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Of the two members of the � subfamily of ionotropic glutamate receptors, GluD2 is exclusively expressed at parallel fiber–Purkinje cell
(PF–PC) synapses in the cerebellum and regulates their structural and functional connectivity. However, little is known to date regarding
cellular and synaptic expression of GluD1 and its role in synaptic circuit formation. In the present study, we investigated this issue by
producing specific and sensitive histochemical probes for GluD1 and analyzing cerebellar synaptic circuits in GluD1-knock-out mice.
GluD1 was widely expressed in the adult mouse brain, with high levels in higher brain regions, including the cerebral cortex, striatum,
limbic regions (hippocampus, nucleus accumbens, lateral septum, bed nucleus stria terminalis, lateral habenula, and central nucleus of
the amygdala), and cerebellar cortex. In the cerebellar cortex, GluD1 mRNA was expressed at the highest level in molecular layer
interneurons and its immunoreactivity was concentrated at PF synapses on interneuron somata. In GluD1-knock-out mice, the density of
PF synapses on interneuron somata was significantly reduced and the size and number of interneurons were significantly diminished.
Therefore, GluD1 is common to GluD2 in expression at PF synapses, but distinct from GluD2 in neuronal expression in the cerebellar
cortex; that is, GluD1 in interneurons and GluD2 in PCs. Furthermore, GluD1 regulates the connectivity of PF–interneuron synapses and
promotes the differentiation and/or survival of molecular layer interneurons. These results suggest that GluD1 works in concert with
GluD2 for the construction of cerebellar synaptic wiring through distinct neuronal and synaptic expressions and also their shared
synapse-connecting function.
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Introduction
The � subfamily of ionotropic glutamate receptors shares 17–
28% amino acid identity with other subfamilies and consists of
GluD1 (GluR�1) and GluD2 (GluR�2) (Yamazaki et al., 1992;
Lomeli et al., 1993). Despite well conserved membrane topology
and amino acid residues critical to ligand binding and Ca 2� per-
meability, the � subfamily do not function as conventional
glutamate-gated ion channels (Hirai et al., 2005; Kakegawa et al.,
2007a, 2007b; Ady et al., 2014). Essential roles of GluD2 in syn-

aptic development and plasticity have been established through
intensive analyses on GluD2-defective mice (Yuzaki, 2009; Wa-
tanabe and Kano, 2011).

GluD2 is expressed exclusively at parallel fiber (PF) synapses
on cerebellar Purkinje cells (PCs) (Takayama et al., 1996; Land-
send et al., 1997) and weakly in PF synapses on interneuron den-
drites (Yamasaki et al., 2011). GluD2 plays a key role in the
formation and maintenance of PF–PC synapses (Guastavino et
al., 1990; Kashiwabuchi et al., 1995; Kurihara et al., 1997; Lalou-
ette et al., 2001; Takeuchi et al., 2005); this is mediated through
selective binding of the N-terminal domain of GluD2 with
presynaptic neurexins via granule cell-derived Cbln1 (Mat-
suda et al., 2010; Uemura et al., 2010). GluD2 is also essential
for induction of cerebellar long-term depression at PF–PC
synapses (Kashiwabuchi et al., 1995), through interaction of
the C-terminus with megakaryocyte protein tyrosine phos-
phatase (Kohda et al., 2013), and through binding of D-serine
to the ligand-binding site (Hirai et al., 2003; Kakegawa et al.,
2011; Kohda et al., 2013). Mutation of the GluD2 gene in mice
and humans (Grid2 and GRID2, respectively) causes cerebellar
ataxia (Kashiwabuchi et al., 1995; Hills et al., 2013; Utine et al.,
2013).
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In comparison, GluD1 is transcribed weakly in various brain
regions (Lomeli et al., 1993). The functional significance of
GluD1 is inferred from human genetic studies reporting that the
GRID1 is a strong candidate gene for schizophrenia, bipolar dis-
order, major depressive disorder, and autism spectrum disorder
(Fallin et al., 2005; Guo et al., 2007; Glessner et al., 2009; Smith et
al., 2009; Treutlein et al., 2009; Cooper et al., 2011; Greenwood et
al., 2011; Edwards et al., 2012 Griswold et al., 2012). GluD1-
knock-out (KO) mice also exhibit deficits in emotional and social
behaviors and in learning and memory (Yadav et al., 2012,
2013). Like GluD2, GluD1 binds to neurexins via the Cbln
family and their interaction induces synaptogenesis in vitro
(Matsuda et al., 2010, Yasumura et al., 2012; Ryu et al., 2012).
These findings suggest that GluD1 is involved in higher brain
functions through controlling synaptic connectivity and plas-
ticity. However, fundamental information on cellular and syn-
aptic expression of GluD1 and its functional role, which is
essential to link the genetic level to the behavioral and disorder
level, is missing to date.

In the present study, we report that GluD1 is widespread in
adult mouse brains, with abundant expression in the cerebral
cortex, striatum, limbic regions, and cerebellar cortex. In the cer-
ebellar cortex, GluD1 is enriched at PF synapses on molecular
layer interneurons and GluD1-KO mice manifested significant
losses of interneurons and PF–interneuron synapses.

Materials and Methods
Animals. In the present study, we used adult C57BL/6 mice, GluD1-KO
mice (Gao et al., 2007), and GluD2-KO mice (Yamasaki et al., 2011) at
2–3 months of age. In each experiment, we used three male mice for
qualitative and quantitative analyses. All experiments were performed
according to the guidelines laid down by the animal welfare committees
of Hokkaido University, Keio University, and Niigata University.

Antibodies. Primary antibodies raised against the following molecules
were used: microtubule-associated protein 2 (MAP2), vesicular gluta-
mate transporter (VGluT) 1, VGluT2, parvalbumin, and bassoon. In the
present study, we produced GluD1 and GluD2 antibodies. For expres-
sion of glutathione S-transferase fusion proteins, we subcloned cDNA
fragments encoding the corresponding C-terminal regions of mouse
GluD1 (895–932 aa residues) and GluD2 (897–934 aa residues) into the
BamHI/EcoRI site of pGEX4T-2 plasmid (GE Healthcare). Immuniza-
tion and affinity purification were performed as described previously
(Watanabe et al., 1998). Information on the antigen, host species, source,
reference, and specificity is summarized in Table 1.

