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Parsing and Predicting Increased Noise in Visual Cortex
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The variability of spike trains recorded
from cortical neurons in response to iden-
tical stimuli is striking. Although cortical
response variability has been extensively
studied, particularly in primary visual
cortex (V1), the origin of this variability is
largely unknown. It is unlikely that corti-
cal response variability originates at the
cellular level, given that experiments at-
tempting to attribute variance to either
noisy integration of synaptic input or
noisy spike production find that these
processes do not account for a sufficient
amount of response variability (Softky
and Koch, 1993; Mainen and Sejnowski,
1995). Thus, the origin of response vari-
ability likely involves network interac-
tions. Although some evidence points
toward a thalamic contribution to re-
sponse variability (Sadagopan and Fer-
ster, 2012), it is generally accepted that the
spike count response of V1 neurons is more
variable than that of neurons in the lateral
geniculate nucleus (LGN) of the thalamus
(Goris et al., 2014). Consequently, it
seems likely that a large amount of cortical
response variability originates from cir-
cuits within the cortex (Tsodyks et al,
1999; Kenet et al., 2003). Understanding
response variability is an important step
toward deciphering and distinguishing
signal from noise in the cortex as well as
understanding the communication of
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information between cortical neurons
(Ecker and Tolias, 2014).

In a recent publication appearing in
The Journal of Neuroscience, Scholvinck et
al. (2015) describe results from experi-
ments aimed at identifying the origin of
response variability in cat visual cortex.
The authors describe three primary rea-
sons as to why the field has had difficulty
reaching a consensus about the origins of
cortical variability. First, although the
LGN is consistently reported to be less
variable than V1, the amount of variabil-
ity reported in V1 is not consistent in the
literature (Kara et al., 2000; Carandini,
2004; Goris et al., 2014; Schélvinck et al.,
2015). Second, the level of variability across
neurons in VI has rarely been analyzed
among large populations of neurons (Goard
and Dan, 2009); instead, the majority of
studies have focused on single-unit variabil-
ity or shared variability between pairs of
V1 cells (Carandini, 2004; Cohen and
Kohn, 2011). Examining patterns of vari-
ability, for example, by comparing vari-
ability between locations with similar
orientation preference, should help to
place constraints on the nature of the cir-
cuit interactions. Third, and particularly
important, the effect of cortical state on
shared variability is uncertain. For in-
stance, when the cortical network is in a
synchronized state, as occurs with sleep,
periods of low arousal, and anesthesia, cor-
tical neurons are more highly correlated
than when the cortical network is in a desyn-
chronized state, which is typical during alert
sensory processing (Steriade, 2003; Goard
and Dan, 2009). Although it is generally ac-
cepted that neuronal correlations change as

the cortex transitions between synchronized
and desynchronized states (Steriade, 2006),
the extent to which cortical-state-dependent
correlations contribute to cortical response
variability is unclear. To this end, Scholvinck
and colleagues (2015) developed a global
noise model to investigate the relation-
ship between shared variability and cor-
tical state.

To provide a foundation for their later
experiments, Scholvinck et al. (2015) be-
gan by comparing LGN spike count vari-
ability to V1 spike count variability using
the same stimuli recorded with single
electrodes. This was necessary to over-
come obstacles associated with making
quantitative comparisons between results
previously reported in studies that used
different stimuli to drive activity. For the
remainder of Scholvinck et al.’s (2015)
study, multiple repeats of sequences of
flashed stationary gratings that varied in
stimulus orientation and spatial phase
were presented to anesthetized cats while
recording neuronal responses with multi-
electrode arrays. Importantly, the stimu-
lus sequences presented while recording
from the LGN and V1 were identical with
the exception that frame duration was ad-
justed for the lower preferred temporal
frequencies of V1 neurons (Movshon et
al., 1978; Alitto and Usrey, 2004).

To quantify the difference in response
variability between the LGN and V1, the
variability index (VIn) was computed for
each neuron: the ratio of variance to mean
spike count, or Fano factor. Consistent
with previous results (Carandini, 2004;
Sadagopan and Ferster, 2012; Goris et al.,
2014), Schélvinck et al. (2015) deter-
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mined that spike count variability in V1
was on average greater than in the LGN
(V1 =2.7*03,LGN = 1.0 = 0.1).

Next, Scholvinck et al. (2015) quanti-
fied the variability shared across V1 neu-
rons using a model supplied with cortical
responses recorded with a multielectrode
array. With this model, called the global
noise model (GNM), the authors pre-
dicted the responses of each V1 neuron by
combining the noise of the surrounding
cortex with the average response for that
neuron. Noise was calculated for each lo-
cation and trial by subtracting the actual
response from the average trial response
at that location. The average of noise
terms across all surrounding locations
was considered the noise of the surround-
ing cortex for that particular location. Re-
sults of this effort revealed that knowledge
of the trial-to-trial response variability of
large numbers of neighboring cortical
neurons significantly improved the ability
to predict cortical responses. In particu-
lar, the GNM accounted for a statistically
greater amount of the response variability
compared with predictions made using
the average response alone for both
single-unit activity (~50-70%) and mul-
tiunit activity (~80-95%).

