- or hepatocyte-specific overexpres-
sion of NRG4 (201, 203, 204, 212, 213). This argues for 
beneficial effects of NRG4 on metabolic homeostasis. Of 
note though, humans harboring loss-of-function alleles of 
NRG4 display reduced to nearly absent fasting C-peptide 
levels, but no apparent alterations of glucose homeostasis, 
calling for further studies addressing the translatability of 
above findings (214).

LIPIDS

Fatty acid esters of hydroxy fatty acids
Fatty acid esters of hydroxy fatty acids (FAHFAs) are pro-

duced by still poorly understood enzymatic and nonenzy-
matic processes (215, 216). Differences in acyl chain 
length, saturation, and hydroxylation of the constituent 
fatty acids allow for the generation of more than a hundred 
distinct FAHFA species of which palmitic acid esters of 
5- and 9-hydroxystearic acid (5-PAHSA and 9-PAHSA) are 
the best studied ones (215, 216). 9-PAHSA and possibly 
also 5-PAHSA signal though the GPR40 and GPR120 ex-
pressed by a variety of cells (215, 217, 218). They are pro-
duced by BAT and WAT where their production increases 
with glucose uptake, de novo lipogenesis, and possibly lipid 
oxidation, and they may be found in food (215, 216, 219, 
220). Low circulating 5-PAHSA levels are moreover associ-
ated with markers of insulin resistance (215). Administra-
tion of 5- and 9-PAHSA to lean or obese mice increases 
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glucagon-like peptide 1 (GLP1) and insulin secretion, de-
creases circulating glucose levels, and improves glucose tol-
erance and insulin sensitivity (215, 218). 5-PAHSA and 
9-PAHSA may directly act on adipose tissue stromal cells to 
promote adipogenic differentiation, and in adipocytes to 
increase insulin-stimulated glucose uptake, in L-cells to 
increase GLP1 secretion, in -cells to increase glucose-
stimulated insulin secretion, and in macrophages to de-
crease activation and pro-inflammatory cytokine release 
(215, 219–221). Of note though, another study featuring 
both in vitro and in vivo experiments was unable to con-
firm any of the above-mentioned effects of 5- and 9-PAHSA 
(217). Whether central aspects of the experimental setups 
used by individual studies may have contributed to differ-
ent outcomes remains to be addressed though (222).

Lysophosphatidic acids
Lysophosphatidic acids (LPAs) consist of a glycerol back-

bone, a phosphate group, and an ester-bound acyl chain of 
differing length and saturation (223). They are generated 
both intra- and extracellularly and their circulating levels 
increase with obesity (223, 224). They can be produced by 
acylation of glycerol 3-phosphate by glycerol-3-phosphate 
acyltransferases (GPATs), phosphorylation of monoacylg-
lycerol by acylglycerol kinases (AGKs), head group modifi-
cation of other lysophospholipids involving phospholipase 
(PL)D activity, or deacylation of phosphatidic acids involv-
ing PLA1 or PLA2 activity (223). LPAs can subsequently 
be degraded by deacylation involving PLA1 or PLA2 activ-
ity, dephosphorylation by lipid phosphate phosphatases 
(LPPs), or acylation by acylglycerol-3-phosphate acyltrans-
ferases (AGPATs) (223). Intracellular LPAs are crucial in-
termediates of glycerolipid synthesis and may possibly 
function as endogenous PPAR ligands, while extracellular 
LPAs act as lipid mediators signaling through six widely 
expressed G protein-coupled LPA receptors (LPAR1–6) 
(223). Administration of LPAs to mice diminishes glucose-
stimulated insulin secretion and glucose tolerance (224). 
LPAs may also directly increase adipose tissue stromal 
cell proliferation, decrease adipose tissue stromal cell ad-
ipogenic differentiation by downregulation of PPAR2, 
increase hepatocyte glycogenolysis, and decrease -cell 
glucose-stimulated insulin secretion (224–236). Mice defi-
cient in LPAR1 display pronounced developmental defects 
and delays with a reduced body size and weight, but also 
increased adipose tissue mass and adipocyte size, enhanced 
adipocyte glucose transporter 4 (GLUT4) expression, and 
elevated circulating leptin levels (237–239). Furthermore, 
when fed a high-fat diet, these mice do not gain body 
weight or adipose tissue mass and also do not exhibit 
the expected increase in food intake (238). Chemical 
inhibition of LPAR1 and LPAR3 in high-fat diet-fed mice 
increases adipose tissue mass, adipose tissue PPAR2 ex-
pression, and adipocyte size, skeletal muscle glucose utili-
zation, liver glycogen storage, and pancreatic islet mass, 
and improves glucose tolerance and insulin sensitivity 
(224, 239). Circulating LPAs are mainly generated from ly-
sophosphatidylcholines by the PLD activity of autotaxin 
(ATX), an enzyme primarily produced by adipocytes (229, 

