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A
critical factor that may limit the efficacy of current
injury-prevention strategies is the transferability of
neuromuscular-training–induced, injury-resistant

movement patterns (ie, coordinated biomechanics that
decrease the injury risk) from the intervention to sport.1–7

In addition, recent data indicated that deficits in sensori-
motor neural activity underlie the risk of anterior cruciate
ligament (ACL) injury,8,9 but current interventions neither
target this neural activity nor induce the neuroplasticity
required for the transfer of injury-resistant movement
patterns to sport.7,10

The failure of targeted injury-prevention strategies to
induce the transfer of adaptations from injury-prevention
training to sport likely contributes to the continued high
incidence of sensorimotor errors during sport that cause
noncontact ACL injuries.10–12 For this reason, augmented
neuromuscular training (aNMT) was designed to deliver
real-time, interactive, augmented-reality biofeedback driv-
en by select biomechanical variables that have been
identified as contributing to the injury risk.1,2,13–18

The aNMT-biofeedback variables are calculated in real
time and used to render a geometric shape (eg, a rectangle
for a squat exercise that athletes view through an
augmented-reality display, which provides a full view of,
and engagement with, the actual environment). The
feedback shape changes in real time according to the
biomechanical variables as the athlete performs an exercise.
The desired outcome for athletes is to move so that they
produce a perfectly symmetric stimulus shape (eg,
rectangle), which corresponds to a low risk of injury
biomechanics.18 Deviations of the biomechanical variables
from the desired injury-resistant movement pattern values
yield specific, systematic distortions of the feedback shape.
Given only basic instruction related to performing the
exercise, athletes must discover the movement pattern that
produces a stimulus shape as close to the goal shape as
possible.18 No explicit directions are provided to athletes on
their movements other than to achieve the goal shape, a
process that engages implicit motor-control mechanisms by

means of external perceptual control—a strategy known to
improve sensorimotor learning.18–24 Participants learn to
move with optimal, low-risk movement strategies implic-
itly or without being able to explicitly describe how they
are doing so; this is more likely to create effective and
transferable sensorimotor adaptations than the typical
clinical and coaching practice of providing explicit
feedback that directs the individual’s attention internally
(eg, to joint positions that hinder motor learning).7,25–31

Removing barriers to feedback interventions (eg, instruc-
tors in current protocols who may provide less effective or
uninterpretable feedback) through real-time automated
techniques that supply implicit, analytic-driven biofeedback
(eg, aNMT) could optimize current ACL injury-prevention
strategies by leveraging sensorimotor processes for im-
proved movement adaptations that transfer to the field of
play.7,18,32–34
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