Immunoblot. To confirm the specificity of GluD1 and GluD2 antibod-
ies, human embryonic kidney 293 (HEK293) cells (CRL-1573; American
Type Culture Collection) were transfected with 10 �g of pCAGGS vector
(provided by Dr. J. Miyazaki, Tohoku University, Sendai, Japan) carrying
human influenza hemagglutinin (HA)-tagged GluD1 or GluD2 cDNA

using the calcium phosphate method. HA cDNA was added immediately
downstream of the signal sequence of GluD1 or GluD2. HEK293 cells
36 – 48 h after transfection or mouse brain regions were solubilized in
TNE buffer (50 mM NaF, 1% NP-40, 20 mM EDTA, 1 �M pepstatin A, 2
�g/ml leupeptin, 10 �g/ml aprotinin, and 50 mM Tris-HCl, pH 8.0) with
0.1% SDS. The soluble fractions were analyzed by immunoblotting with
1 �g/ml of GluD1 and GluD2 antibodies or with HA antibody (mouse,
1:1000; Covance Research Products).

The cerebellum, hippocampus, and cerebral cortex were excised and
homogenized in homogenate buffer (0.32 M sucrose, 5 mM EDTA, 5 mM

HEPES-NaOH, pH 7.4, complete protease inhibitor mixture tablet;
Roche) and centrifuged at 1000 � g for 10 min to obtain the S1 (homog-
enate) fraction. Synaptosome and postsynaptic density (PSD) fractions
were prepared according to the method used by Carlin et al. (1980).
Protein samples of each fraction were subjected to SDS-PAGE for immu-
noblotting as described previously (Abe et al., 2004). Signal intensities of
immunoreacted bands were determined using an Ez-Capture MG
(ATTO) and their statistical differences were evaluated using a Student’s
unpaired t test with Welch’s correction.

Immunocytochemistry. In immunocytochemical experiments, trans-
fected HEK293 cells were fixed with 4% paraformaldehyde for 10 min at
room temperature and incubated with a blocking solution (2% goat
serum, 2% BSA, and 0.4% Triton X-100 in PBS) for 1 h. Cells were then
incubated with mouse HA antibody (1:1000) and with GluD1 or GluD2
antibody (1 �g /ml) for 1 h. To visualize the bound primary antibody, the
cells were incubated with Alexa Fluor 546- or Alexa Fluor 488-
conjugated secondary antibodies (1:2000) to mouse, guinea pig, or rabbit
IgG (Invitrogen).

Fixation and sections. Under deep pentobarbital anesthesia (100 mg/kg
body weight, i.p.), mice were fixed by transcardial perfusion with 4%
paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB; pH 7.2) for
immunofluorescence (except for GluD1) and chromogenic in situ hy-
bridization; 2% PFA/2% glutaraldehyde in 0.1 M sodium cacodylate buf-
fer, pH 7.2, for conventional electron microscopy; and 1% PFA/0.1%
glutaraldehyde in 0.1 M PB for postembedding immunogold electron
microscopy.

For immunofluorescence, except for GluD1 and GluD2, 50-�m-thick
sections were prepared on a microslicer (VT1000S; Leica Microsystems)
and subjected to free-floating incubation. Perfused brains for chromo-
genic in situ hybridization were further postfixed for 3 d at room tem-
perature, according to the method of Hioki et al. (2010), and
cryoprotected with 30% sucrose in 0.1 M PB; 30 �m cryosections were
then prepared on a cryostat (CM1900; Leica Microsystems). For fluores-
cence in situ hybridization (FISH) and immunofluorescence for GluD1,
brains were freshly obtained under deep pentobarbital anesthesia and
immediately frozen in powdered dry ice for preparation of fresh frozen
sections (20 �m). Before incubation for FISH and immunohistochemis-
try, fresh frozen sections were air-dried and fixed by dipping in 4% PFA
in 0.1 M PB for 15 min. For GluD2 immunofluorescence, paraffin sec-
tions (4 �m; SM1000R; Leica Microsystems) mounted on silane-coated
glass slides were subjected, before immunohistochemical reaction, to
pepsin pretreatment for antigen exposure, as descrebed previously (Wa-
tanabe et al., 1998).

For conventional electron microscopy, the straight portion of lobule
4/5 was excised, postfixed with 1% osmium tetroxide for 15 min, stained
in block with 2% uranyl acetate for 30 min, dehydrated, and embedded in
Epon812. For postembedding immunogold electron microscopy, micro-
slicer sections (400 �m) were cryoprotected with 30% glycerol in PB and
frozen rapidly with liquid propane in the EM CPC unit (Leica Microsys-
tems). Frozen sections were immersed in 0.5% uranyl acetate in metha-
nol at �90°C in the AFS freeze-substitution unit (Leica Microsystems),
infiltrated at �45°C with Lowicryl HM-20 resin (Chemische Werke
Lowi), and polymerized with ultraviolet light. Ultrathin sections were
made using an Ultracut ultramicrotome (Leica Microsystems).