240–244). ATX secretion by WAT and BAT and circulating 
ATX levels are increased with obesity and correlate posi-
tively with markers of glucose intolerance and insulin resis-
tance (229, 243–249). While a homozygous loss of ATX is 
embryonically lethal in mice, a heterozygous loss of ATX is 
tolerated and, upon high-fat feeding, results in decreased 
circulating LPA levels, body weight gain, and adipose tissue 
accrual as well as improved glucose tolerance and insulin 
sensitivity (240–242, 250). Mice with adipocyte-specific de-
letion of ATX also display decreased circulating LPA levels 
and improved glucose tolerance, but intriguingly increased 
adipose tissue accrual, adipose tissue PPAR2 expression, 
and adipocyte size (244). Mice overexpressing ATX con-
versely display increased circulating LPA levels, body weight 
gain, and adipose tissue accrual, yet no alterations of glu-
cose homeostasis (236).

Taken together, LPAs appear to have mostly detrimental 
effects on systemic metabolism.

Sphingolipids
The sphingolipid superfamily is characterized by a sphin-

goid backbone (e.g., sphingosine) and, depending on the 
respective subfamily, a specific head group, an amide-
bound acyl chain, and, in certain cases, also an ester-bound 
acyl chain (251). Their de novo synthesis begins with the 
generation of 3-ketodihydrosphingosine from serine and 
palmitoyl-CoA by serine palmitoyltransferases (SPTs) (251). 
This is succeeded by a reduction to dihydrosphingosine 
by 3-ketodihydrosphingosine reductase (KDSR), an acyla-
tion to dihydroceramides by (dihydro)ceramide synthases 
(CERSs), and a conversion to ceramides by (dihydro)ce-
ramide desaturases (DEGSs) (251). Ceramides can be 
modified further by addition of different head groups, 
such as phosphatidylcholine by sphingomyelin synthases 
(SMSs) or glucose by glucosylceramide synthase (GCS) 
(251). They can alternatively be acylated to acylceramides 
by diacylglycerol acyltransferases (DGATs), deacylated to 
sphingosine by ceramidases (CDases), or phosphorylated 
to ceramide-1-phosphates (C1Ps) by ceramide kinase (CERK) 
(251). Sphingosine too can be phosphorylated by sphingo-
sine kinases (SPHKs) yielding sphingosine-1-phosphate 
(S1P) (251). Additional “salvage pathways” exist for ceramide 
generation from sphingomyelins, glucosylceramides, sphin-
gosine, and C1P that involve SMases, glucosylceramidases 
(GlcCDases), CERSs, and C1P phosphatases, respectively 
(251).

While a near-complete reduction of SPT activity due to a 
homozygous loss of either SPT long chain subunit 1 or 2 
(SPTLC1 or SPTLC2) is embryonically lethal in mice, a 
partial reduction due to heterozygous loss of SPTLC2 or 
by chemical SPT inhibition alleviates glucose intolerance, 
insulin resistance, WAT inflammation, liver steatosis, and 
atherosclerosis, as well as cardiac and vascular dysfunction 
in different mouse and rat models of obesity, diabetes, and 
cardiovascular disease (252–269). Highlighting the impor-
tance of balanced de novo sphingolipid synthesis for adi-
pose tissue function, mice with adipocyte-specific deletion 
of SPTLC1 or SPTLC2 display age-dependent lipodys-
trophy and metabolic deterioration (270, 271). This is, 
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however, a complex pathway, as another study demon-
strates that adipocyte-specific deletion of SPTLC2 can also 
result in protection from high-fat diet-induced metabolic 
disturbances (268).