Schélvinck et al. (2015) suggest the in-
creased predictability of multiunit activity
is a natural consequence of single-unit ac-
tivity summation. That is, when summing
the activity of multiple units, the shared
noise will sum together constructively
whereas private noise (i.e., that which is not
shared among neurons) will likely sum de-
structively to zero. The nature of the GNM is
to make a prediction of the noise at a single
neuron (or electrode, in the case of mul-
tiunit activity) based on the noise of the
neurons (or electrodes) surrounding it.
Augmented shared noise present in
multiunit activity enables the GNM to
make a more effective inference as to the
noise that is present at the electrode in
question.

Scholvinck et al. (2015) also found that
response variability tended to be higher in
sessions where recent ongoing activity was
characterized by large fluctuations. The
existence of global fluctuations was quan-
tified as the standard deviation divided by
the mean of the ongoing activity collected
during presentations of a gray screen be-
tween stimulus sequences [global fluctua-
tion index (GFIn)]. The stimulus-driven
VIn was positively correlated with GFIn
(r = 0.71), indicating that variability during
ongoing activity and variability during
stimulus-driven activity may have a com-
mon source.

In a separate study, Ecker et al. (2014)
described global fluctuations in V1 vari-
ability in the anesthetized macaque mon-
key across similar timescales as those in
Scholvinck et al. (2015). Ecker and col-
leagues (2014) parameterized spike count
variability in their study with the Gaussian
process factor analysis (GFPA) model (Yu
et al., 2009). Unlike the GNM, where a
new prediction is made for each time
point independent of past predictions, the
predictions in the GPFA model are teth-
ered to past predictions. The GPFA re-
quires the variable representing the
network state covariance to change
smoothly through time, constrained by a
Gaussian, the standard deviation of which
is a free parameter fit to the data, centered
at At = 0. Scholvinck et al. (2015) found
the timescale of global fluctuations pres-
ent in single-trial data to approximately
match the timescale of the median time
constant for network state dynamics in
anesthetized V1 (mean = 207 ms) from
Ecker et al. (2014). Ecker et al. (2014) re-
ported that the GFPA model was not as
effective in awake, fixating macaque,
where network state fluctuations are rela-
tively small and rapid. However, the un-
constrained GNM would likely do very
well with data from alert animals because
global noise is calculated for each time
point independently from another, allow-
ing for accurate predictions during rapid
changes in cortical state.

The GNM suggests that alarge amount
of cortical variability can be accounted for
by non-stimulus-driven fluctuations in
cortical activity that are shared across
large populations of cortical neurons. Pre-
vious work has established a relationship
between neuronal variability and cortical
network state (for review, see Scholvinck et
al,,2015). Schélvinck et al., 2015 provide ev-
idence that the higher pairwise correlations
in V1 arise from global fluctuations present
in synchronized cortex. Pairwise corre-
lations were consistently higher in syn-
chronized cortex (defined as GFI > 0.6)
compared with desynchronized cortex
(GFI < 0.6) across the spontaneous correla-
tions, stimulus-driven correlations, and
noise correlations. Importantly, single-trial
spontaneous activity, stimulus-driven activ-
ity, and noise isolated from synchronized
cortex were all characterized by global fluc-
tuations, whereas global fluctuations were
absent in desynchronized cortex.

Interestingly, Schélvinck et al., 2015
did not find a pattern of increased pair-
wise correlations among cells with shared
orientation preference during fluctua-
tions in global activity. Data from Tsodyks
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et al. (1999) suggested that correlations
may be higher among neurons of similar
orientation preference in both ongoing
and stimulus-driven activity. Addition-
ally, an equation proposed by Harris and
Thiele (2011) predicts some positive cor-
relations between neurons but does not
specify correlation amplitudes between
individual neurons or determine whether
correlation amplitude depends on orien-
tation preference. Scholvinck et al., 2015,
however, identified cortical state, not
orientation preference, as the major de-
terminate of cross-correlation strength. In
short, increased pairwise correlations in
more synchronized states are largely due
to global activity fluctuations.

To strengthen this notion, Scholvinck
etal. (2015) investigated the contribution
of local noise to variability. The GNM
suggests that local noise, defined as the
difference between the real response and
the GNM prediction, makes a much
smaller contribution to cortical variability
than shared global noise. Because pairwise
correlations in local noise are equivalent
between synchronized and desynchronized
states, the differences seen in spontaneous,
stimulus-driven, and noise pairwise correla-
tions as the network state shifts toward a
synchronized state are likely due to global
activity. In other words, global noise is
found to increase as the cortex shifts toward
a synchronized state, whereas local noise re-
mains constant.

In summary, Schélvinck et al., 2015
connected three fairly discrete aspects of
the shared cortical variability and noise-
correlation literature. Namely, they pro-
vided a concise comparative examination
of spike-count variability between the
LGN and V1 and attribute depth of anes-
thesia as a potential muddling factor in
the literature. They then created a predic-
tive model that used shared noise among
large populations of cortical neurons to
explain the majority of variance observed
in single-unit and multiunit activity. In so
doing, they tied global fluctuations to
stimulus-driven as well as spontaneous
activity. And finally, they showed that cor-
relation strength in anesthetized animals
is influenced by relative cortical state.
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