In situ hybridization. Mouse cDNA fragments of GluD1 (nucleotides
63–3092 bp; GenBank accession number, NM_008166), VGluT1 (301–
1680, BC054462), and 67 kDa glutamic acid decarboxylase (GAD67;
1035–2015; NM_008077) were subcloned into the pBluescript II plasmid
vector. Digoxigenin (DIG)- or fluorescein-labeled cRNA probes were

Table 1. Primary antibodies used in the present study

Molecule Sequence (NCBI #) Host Specificity Reference/source

Bassoon Rat bassoon Ms Enzo Life Sciences (SAP7F407)
GluD1 895–932aa (NM_008166) Rb, GP KO Present study
GluD2 897–934aa (NM_008167) GP KO Present study
MAP2 927–1104 (NM008632) Go * Miura et al. (2006)

HA HA.11 epitope Ms
Covance Research Products

(clone 16B2)
Parvalbumin 1–110aa (NM_013645) GP IB Nakamura et al., 2004
VGluT1 531–560aa (BC054462) Rb, GP IB Miyazaki et al., 2003
VGluT2 559 –582aa (BC038375) GP IB Miyazaki et al., 2003

Go, Goat polyclonal antibody; GP, guinea pig polyclonal antibody; IB, immunoblot with brain homogenates; KO, lack
of immunohistochemical or immunoblot labeling in knockout mice; Ms, mouse monoclonal antibody; Rb, rabbit
polyclonal antibody.

*The specificity of the MAP2 antibody is supported by selective labeling of somatodendritic neuronal elements (see
the reference).
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transcribed in vitro for chromogenic and FISH
(Yamasaki et al., 2010). Fragmentation of ribo-
probes by alkaline digestion was omitted to in-
crease the sensitivity and specificity. For
immunohistochemical detection of DIG and
fluorescein, sections were blocked with DIG
blocking solution [TNT buffer containing 1%
blocking reagent (Roche Diagnostics) and 4%
normal sheep serum] for 30 min and 0.5% TSA
blocking reagent (PerkinElmer) in TNT buffer
for 30 min. Sections were then incubated
with either alkaline-phosphatase-conjugated
sheep anti-DIG (1:500, 1.5 h; Roche Diagnos-
tics) for chromogenic detection or peroxidase-
conjugated anti-DIG (1:1000, 1 h; Roche
Diagnostics) or anti-fluorescein antibody (1:
1500, 1 h; Invitrogen) for fluorogenic detec-
tion. After two washes in TNT buffer for 15
min each, chromogenic detection was per-
formed using nitro-blue tetrazolium and
5-bromo-4-chloro-3�-indolyphosphate (1:50;
Roche Diagnostics) in detection buffer (0.1 M

Tris-HCl, pH 9.5, 0.1 M NaCl, and 50 mM

MgCl2) for 12 h. For double FISH, the first
detection was performed with peroxidase-
conjugated anti-fluorescein antibody, followed
by incubation with the FITC-TSA Plus amplifica-
tion kit (PerkinElmer). After inactivation of re-
sidual peroxidase activity by dipping sections
in 1% H2O2 for 30 min, the second detection
was performed by incubating sections in
DIG-labeled cRNA probe, followed by
peroxidase-conjugated anti-DIG antibody and
the Cy3-TSA plus amplification kit (Perkin-
Elmer). Sections were counterstained with
TOTO-3 (1:50 in PBS, 20 min; Invitrogen).
Images of chromogenic in situ hybridization
were taken with a light microscope (BZ-9000;
Keyence) and PlanApo (4�/0.20 and 10�/
0.45) objective lenses (Nikon), and images of
FISH were captured using confocal laser-
scanning microscope as described in the sec-
tion called Immunofluorescence.

Expression levels of GluD1 mRNA were
semiquantitatively evaluated from FISH im-
ages taken using the gain level settings. The
separate color components were converted to
grayscale and the gray level (arbitrary units)
and area were measured using MetaMorph
software (Molecular Devices) from individual
somata of GAD67 mRNA-positive neurons or
from regions containing multiple GAD67
mRNA-negative/TOTO-3-labeled neurons (i.e.,
pyramidal cells in the hippocampus and gran-
ule cells in the cerebellum). In the latter, the
gray level of a given region was divided by the
number of TOTO-3-labeled neurons to calcu-
late the mean relative intensity in each neuron
type.

Immunofluorescence. All immunohisto-
chemical incubations were performed at room
temperature. Sections were incubated with
10% normal donkey serum for 20 min, a mix-
ture of primary antibodies overnight (1:1000
dilution for bassoon and 1 �g/ml for others),
and a mixture of Alexa Fluor 488-, Cy3-, or
Alexa Fluor 647-labeled species-specific sec-
ondary antibodies for 2 h at a dilution of 1:200
(Invitrogen; Jackson ImmunoResearch). Im-

Figure 1. In situ hybridization for GluD1 mRNA in the adult mouse brain. A, B, H, Chromogenic in situ hybridization for GluD1 in
the whole brain (A), hippocampus (B), and cerebellum (H ). Hybridization with a sense probe yielded no significant signal (A, inset).
C, D, K, Fluorescent in situ hybridization for GluD1 (red) and VGluT1 (green) mRNAs in the hippocampus (C, D) and cerebellar cortex
(K ). Arrowheads and double arrowheads in K indicate molecular layer interneurons or Golgi cells, respectively. E, F, I, J, FISH for
GluD1 (red) and GAD67 (green) mRNAs in the hippocampus (E, F ) and cerebellar cortex (I, J ). Arrows in F indicate interneurons that
express GAD67 mRNA. Arrowheads and double arrowheads in I and J indicate molecular layer interneurons or Golgi cells, respec-
tively. Asterisks indicate PC somata. G, L, Histograms showing the mean relative fluorescence intensity of GluD1 mRNA in hip-
pocampal (G) and cerebellar (L) neurons. The intensity in each neuron type was normalized to the intensity in CA1 pyramidal cells
in the hippocampus (n � 133 for CA1 pyramidal cells, n � 43 for CA2 pyramidal cells, n � 48 for CA3 pyramidal cells; n � 65 for
dentate gyrus granule cells, and n � 53 for hippocampal interneurons) and to the intensity in molecular layer interneurons in the
cerebellum (n � 53 for molecular layer interneurons, n � 49 for Golgi cells, n � 57 for PCs, and n � 243 for granule cells). CA1–3,
CA1–3 regions of the Ammon’s horn; Cb, cerebellum; Cx, cortex; DG, dentate gyrus; GL, granular layer; Go, Golgi cell; Gr, granule cell
or granule cell layer; Hi, hippocampus; LM, stratum lacunosum-moleculare; Mb, midbrain; ML, molecular layer; MO, medulla
oblongata; Mo, molecular layer; OB, olfactory bulb; Or, stratum oriens; PCL, Purkinje cell layer; Py, pyramidal cell layer; Ra, stratum
radiatum; St, striatum; Th, thalamus. Scale bars: A, 1 mm; B, C, E, H, 500 �m; D, F, I, J, K, 20 �m.
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ages were taken with a confocal laser-scanning microscope (FV1000;
Olympus) equipped with a HeNe/Ar laser and PlanApo (10�/0.40), Pla-
nApo (20�/0.70), and PlanApoN (60�/1.42, oil-immersion) objective
lenses (Olympus). To avoid cross talk between multiple fluorophores,
Alexa Fluor 488, Cy3, and Alexa Fluor 647 fluorescent signals were ac-
quired sequentially using the 488 nm, 543 nm, and 633 nm excitation
laser lines, respectively. All images show single optical sections (640 �
640 pixels).