Ceramides form a pivotal sphingolipid subfamily that is 
implicated in causing many of the metabolic sequelae of 
excessive saturated fatty acid intake (272, 273). Circulating 
ceramides associate with VLDLs and LDLs, extracellular 
vesicles (EVs), and possibly also albumin (272). Their lev-
els in circulation as well as in tissues, such as WAT, skeletal 
muscle, and liver, increase with obesity and correlate posi-
tively with markers of inflammation and insulin resistance 
(268, 274–295). Ceramides can activate protein phospha-
tase (PP)1, PP2A, and PP2C, protein kinase (PK)C, and 
the NLR family pyrin domain-containing (NLRP)3 inflam-
masome, suppress mitochondrial -oxidation, and pro-
mote ER stress (273, 296). They directly decrease the 
insulin sensitivity of adipose tissue stromal cells, adipocytes, 
skeletal and cardiac muscle cells, endothelial cells, vascular 
smooth muscle cells, and kidney cells (256, 261, 264, 297–
308). They also decrease adipose tissue stromal cell adipo-
genic differentiation, white adipocyte browning, and -cell 
insulin production, increase adipocyte inflammatory marker 
expression, and promote -cell, cardiac muscle cell, and 
kidney cell death (268, 276, 308–315). Ceramides differ in 
the length and saturation of their amide-bound acyl chains, 
mostly resulting from the acyl-CoA preference of the CERS 
isoform involved in their synthesis (251). CERS1 prefers 
C18, CERS2 C20–26, CERS5 C16, and CERS6 C14–16 
acyl-CoA (251). Mice deficient in either CERS1, CERS5, or 
CERS6 display improved glucose homeostasis upon high-
fat feeding, whereas mice (partially) deficient in CERS2 
not only display impaired glucose homeostasis upon high-
fat feeding, but also develop liver steatosis and cancer (290, 
294, 316–320). Comparable metabolic improvements are 
seen in high-fat diet-fed mice with either brown adipocyte- 
or hepatocyte-specific deletions of CERS6 (290). This im-
plicates ceramides with rather short amide-bound C14–C18 
acyl chains as prime mediators of saturated fatty acid-in-
duced glucose intolerance and insulin resistance.

Similar to upstream SPT activity, a near-complete reduc-
tion of downstream DEGS activity due to a homozygous 
loss of DEGS1 results in incompletely penetrant embryonic 
lethality in mice (255). Mice with a heterozygous loss of 
DEGS1 are viable and display increased insulin sensitivity 
(255). In line with these observations, chemical DEGS1 in-
hibition offers partial protection from glucose intolerance 
and insulin resistance upon high-fat feeding (307).

Ceramide degradation is intimately connected to adipo-
nectin signaling, as the engagement of AdipoR1 and Adi-
poR2 is associated with increased ceramidase activity, which 
may stem from the receptors themselves (117, 321–324). 
Adiponectin-deficient mice display not only impaired glu-
cose tolerance and insulin sensitivity, but also increased 
ceramide and decreased sphingosine and S1P levels in 
WAT and liver as well as exacerbated responses upon ex-
perimental induction of -cell and cardiac muscle cell 
death (117, 321). Treatment with adiponectin or overex-
pression of it decreases tissue ceramide levels, normalizes 

glucose homeostasis upon high-fat feeding, and restrains 
-cell and cardiac muscle cell death, likely through induc-
tion of ceramide degradation and S1P production (321). 
In mice, WAT-, liver-, or skeletal muscle-restricted overex-
pression of AdipoR1 or AdipoR2 decreases local ceramide 
levels and increases local insulin sensitivity (321, 322, 325). 
When either WAT or liver is targeted, not only local but 
also distant tissue ceramide levels diminish and glucose tol-
erance and insulin sensitivity improve, suggesting a dynamic 
inter-tissue exchange of ceramides (322). In agreement, 
overexpression of acid ceramidase in either WAT or liver 
decreases tissue and circulating ceramide levels and aug-
ments systemic metabolism (326). Intriguingly, adiponec-
tin itself may play a role in this exchange of ceramides by 
stimulating the release of ceramide-rich EVs from cells fol-
lowing T-cadherin but not AdipoR1 or AdipoR2 engage-
ment (327). In addition, consistent with adaptor protein 
containing PH domain, PTB domain, and leucine zipper 
motif 1 (APPL1) being a key downstream mediator of adi-
ponectin signaling, global APPL1 overexpression decreases 
cardiac ceramide accumulation, insulin resistance, and 
damage, and improves systemic metabolism upon high-fat 
feeding (328).

Sphingomyelins are ceramide derivatives whose circulat-
ing levels increase with obesity and, dependent on the 
length of their amide-bound acyl chain, correlate positively 
with markers of insulin resistance (251, 276, 287, 288, 291, 
329, 330). Mice deficient in SMS1 display incompletely 
penetrant neonatal lethality, age-dependent lipodystrophy, 
and disturbed glucose tolerance with pronounced mito-
chondrial dysfunction and oxidative stress in WAT and 
pancreas (331, 332). In contrast, mice deficient in SMS2 
display augmented glucose tolerance and insulin sensitivity 
and partial protection from high-fat diet-induced obesity 
and metabolic deterioration (262, 333, 334). These differ-
ences may arise not only from the differential expression of 
SMS1 and SMS2 in specific tissues, but also from the dis-
tinct subcellular localizations of both enzymes, and thus 
may be due to subcellular differences in sphingomyelin gen-
eration (335). Alterations of sphingomyelin synthesis can 
furthermore influence the levels of ceramides and ceramide 
derivatives such as glucosylceramides (335). The loss or 
chemical inhibition of acid SMase, for instance, decreases 
liver ceramide levels and steatosis, glucose intolerance, and 
insulin resistance in mice fed a high-fat diet (289, 336).

Glucosylceramides are also ceramide derivatives and 
themselves form the basis for the synthesis of more com-
plex glycosphingolipids (251). Not much is known about 
whether and how glucosylceramide levels in circulation 
and in tissues change with obesity, glucose intolerance, and 
insulin resistance. A homozygous loss of GCS results in em-
bryonic lethality in mice, and the metabolic consequences 
of a heterozygous loss of GCS have not yet been studied 
(337, 338). While hepatocyte-specific deletion of GCS is 
without apparent impact on systemic metabolism, not even 
upon high-fat challenge, chemical inhibition of GCS curtails 
WAT inflammation and liver steatosis, fibrosis, and inflam-
mation and improves glucose tolerance and insulin sensi-
tivity in ob/ob mice and mice fed a high-fat diet (339–344). 
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Thus, while there appears to be an involvement, much 
remains to be uncovered concerning the role of glucosyl-
ceramides and glycosphingolipids in obesity and obesity-
associated diseases.

C1Ps and S1P are lipid mediators formed by the phos-
phorylation of ceramides and sphingosine, respectively 
(251). C1Ps stimulate the enzymatic activity of the arachi-
donic acid-releasing cytosolic PLA2 and inhibit those of 
TNF-releasing TNF-converting enzyme (TACE) and acid 
SMase (251, 296). Arguing for mostly detrimental effects of 
C1Ps on systemic metabolism, CERK-deficient mice exhibit 
decreased body weight gain and decreased WAT adipocyte 
size, as well as reduced macrophage infiltration and inflam-
mation (345). As a consequence, they show improved glu-
cose tolerance upon high-fat feeding (345).

S1P not only signals through five widely-expressed G 
protein-coupled S1P receptors (S1PR1–5), but also stimu-
lates the enzymatic activities of TNF receptor-associated 
factor 2 (TRAF2) and cellular inhibitor of apoptosis 2 
(CIAP2) and inhibits those of histone deacetylase (HDAC)1 
and HDAC2 (251, 296). In circulation, S1P associates with 
ApoM on HDL and with albumin (251, 296). Its circulating 
levels increase with obesity as well as upon fasting and 
correlate positively with markers of insulin resistance and 
inflammation (276, 283, 346–351). S1P directly acts on adi-
pose tissue stromal cells to increase proliferation and de-
crease adipogenic differentiation, prompts adipocytes to 
increase inflammatory marker expression, triggers hepato-
cytes to increase inflammatory marker expression, survival, 
glucose uptake, and lipid accumulation, and leads to an 
overall decrease in insulin sensitivity (276, 348, 350, 
352–361). It also triggers skeletal muscle cells to increase 
glucose uptake, -cells to increase survival and glucose-
stimulated insulin secretion, vascular smooth muscle cells 
to increase tone, and endothelial cells to increase immune 
cell adhesion and permeability (276, 348, 350, 352–361). 
SPHK1-deficient mice display decreased circulating S1P 
levels and are variably reported to exhibit either decreased 
WAT inflammation, liver inflammation and steatosis, and 
improved glucose tolerance and insulin resistance or in-
creased -cell death and worsened glucose tolerance and 
insulin sensitivity (349, 356, 357, 359). While chemical inhi-
bition of SPHK1 has yielded similarly inconsistent results, 
SPHK1 overexpression from an integrated transgene or 
from viral vectors was uniformly reported to have benefi-
cial metabolic effects (346, 349, 353, 355, 362). In con-
trast, not only overexpression but also deletion of SPHK2 
results in increased circulating S1P levels and improved 
glucose tolerance and insulin resistance in mice (361, 363, 
364). Targeting S1P signaling rather than S1P production 
has provided more consistent results. To this end, either 
combined chemical modulation of S1PR1 and S1PR3–5, 
chemical inhibition of S1PR2, or deletion of S1PR2 results 
in augmented glucose homeostasis in different mouse 
models of obesity and diabetes (348, 350, 360, 365–370).

As in the case of other signaling mediators, more sophis-
ticated models and methods may be required to disentan-
gle acute and chronic effects of altered C1Ps and S1P 
production and signaling on different cells and tissues.