To compare the density of molecular layer interneurons quantita-
tively, the number of parvalbumin-positive cells and the examined area
were measured using MetaMorph software (Molecular Devices). Statis-
tical significance was evaluated by a nonparametric Kruskal–Wallis test
and a post hoc Mann–Whitney U test with Bonferroni correction. Immu-
nofluorescence intensity of GluD1 and GluD2 in the molecular layer was
calculated by measuring the gray level and the area using images taken
from lobules 4/5 at the same gain level. Statistical significance was eval-
uated by Mann–Whitney U test.

Electron microscopy. In conventional electron microscopy, ultrathin
sections were stained with 2% uranyl acetate for 5 min and Reynold’s lead
citrate solution for 2 min. Sampling fields were randomly chosen from
the molecular layer and electron micrographs were taken at an original
magnification of 3000� using an H-7100 electron microscope (Hitachi).
To compare the mean number of PF synapses on interneuron somata
(PF–InS) per 1 �m of somatic membrane quantitatively, somatic mem-
brane of interneuron was measured using MetaMorph software (Molec-
ular Devices). Statistical significance was evaluated by Kruskal–Wallis
test and post hoc Mann–Whitney U test with Bonferroni correction.

For postembedding immunogold electron microscopy, ultrathin sec-
tions on nickel grids were treated with successive solutions, as follows: 50
mM glycine in incubation solution [0.01% Triton X-100 in Tris-buffered

saline, pH 7.4 (TTBS)] for 10 min, blocking
solution containing 2% normal goat serum
(Nichirei) in TTBS for 10 min, GluD1 or
GluD2 antibody (20 �g/ml for each) diluted in
2% normal goat serum in TTBS overnight, and
colloidal gold-conjugated (10 nm) anti-guinea
pig IgG (1:100; British BioCell International)
in blocking solution for 2 h. For double label-
ing against VGluT2 and GluD1 or GluD2, sec-
tions were incubated in blocking solution
containing 2% normal goat serum, followed by
VGluT2 antibody (20 �g/ml) diluted in 2%
normal goat serum in TTBS overnight and
then colloidal gold-conjugated (15 nm) anti-
rabbit IgG in blocking solution for 2 h. After
extensive washing in distilled water, sections
were incubated in blocking solution contain-
ing 2% rabbit serum (Nichirei) in TTBS for 10
min, GluD1 or GluD2 antibody diluted with
2% normal rabbit serum in TTBS overnight,
and colloidal gold-conjugated (10 nm) anti-
guinea pig IgG in blocking solution for 2 h.
After extensive washing in distilled water, sec-
tions were fixed with 2% OsO4 for 15 min and
then stained with 5% uranyl acetate/40%
EtOH for 90 s and Reynold’s lead citrate solu-
tion for 60 s. Photographs were taken from the
molecular layer with the H-7100 electron
microscope. For quantitative analysis,
postsynaptic-membrane-associated immu-
nogold particles, defined as those �20 nm
apart from the cell membrane, were counted
on scanned electron micrographs and ana-
lyzed using MetaMorph software. Statistical
significance was evaluated using the Mann–
Whitney U test. The vertical distribution of
GluD1 was examined by sampling synaptic
profiles with presynaptic and postsynaptic
membranes that were cut perpendicularly to
the plane of the synaptic cleft and measuring

the distance from the midline of the synaptic cleft to the center of the
immunogold particles.

Results
GluD1mRNA expression in the brain
We first examined regional and cellular expression of GluD1
mRNA in the adult mouse brain using in situ hybridization (Fig.
1). Use of a long antisense riboprobe and a long fixation protocol
greatly enhanced the intensity of specific signals for GluD1
mRNA. Chromogenic in situ hybridization revealed higher levels
in the olfactory bulb, hippocampus, cerebral cortex, striatum,
and cerebellar cortex (Fig. 1A). In the hippocampus, GluD1
mRNA was intense in the pyramidal cell layer of the Ammon’s
horn, especially the CA2 subregion, and in the granule cell layer
of the dentate gyrus (Fig. 1B). In the cerebellar cortex, cells ex-
pressing GluD1 mRNA were scattered in the molecular and gran-
ular layers (Fig. 1H). Specificity was ascertained by the lack of
hybridizing signals using a sense riboprobe (Fig. 1A, inset).

Neurochemical properties of GluD1 mRNA-expressing neu-
rons were examined in the hippocampus and cerebellar cortex by
double-labeling FISH. In the hippocampus, GluD1 mRNA (Fig.
1C–F, red) was detected in pyramidal and granule cells expressing
VGluT1 mRNA (Fig. 1C,D, green), and in GABAergic interneu-
rons expressing GAD67 mRNA (Fig. 1E,F, green, arrows). The
mean fluorescence intensity for GluD1 mRNA was calculated for
each type of neuron and normalized to that in CA1 pyramidal
cells (see Materials and Methods). The mean relative intensity

Figure 2. Specificity of GluD1 and GluD2 antibodies. A, Immunoblot using HEK293 cell lysates untransfected (None) or trans-
fected with either human influenza HA-tagged GluD1 (HA-GluD1) or GluD2 (HA-GluD2). We used anti-HA, rabbit anti-GluD1,
guinea pig anti-GluD1, and guinea pig anti-GluD2 antibodies. B, Immunocytochemistry for HEK293 cells transfected with either
HA-tagged GluD1 (top) or GluD2 (bottom). C, Immunoblot for homogenates prepared from the hippocampus, cerebrum and
cerebellum of wild-type (WT) and GluD1-KO (1KO) or GluD2-KO (2KO) mice. Ten micrograms of proteins were loaded for each lane
for GluD1 (Rb) immunoblot and 2 �g for others.
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was highest in CA2 pyramidal cells and
lowest in hippocampal interneurons (Fig.
1G). In the cerebellar cortex, GluD1
mRNA (Fig. 1I–K, red) was detected
in GABAergic interneurons expressing
GAD67 mRNA (Fig. 1 I, J, green), includ-
ing basket and stellate cells in the molec-
ular layer and Golgi cells in the granular
layer (Fig. 1 I, J ). Signals for GluD1
mRNA were very low in PCs (Fig. 1J,
asterisks), and undetectable in granule
cells expressing VGluT1 mRNA (Fig.
1K ). The intensity of fluorescent signals
was measured and normalized to that in
molecular layer interneurons. The mean
relative intensity varied greatly from the
highest level in molecular layer in-
terneurons to the lowest or background
level in granule cells (Fig. 1L). There-
fore, GluD1 is widely expressed in the
adult mouse brain, but its transcription
levels are variable according to neuron
type.

Production of specific GluD antibodies
In the present study, we produced GluD1
and GluD2 antibodies against the corre-
sponding C-terminal regions with low se-
quence homology. Immunoblotting
experiments showed that rabbit and
guinea pig GluD1 antibodies selectively
recognized multiple protein bands at
110 –130 kDa in HEK293 cells transfected
with HA-tagged GluD1 cDNA, but not
GluD2 cDNA (Fig. 2A). Likewise, guinea
pig GluD2 antibody selectively recog-
nized protein bands at similar molecu-
lar masses in HEK293 cells transfected
with HA-tagged GluD2 cDNA, but not
GluD1 cDNA (Fig. 2A). These GluD1 and
GluD2 antibodies yielded selective immu-
nocytochemical labeling for HEK293 cells
transfected with HA-tagged GluD1 or
GluD2 cDNA, respectively (Fig. 2B).

The specificity was further tested by immunoblot using ho-
mogenates prepared from the hippocampus, cerebral cortex, and
cerebellum of wild-type, GluD1-KO, and GluD2-KO mice (Fig.
2C). In each brain region, rabbit and guinea pig GluD1 antibodies
recognized protein bands in wild-type mice, but not GluD1-KO
mice. Likewise, guinea pig GluD2 antibody recognized specific
protein bands in all three brain regions of wild-type mice, but not
in GluD2-KO mice. Of note, low levels of GluD2 were observed in
the hippocampus and cerebral cortex in addition to the cerebel-
lum. Therefore, these GluD antibodies are sensitive and specific
to respective GluDs.

GluD1 distribution in the brain
In conventional immunofluorescence using 4% PFA-perfused
brain sections, the intensity of GluD1 immunolabeling was low
(data not shown). When using fresh-frozen sections, GluD1 staining
was markedly intensified all over the brains of wild-type mice (Fig.
3A). GluD1 immunoreactivity was distributed widely, with higher
levels in the hippocampus, cerebral cortex, striatum, and cerebellar

cortex (Fig. 3A). GluD1 was generally low in the brainstem. These
protein expression patterns are consistent with the mRNA expres-
sion patterns (Fig. 1A). The absence of immunostaining in
GluD1-KO mouse brains (Fig. 3A, inset) verified the specificity of
GluD1 immunohistochemistry, including the lack of cross reactivity
to GluD2.

Using coronal brain sections, regional distribution of GluD1 was
investigated in detail. Laminar distribution was remarkable in the
hippocampus (Fig. 3C). GluD1 was enriched in the stratum
lacunosum-moleculare of the Ammon’s horn, particularly the CA2
subregion, and also in the middle molecular layer of dentate gyrus
(Fig. 3C), suggesting input-pathway-dependent regulation of GluD1
expression. In addition to the hippocampus, intense signals were
also seen in other limbic regions, including the nucleus accumbens
(Fig. 3A), lateral septum (Fig. 3B), bed nucleus stria terminalis (Fig.
3B), and central nucleus of the amygdala (Fig. 3C).

Selective expression of GluD1 at PF–interneuron synapses
GluD2 has been shown to accumulate in the cerebellar molec-
ular layer, where it is high at PF synapses on PC spines and

Figure 3. Immunofluorescence for GluD1 showing wide but distinct regional distribution in sagittal (A) and coronal (B,C)
sections of adult mouse brain. Higher levels were detected in the cortex (A, Cx), striatum (A–C, St), nucleus accumbens (A, NAc),
lateral septum (B, LS), bed nucleus of the stria terminalis (B, BST), central nucleus of the amygdala (C CeA), hippocampal formation
(A, Hi; C, CA1–3, DG), lateral habenula (C, LHb), and cerebellar molecular layer (A, Mo). In the hippocampus, intense labeling was
found in the stratum lacunosum-moleculare (LM) of Ammon’s horn and in the molecular layer of dentate gyrus (C). AC, anterior
commissure; CA1–3, CA1–3 regions of the Ammon’s horn; DG, dentate gyrus; Gr, granule cell layer; LV, lateral ventricle; Mb,
midbrain; MO, medulla oblongata; OB, olfactory bulb; Or, stratum oriens; Py, pyramidal cell layer; Ra, stratum radiatum; Th,
thalamus. Scale bars: A, 1 mm; B, C, 500 �m.
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weak at PF synapses on interneuron dendrites (Takayama et al.,
1996; Landsend et al., 1997; Yamasaki et al., 2011). In the present
study, we selected this region for detailed analysis of synaptic
localization of GluD1.