METABOLITES

Uric acid
Uric acid is a product of purine base degradation, a 

process that begins with the conversion of adenine and 
guanine nucleotides to hypoxanthine and xanthine, re-
spectively, and concludes with the conversion of hypoxan-
thine to xanthine to uric acid (371, 372). Uric acid is 
produced by adipose tissue, the liver, and skeletal muscle 
and excreted primarily by the kidneys and secondarily by 
the liver (372). It is also degraded by uricase, an enzyme 
that is present in mice and rats, but absent in humans, re-
sulting in overall higher circulating and tissue uric acid lev-
els in the latter (371, 372). The circulating uric acid levels 
increase with obesity, liver steatosis, type 2 diabetes, and 
kidney disease and may predict the development of the 
metabolic syndrome (373–389). Uric acid exerts anti-oxi-
dant effects in the extracellular environment where it can 
scavenge reactive oxygen and nitrogen species, including 
superoxide anions (O2

), peroxynitrite anions (ONOO), 
and NO, but pro-oxidant effects in the intracellular envi-
ronment where it can activate the NLRP3 inflammasome 
and NADPH oxidase (NOX) (379, 385, 390–395). NADPH 
oxidase activation by uric acid triggers its translocation to 
the mitochondria, induces mitochondrial oxidative stress, 
suppresses -oxidation, and promotes de novo lipogenesis 
(379, 393, 394). Uric acid directly increases adipocyte and 
hepatocyte inflammatory marker expression, hepatocyte 
lipid accumulation, and vascular smooth muscle cell prolif-
eration, and decreases hepatocyte and endothelial cell in-
sulin sensitivity as well as endothelial cell proliferation 
(376, 379, 385, 393, 395–402). Chemical inhibition of uri-
case in mice and rats results in elevated circulating uric 
acid levels, raised blood pressure, diminished WAT, liver 
skeletal muscle, and vessel insulin sensitivity, evident liver 
steatosis and inflammation, kidney dysfunction, as well as 
disturbed glucose tolerance and insulin sensitivity (394, 
395, 400, 401).

The final steps of purine base degradation, the conver-
sion of hypoxanthine to xanthine to uric acid, are carried 
out by the multifunctional enzyme, xanthine oxidoreduc-
tase (XOR), that occurs in two distinct forms, a dehydroge-
nase form (XDH) and an oxidase form (XO) (403, 404). 
XOR is produced as XDH and can be converted to XO ei-
ther reversibly by cysteine residue oxidation or irreversibly 
by limited proteolysis (403, 404). Secreted XDH undergoes 
rapid turnover to XO, which then binds to the surface of 
endothelial cells (403, 404). XOR can utilize a wide range 
of substrates (403, 404). While substrate oxidation by XDH 
consumes NAD+ to produce NADH, substrate oxidation by 
XO consumes oxygen (O2) to produce mainly hydrogen 
peroxide (H2O2) but also O2

 (403, 404). Depending on 
pH, O2 tension, and substrate availability, XDH can also 
utilize O2 as an electron acceptor and thus act as a source 
of reactive oxygen species (403, 404). Moreover, both 
XDH and XO can generate reactive nitrogen species by 
substrate or NADH oxidation with concomitant reduction 
of nitrate (NO3

) to nitrite (NO2
) to NO (403, 404). XOR 

is expressed in WAT, liver, and skeletal muscle, and its 
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production and activity in WAT and liver increase with 
obesity (382, 385, 405, 406). XOR partakes in the regula-
tion of adipogenesis, and mice with a homozygous loss of 
XOR display decreased fat mass and early lethality, al-
though comparable XOR deficiency in humans is nonle-
thal (405, 407, 408). Mice with a heterozygous loss of XOR 
display age-dependent body and WAT weight gain and 
WAT dysfunction with increased oxidative stress and in-
flammation, as well as glucose intolerance and insulin resis-
tance, all of which are exacerbated on a high-fat diet (409). 
Chemical inhibition of XO, in contrast, not only lowers the 
circulating uric acid levels, but also preserves WAT and 
liver function and augments glucose homeostasis in db/db 
mice as well as mice fed a high-fat diet (376, 379, 384). The 
outcome of manipulating XOR thus appears to depend on 
which aspects of XOR biology are targeted.

Uric acid production is tightly linked to fructose intake 
(371, 372). Following cellular uptake, fructose can un-
dergo unrestrained phosphorylation by ketohexokinase 
(KHK), which yields fructose-1-phosphate and consumes 
cellular ATP (371, 372). The accompanying depletion of 
cellular phosphate triggers an activation of AMP deami-
nase (AMPD), degradation of adenine nucleotides, XOR-
dependent production of uric acid, and uric acid-mediated 
inhibition of AMP-dependent protein kinase (AMPK) 
(371, 372). High-fructose feeding of mice and rats causes 
elevated circulating uric acid levels, cardiac, vascular, and 
kidney dysfunction with increased oxidative stress, inflam-
mation, and fibrosis, as well as disturbed glucose homeosta-
sis, all of which can be mitigated by chemical XO inhibition 
(383, 399, 410–414).

Taken together, this argues for mostly detrimental ef-
fects of elevated uric acid levels on systemic metabolism.

Uridine
Uridine is the nucleoside of the pyrimidine base, uracil, 

and provides the basis of substrates that are essential for 
RNA and DNA synthesis, glycogen deposition, and protein 
and lipid glycosylation (415). Its de novo synthesis usually 
begins with the formation of dihydroorotate from gluta-
mine, bicarbonate (HCO3

), ATP, and aspartate by the tri-
functional enzyme, carbamoyl-phosphate synthetase 2, 
aspartate transcarbamylase, and dihydroorotase (CAD2), 
followed by the conversion of dihydroorotate to orotate by 
dihydroorotate dehydrogenase (DHODH), of orotate to 
UMP by the bi-functional enzyme, UMP synthase (UMPS), 
and of UMP to uridine by 5′-nucleotidase (5NT) (415). Its 
degradation, in turn, is carried out by uridine phosphory-
lases (UPPs) (415). Uridine is produced by the liver and 
WAT and cleared by the liver (416–419). Both endogenous 
and exogenous uridine (introduced either orally or intra-
peritoneally) undergo continuous and rapid clearance by 
the liver, mostly through degradation by Kupffer cells and 
endothelial cells, but also through biliary excretion by he-
patocytes (416–419). The circulating uridine levels are 
tightly regulated, increase with obesity and upon fasting, 
exercise, and ingestion of ethanol, glucose, and fructose, 
and decrease with lipodystrophy and upon ingestion of 
amino acids (418–421). Strikingly, while the liver produces 

most of the circulating uridine in the fed state, adipose tis-
sue is doing so in the fasted state (418, 419). Not much is 
known about how uridine signals and no dedicated uridine 
receptor has been identified yet. Uridine may indeed exert 
most of its effects by being metabolized to either UDP, 
UDP-glucose, or UTP, which can signal through different 
G protein-coupled purinoreceptors (i.e., P2YR2, P2YR4, 
P2YR6, and P2YR14) or to UDP-hexosamines and UDP-N-
acetyl-hexosamines, which can alter the glycosylation and 
thus the activity of distinct proteins and lipids (422, 423).

Acute treatment of humans, rats, and mice with a high 
dose of uridine results in a transient decrease in body tem-
perature, while a low dose may cause a slight increase in-
stead (418, 424, 425). In extension, the fasting-associated 
decrease in body temperature was found to be critically 
dependent on uridine production by adipose tissue (418). 
In mice, uridine treatment also increases the circulating 
leptin level, decreases the metabolic rate, and improves 
glucose tolerance in aged and in high-fat diet-fed animals 
(418). Uridine’s effects on both body temperature and glu-
cose homeostasis apparently involve active leptin signaling, 
as uridine treatment of ob/ob mice evokes an exacerbated 
decrease in body temperature, but unexpectedly also wors-
ens glucose homeostasis (418).

Prolonged disturbances of uridine homeostasis in either 
direction appear to be mostly detrimental. As such, dietary 
supplementation of uridine in mice for several days to 
weeks promotes body weight gain, alters liver protein acety-
lation and glycosylation, stimulates liver glycogen and lipid 
accumulation, blunts liver insulin sensitivity, and disturbs 
glucose homeostasis (426–428). Intriguingly, lowering uri-
dine levels by chemical inhibition of DHODH or overex-
pression of UPP1 also induces liver lipid accumulation and 
blunts liver and systemic insulin sensitivity, but improves 
glucose tolerance (426, 427). Elevating uridine levels by 
UPP1 deletion, in turn, does not affect liver insulin sensitiv-
ity, but similarly blunts systemic insulin sensitivity, improves 
glucose tolerance, and may furthermore promote sponta-
neous tumorigenesis (427, 429).

The ER stress response, specifically the mRNA splicing-
dependent production of the short isoform of X-box bind-
ing protein 1 (XBP1s), plays a central role in uridine 
metabolism (430). In the fed state, XBP1s levels are high in 
hepatocytes and pro-opiomelanocortin neurons of the ar-
cuate nucleus and low in adipocytes, whereas the opposite 
can be observed in the fasted state (419, 431, 432). XBP1s 
upregulation in adipose tissue seems to be tied to active li-
polysis with higher XBP1s levels detectable not only upon 
fasting, but also with obesity and cancer-associated cachexia 
(419). XBP1s acts as a transcription factor that stimulates 
uridine de novo synthesis by inducing CAD2 as well as 
uridine conversion to UDP-hexosamines and UDP-N-acetyl-
hexosamines by inducing both glutamine/fructose-
6-phosphate aminotransferase 1 (GFPT1) and UDP-glucose 
4-epimerase (GALE) (419, 431–433). Highlighting its role 
in promoting uridine production, adipocyte-specific dele-
tion of XBP1s abolishes the fasting-induced increase in uri-
dine (419). Mice with adipocyte-specific overexpression 
of XBP1s display elevated circulating and adipose tissue 
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uridine levels, increased activity, energy expenditure, and 
body heat loss, decreased body weight and body tem-
perature, and protection from obesity upon high-fat feed-
ing or with leptin deficiency (419). Suggesting mostly 
favorable effects of XBP1s induction, hepatocyte- or pro-
opiomelanocortin neuron-specific XBP1s overexpression 
augments glucose homeostasis, and cardiac muscle cell-
specific XBP1s overexpression alleviates ischemia-reperfu-
sion damage in mice (431–433).