Immunofluorescence for GluD1 exhibited preferential in-
terneuron labeling in the molecular layer, showing a basal-to-
superficial gradient of immunofluorescence intensity (Fig. 4A,
arrows). This staining was not detected in GluD1-KO mice (Fig.
4A, inset), indicating the specificity of the interneuron labeling.
At high magnifications, GluD1 formed basket-like clustering
around somata of molecular layer interneurons. To determine
whether perisomatic clusters of GluD1 were associated with par-
ticular synapses, we applied triple immunofluorescence for
GluD1 (Fig. 4B,C, red), presynaptic active zone protein bassoon
(Fig. 4B,C, green), and PF terminal marker VGluT1 (Fig. 4B,C,
blue). In both the superficial (Fig. 4B) and basal (Fig. 4C) molec-
ular layer, where stellate and basket cells reside, respectively (Pa-
lay and Chan-Palay, 1974), perisomatic clusters of GluD1 were
apposed to bassoon-positive/VGluT1-positive PF terminals, with
GluD1 being always located inside these terminals (Fig. 4B,C,
arrowheads). PF synapse-associated clustering was also true for
GluD1-positive puncta in the neuropil because they were distrib-
uted around MAP2-positive dendrites of molecular layer in-
terneurons (Fig. 4D, green) and apposed to VGluT1-positive PF

terminals (Fig. 4E, blue). These results
suggest that GluD1 accumulates at PF
synapses on somata and dendrites of
molecular layer interneurons.

Reciprocal distribution of GluD1 and
GluD2 among PF synapses
To confirm GluD1 expression at PF–in-
terneuron synapses and to compare it
quantitatively with expression of GluD2,
postembedding immunogold electron
microscopy was applied to the molecular
layer. Immunogold particles for GluD1
often fell on the postsynaptic membrane
at PF-InS synapse, which were defined as
asymmetrical synapses between small
round terminals and interneuron somata
(Fig. 5A). Compared with PF-InS syn-
apses, immunogold labeling was less fre-
quent at PF synapses on interneuron
dendrites (PF–InD synapse), which were
defined as asymmetrical synapses on
aspiny dendrites (Fig. 5B). The postsyn-
aptic membrane at the corresponding
synapses in GluD1-KO mice was rarely la-
beled (Fig. 5A,B, insets). The density of
immunogold labeling per 1 �m of the
postsynaptic membrane was significantly
higher at PF-InS and PF–InD synapses in
wild-type mice than the background level,
as determined from the corresponding
synapses in GluD1-KO mice (p � 0.001,
0.01, or 0.05, respectively, Mann–Whit-
ney U test; Fig. 5E). Moreover, the density
of immunogold labeling was apparently
higher at PF-InS synapses than at PF–InD
synapses in both the basal and superficial
molecular layer of wild-type mice, al-
though statistical significance was noted

in the basal molecular layer only (p � 0.001; Fig. 5E). No signif-
icant labeling for GluD1 was found at PF–PC synapses and climb-
ing fiber (CF)-PC synapses (Fig. 5C–E); the latter synapses were
identified as asymmetrical synapses between VGluT2-labeled CF
terminals and dendritic spines (Fig. 5D). We also examined the
vertical distribution of GluD1 at PF–InS synapses by measuring
the distance from the midline of the synaptic cleft to the center of
immunogold particles in the basal molecular layer of wild-
type mice (n � 114 particles, two mice). The distribution of
immunogold particles peaked in a �10 to �20 nm bin, with
the mean distance of 12.20 � 1.73 nm postsynaptic from the
midline of the synaptic cleft (Fig. 5F ). This value, obtained at
PF–InS synapses using GluD1 antibody against the
C-terminus, was almost equivalent to that obtained at PF–PC
synapses using GluD2 antibody against the C-terminus
(10.49 � 27.20 nm; Miura et al., 2009). Therefore, GluD1 is
expressed highly at postsynaptic sites of PF–InS synapses and
weakly at PF–InD synapses.

In contrast, synaptic labeling for GluD2 was overwhelming at
PF–PC synapses (p � 0.001; Fig. 6C,E) and was also detected at a
much lower level at PF–InD synapses (p � 0.001; Fig. 6B,E).
However, no significant labeling was observed at PF–InS syn-
apses (Fig. 6A,E) or CF–PC synapses (Fig. 6D,E). Therefore,

Figure 4. GluD1 forms clusters around PF synapses on somata and dendrites of molecular layer interneurons. A, Immunofluo-
rescence for GluD1 in the cerebellar cortex. Note a prominent perisomatic basket formation around interneuron somata in both the
superficial and basal portions of the molecular layer. Inset shows negative staining in the cerebellar cortex of a GluD1-KO mouse. B,
C, Triple immunofluorescence for GluD1 (red), bassoon (green), and vesicular glutamate transporter 1 (VGluT1, blue) in the
superficial (B) and basal (C) molecular layer. Arrowheads indicate GluD1 clusters that are closely apposed to bassoon-positive/
VGluT1-positive PF terminals. D, E, Triple immunofluorescence for GluD1 (red), MAP2 (green), and VGluT1 (blue) in the basal
molecular layer. Double arrowheads indicate GluD1 clusters that are apposed to both MAP2-positive interneuron dendrites and
VGluT1-positive PF terminals. Scale bars: A, 20 �m; B–E, 1 �m.
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GluD1 and GluD2 are selective to PF syn-
apses and are expressed reciprocally
among the three kinds of PF synapses.