Much remains to be learned about how short- and long-
term disturbances of uridine homeostasis impact systemic 
metabolism and about whether manipulations of uridine 
metabolism may yield therapeutic benefits.

NONCODING RNAs

Long noncoding RNAs
Contrary to lasting assumptions, the majority of the 

genome is transcribed, at least under some conditions 
(434). Long noncoding RNAs (lncRNAs) originate from 
the transcription of intergenic and genic portions of the 
genome, both in the sense and antisense direction (434). 
They are, by definition, over 200 nucleotides long, not 
translated into proteins, and may regulate gene tran-
scription and nuclear domain organization as well as 
RNA and protein function (434). Most lncRNAs are local-
ized in the nucleus, lowly abundant, and poorly conserved 
(434). Only a small fraction (hundreds to thousands) of 
the predicted 20,000–100,000+ lncRNAs in humans may 
indeed have specific functions (434). lncRNAs are found 
in EVs, raising the possibility that EV-associated lncRNAs 
released from adipose tissue function as regulators of 
distant tissue function (435). Recent reviews provide an 
excellent overview of the role of lncRNAs in the regula-
tion of adipose tissue function and systemic metabolism 
(436–438).

MicroRNAs
MicroRNAs (miRNAs) either originate from introns or 

are transcribed from dedicated genes (439). They are re-
leased from pri- and pre-miR precursors by successive pro-
cessing involving the microprocessor complex in the 
nucleus as well as DICER in the cytoplasm (439). At the 
end of their processing, they are 20–24 nucleotides long 
and incorporated into the RNA-induced silencing complex 
(RISC). As a RISC component, they regulate mRNA trans-
lation and stability, usually resulting in a repression of 
protein expression (439). They are more conserved than 
lncRNAs and show a wide range of abundance (439). Strik-
ingly though, only less than 100 of the adipose tissue-
expressed miRNAs appear to be regulated by obesity in 
either humans or mice (439). Distinct populations of 
miRNAs are released from cells associated mostly with com-
ponents of the RISC, but also associated with lipoproteins 
and EVs (440–442). Adipose tissue is a major source of cir-
culating EV-associated miRNAs, and recent reviews offer 
much insight into how adipose tissue-derived miRNAs 
shape metabolic homeostasis (439).

EVs
EVs are an eminent means of intercellular communica-

tion (435, 443–445). They carry a large variety of cargo, 
including organelle parts, proteins, and lipids, as well as 
small coding and noncoding RNAs (e.g., mRNAs, lncRNAs, 
and miRNAs), delivering them from one cell to another. 
Cells secrete EVs in an orderly process that is controlled by 
intra- and intercellular signals, including nutrient-related 
cues (435, 443–445). Determined by their biogenesis, ecto-
somes (also called microvesicles) with a diameter of 50–
1,000 nm and exosomes with a diameter of 50–150 nm can 
be distinguished (435, 443–445). While ectosomes bud di-
rectly from the plasma membrane, exosomes are gener-
ated by inward budding of endosomal membranes to 
create multivesicular bodies (MVBs) containing intralumi-
nal vesicles (ILVs, i.e., unreleased exosomes) followed by 
either degeneration through fusion of the ILVs with the 
MVB membrane, degradation through fusion of the MVBs 
with lysosomes, or release through fusion of the MVBs with 
the plasma membrane (435, 443–445). Accordingly, ecto-
somes are released in an immediate fashion and exosomes 
in a delayed fashion (435, 443–445). EVs are capable of 
delivering their cargo to specific cells and tissues by bind-
ing to and rolling on target cell surfaces, which subsequently 
allows for receptor interaction and fusion by fusogenic in-
teractions, endocytosis, macropinocytosis, or phagocytosis 
(435, 443–445).