Opposing changes in PF–InS synapse
density in GluD1-KO and
GluK2-KO mice
GluD2 strengthens the connectivity of
PF–PC synapses, and the ablation of the
Grid2 gene in mice results in reduced
PF–PC synapse number per PC to half the
level found in wild-type mice (Kashiwa-
buchi et al., 1995; Kurihara et al., 1997).
To address whether GluD1 plays a similar
role, we analyzed PF–InS synapses in
wild-type, GluD1-KO, and GluD2-KO
mice by triple immunofluorescence for
bassoon (green), VGluT1 (red), and parv-
albumin (blue; Fig. 7A–C). Although
parvalbumin is expressed in both in-
terneurons and PCs, they are readily dis-
tinguished by the size and location of
somata (Fig. 8A–C). In wild-type mice,
parvalbumin-positive somata of molecu-
lar layer interneurons were frequently
contacted by bassoon-positive/VGluT1-
positive PF terminals (Fig. 7A, arrow-
heads). Such PF terminals attaching to
interneuron somata were apparently re-
duced in GluD1-KO mice (Fig. 7B) but
increased in GluD2-KO mice (Fig. 7C).

To quantify this difference, the num-
ber of PF–InS synapses on somatic pro-
files of molecular layer interneurons was
counted by conventional electron micros-
copy (Fig. 7D–G). The mean number of
PF–InS synapses per 1 �m of somatic
membrane was reduced by 47% in
GluD1-KO mice (Fig. 7E,G) and in-
creased by 60% in GluD2-KO mice (Fig.
7F,G) compared with wild-type mice
(Fig. 7D,G). A Kruskal–Wallis test re-
vealed a significant effect of group (p �
0.001). A post hoc test using Mann–Whit-
ney U test with Bonferroni correction
showed significant differences between
wild-type and GluD1-KO mice (p �
0.001) or GluD2-KO mice (p � 0.001)
(Fig. 7G). Therefore, the density of PF–
InS synapses is altered in opposite direc-
tions in GluD1-KO and GluD2-KO mice
compared with wild-type mice.

Figure 5. Postembedding immunogold electron microscopy for GluD1 in the cerebellar molecular layer. A–C, Single-labeling
postembedding immunogold for GluD1 (� � 10 nm) at a PF–InS synapse (A), a PF–InD synapse (B), and a PF–PC synapse (C). D,
Double-labeling postembedding immunogold for GluD1 (�� 10 nm) and VGluT2 (�� 15 nm) at a CF–PC synapse. Insets in A–D
indicate negative labeling at the corresponding synapses in GluD1-KO mice. Arrows and arrowheads indicate immunogold labeling
or the edge of the PSD, respectively. E, Histogram showing the mean density of immunogold particles for GluD1 (per 1 �m of the
postsynaptic membrane). The density was 4.53�0.72 (n �71, basal) at PF–InS synapses, 1.75�0.33 (n �89, basal) at PF–InD
synapses, 3.96 � 1.33 (n � 26, superficial) at PF–InS synapses, 1.13 � 0.42 (n � 41, superficial) at PF–InD synapses, 0.56 �
0.17 at PF–PC synapses (n � 89), and 0.10 � 0.10 (n � 34) at CF–PC synapses of wild-type mice. In GluD1-KO mice, the density
was 0.35 � 0.25 (n � 36, basal) at PF–InS synapses, 0.42 � 0.42 (n � 36, basal) at PF–InD synapses, 0.34 � 0.34 (n � 15,
superficial) at PF–InS synapses, 0.18 � 0.18 (n � 20, superficial) at PF–InD synapses, 0.23 � 0.23 at PF–PC synapses (n � 22),
and 0.19 � 0.19 (n � 20) at CF–PC synapses. Bars on each column represent SEM. ***p � 0.001; **p � 0.01; *p � 0.05;

4

N.S. not significant; Mann–Whitney U test. F, Histogram
showing the vertical distribution of GluD1 epitope at PF–InS
synapses sampled from the basal molecular layer. The distance
was measured from the midline of the synaptic cleft to the
center of immunogold particles (n � 114 particles from two
C57BL/6 mice). On the x-axis, � and � represent presynaptic
or postsynaptic side, respectively, from the midline of the syn-
aptic cleft. Sp, Spine. Scale bars, 200 nm.
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Opposing changes in interneuron
density in GluD1-KO and
GluD2-KO mice
In addition, we noticed alterations in
the number of parvalbumin-positive
interneurons in the molecular layer. Com-
pared with wild-type mice, parvalbumin-
positive interneurons appeared to be
scarce in GluD1-KO mice but numerous
in GluD2-KO mice (Fig. 8A–C). The den-
sity of parvalbumin-positive interneurons
in the molecular layer was significantly re-
duced by 35% in GluD1-KO mice and in-
creased by 76% in GluD2-KO mice
compared with wild-type mice (Kruskal–
Wallis test, p � 0.001; Mann–Whitney U
test with Bonferroni correction, p � 0.001
for each; Fig. 8D). This opposing change
did not result merely from downregula-
tion or upregulation of parvalbumin ex-
pression because the number of GAD67
mRNA-expressing interneurons was also
changed in parallel with parvalbumin-
positive interneurons (Fig. 8F–H).

We further noted diminished somatic
size of interneurons in GluD1-KO mice
(Fig. 8B). Compared with wild-type mice,
the mean somatic area of parvalbumin-
positive interneurons was significantly re-
duced by 24% in GluD1-KO mice
(Kruskal–Wallis test, p � 0.001; post hoc test
using Mann–Whitney U test with Bonfer-
roni correction, p � 0.001; Fig. 8E), whereas
no significant difference was found in
GluD2-KO mice (Mann–Whitney U test
with Bonferroni correction, p 	 0.05; Fig.
8E). These results suggest that GluD1 pro-
motes the differentiation and/or survival of
molecular layer interneurons, whereas
GluD2 counteracts this phenomenally.