Obesity alters the cargo and increases the release of EVs 
from WAT, while cold exposure does so in BAT and brown-
ing WAT (446, 447). Establishing a role for adipose tissue-
derived EVs in the regulation of systemic metabolism, EVs 
collected from WAT of high-fat diet-fed mice elicit glucose 
intolerance and insulin resistance when injected into wild-
type mice and exacerbate atherosclerosis when injected in 
ApoE-deficient mice (447, 448). Highlighting the contri-
bution of macrophages to these effects, WAT macrophage 
EVs from high-fat diet-fed mice are sufficient to disrupt 
glucose homeostasis when injected into wild-type mice, 
whereas WAT macrophage EVs of regular diet-fed mice are 
capable of augmenting glucose homeostasis instead (449). 
WAT EVs of high-fat diet-fed mice may also induce mono-
cyte homing to adipose tissue and the liver, promote local 
monocyte proliferation and differentiation, and increase 
macrophage pro-inflammatory cytokine production (447, 
448, 450). Taken together, these observations allude to 
a vicious cycle of obesity-associated shifts in the adipose 
tissue EV secretion profile, immune cell infiltration, and 
inflammation.

EVs serve as a means of communication not only be-
tween adipose tissue and other organs but also between 
different cell populations within adipose tissue itself. Re-
garding this aspect of adipose tissue biology, we recently 
uncovered an extensive EV-mediated local exchange of cel-
lular components between adipocytes and endothelial cells 
that is governed by the nutritional state (451). In WAT of 
mice, the cellular origin and destination as well as the 
cargo of the transferred EVs changes upon fasting, feeding, 
and with obesity (451). Fasting, for instance, results in an 
increased EV-mediated transfer of cellular components 
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from WAT endothelial cells to adipocytes as well as an 
enrichment of WAT EVs in proteins involved in central 
cellular signaling pathways, mitochondrial respiration, 
oxidative stress defense, and hypoxia response and a deple-
tion of WAT EVs in proteins involved in lipid and amino 
acid metabolism (451). The highly dynamic character of 
this EV-mediated local exchange alludes to the possibility 
that it might primarily serve to rapidly and efficiently redis-
tribute cellular components between different cell popula-
tions within WAT, thus lending heightened metabolic 
flexibility to the tissue as a whole.

Altogether, EVs released from adipose tissue into circu-
lation may exert mostly beneficial effects on systemic me-
tabolism in the lean state but detrimental effects in the 
obese state. Related to this, much remains to be learned 
about exactly how adipose tissue communicates with other 
organs by means of EV exchange, the sending cells, and 
the receiving cells, as well as the nature of the transmitted 
message.

PERSPECTIVE

There is clearly a wide variety of signaling mediators and 
mechanisms that adipose tissue utilizes to communicate 
with other organs of the body. At the systemic level, we deal 
with adipose tissue as a whole, distributed throughout the 
body in the form of discrete depots.

The contribution of specific depots and cell populations 
within them to the overall production frequently remains 
to be defined for many adipose tissue-derived factors. Like-
wise, the manner in which physiological and pathophysio-
logical states, such as fasting, aging, and obesity, affect the 
production of certain factors by distinct depots and cell 
types awaits elucidation. Particularly with respect to fibrosis 
and inflammation, it has become clear that the effects ob-
served commonly involve a cross-talk of multiple different 
cell types with net output from all participating popula-
tions. A fundamental impediment to more refined studies 
of adipose tissue-emergent signals is the present dearth of 
methods to measure and manipulate the production of dis-
tinct signaling mediators by specific adipose tissue depots 
and cell populations in vivo.

There are several signaling molecules, such as leptin and 
FGF21, which exert mostly beneficial effects on systemic 
metabolism, yet also display elevated circulating levels in 
pathophysiological states tightly associated with metabolic 
disturbances. The mechanistic basis by which certain 
pathophysiological states alter the signaling capacity and 
character of distinct factors is of immense interest. Re-
duced responsiveness to the metabolically favorable ac-
tions of leptin and FGF21 in the obese state, for instance, 
evoked still controversial ideas of leptin and FGF21 resis-
tance that have been probed in numerous studies, alto-
gether providing no coherent model (130, 452). To reliably 
define the role that a specific signaling mediator plays in 
metabolic disease remains challenging. It requires careful 
modulation of the abundance and/or activity of the re-
spective factor and its receptor(s), while concomitantly 
monitoring systemic metabolism and cellular signaling. At 

the same time, focusing unduly on either individual cell 
types and tissues or isolated signaling pathways has to be 
avoided. More sophisticated in vivo models that enable 
these types of modifications are likely to make crucial con-
tributions to such efforts.

Above, we solely discussed signaling mediators that are 
actively produced by adipose tissue. Adipose tissue is, how-
ever, also capable of degrading signaling mediators that 
derive from or that are destined for other organs (Fig. 2). 
It thus partakes in inter-organ communication as a source 
as well as a sink of signals. Future endeavors should thus 
consider not only the anabolism but also the metabolism 
and catabolism of signals by adipose tissue when evaluat-
ing its contributions to systemic metabolic and cellular ho-
meostasis.
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