Compensatory upregulation of GluD1
in GluD2-KO mice
To understand the opposing changes by
the ablation of GluD1 and GluD2, we pur-
sued possible compensatory changes of
one GluD expression in mutant mice lack-
ing another GluD. In GluD2-KO mice,
GluD1 labeling was clearly enhanced on
somata and dendrites of molecular layer
interneurons; this enhancement was con-
firmed in all three pairs of wild-type and
GluD2-KO mice (Fig. 9A,B). By measur-
ing the intensity of immunofluorescence
signals in the molecular layer, the mean
intensity for GluD1 was significantly in-
creased by 54% in GluD2-KO mice com-
pared with wild-type mice (p � 0.001,
Mann–Whitney U test; Fig. 9E, left). In
contrast, no significant upregulation or
downregulation was discerned for GluD2
in the molecular layer of GluD1-KO mice
(p 	 0.05; Fig. 9C,D, 9E, right).

Figure 6. Postembedding immunogold electron microscopy for GluD2 in the cerebellar molecular layer. A–D, See leg-
ends for Figure 5A–D. E, Histogram showing the mean density of immunogold particles for GluD2 (per 1 �m of the synaptic
membrane). The density was 1.37 � 0.50 (n � 34) at PF–InS synapses, 2.59 � 0.58 (n � 44) at PF–InD synapses,
27.15 � 2.09 at PF–PC synapses (n � 39), and 0.49 � 0.27 (n � 26) at CF–PC synapses of wild-type mice. In GluD2-KO
mice, the density was 0.16 � 0.16 (n � 25) at PF–InS synapses, 0.12 � 0.12 (n � 30) at PF–InD synapses, 0.30 � 0.30
at PF–PC synapses (n � 24), and 0.16 � 0.16 (n � 17) at CF–PC synapse. Bars on each column represent SEM. ***p �
0.001; N.S. not significant; Mann–Whitney U test. Sp, Spine. Scale bars: 200 nm.
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This immunohistochemical finding
was in parallel with immunoblot data us-
ing cerebellar samples prepared from
wild-type, GluD1-KO, and GluD2-KO
cerebella (Fig. 9F). The intensity of GluD1
bands in GluD2-KO cerebella was signifi-
cantly elevated in the homogenate (by
48% compared with wild-type cerebella;
p � 0.01, Student’s t test with Welch’s cor-
rection, n � 3), synaptosome fraction (by
64%; p � 0.01), and PSD fraction (by
79%; p � 0.001; Fig. 9G, top). No signifi-
cant increase or decrease was found for
GluD2 bands in any cerebellar samples
prepared from GluD1-KO cerebella (p 	
0.05 for each, n � 3; Fig. 9G, bottom).
Therefore, ablation of the Grid2 gene in
mice significantly upregulates GluD1 ex-
pression in molecular layer interneurons.

Discussion
Although cellular and synaptic expres-
sions of GluD2 and its regulatory mecha-
nisms for synaptic development and
plasticity have been well characterized
(Yuzaki, 2009; Watanabe and Kano,
2011), those for GluD1 remain largely
elusive. In the present study, we investi-
gated this issue using expression analyses
on GluD1 and neuroanatomical analyses
on the cerebellar molecular layer of
GluD1-KO mice. Here, we have demon-
strated that GluD1 is distinct from GluD2
in regional, neuronal, and synaptic ex-
pressions in adult mouse brains and that
specific types of synapses and neurons ex-
pressing GluD1 are significantly lost in
GluD1-KO mice.

Enriched expression of GluD1 in higher
brain regions
Using in situ hybridization with a radiola-
beled oligonucleotide probe, Lomeli et al.
(1993) first reported low and diffuse ex-
pression of GluD1 mRNA in adult rat
brains, with the highest level in the hip-
pocampus and transient elevation at neo-
natal stages. In the present study, we
developed histochemical probes that can
detect GluD1 mRNA and immunoreac-
tivity with high sensitivity and specificity.
As a result, GluD1 expression was clearly
shown to be widespread in the adult
mouse brain, with higher levels in the ce-
rebral cortex, striatum, cerebellar cortex,
and many regions of the limbic system,
including the hippocampus, nucleus ac-
cumbens, lateral septum, bed nucleus
stria terminalis, lateral habenula, and cen-
tral nucleus of the amygdala.

The significance of GluD1 in a variety
of brain functions has been inferred from
animal and human studies. Aberrant

Figure 7. Opposing changes in the density of PF synapses on interneuron somata in GluD1-KO and GluD2-KO mice. A–C, Triple
immunofluorescence for VGluT1 (red), bassoon (green), and parvalbumin (blue) in wild-type (A), GluD1-KO (B), and GluD2-KO
mice (C). Arrowheads indicate VGluT1(�)/bassoon(�) puncta around parvalbumin(�) interneuron somata. D–F, Electron mi-
croscopic images of somata of molecular layer interneurons in wild-type (D), GluD1-KO (E), and GluD2-KO mice (F). Arrows indicate
PF–InS synapses formed between interneuron somata (pseudocolored in green) and PF terminals (blue). G, Histogram showing
the mean density of asymmetrical synapses on interneuron somata (per 1 �m of somatic membrane): 0.12 � 0.01 synapses (n �
54 cells) in wild-type, 0.06 � 0.01 (n � 40) in GluD1-KO, and 0.18 � 0.01 (n � 67) in GluD2-KO mice. Bars on each column
represent SEM. ***p � 0.001, Mann–Whitney U test. Scale bars: A–C, 5 �m; D–F, 1 �m.
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emotional and social behaviors have been documented in
GluD1-KO mice, including higher spontaneous locomotor activity
in the open-field test, lower anxiety-like behavior in the elevated
plus maze test, depression-like behavior in the forced swim test,
robust aggression in the resident-intruder test, and deficits in the
social interaction test (Yadav et al., 2012). The mice also manifest
enhanced working memory and deficits in the fear conditioning
test (Yadav et al., 2013). Human genome-wide association and
copy number variation studies identified the GRID1 gene, which
codes for GluD1, as a strong candidate gene for schizophrenia,
bipolar disorder, major depressive disorder, and autism spectrum
disorder (Fallin et al., 2005; Guo et al., 2007; Glessner et al., 2009;
Smith et al., 2009; Treutlein et al., 2009; Cooper et al., 2011; Green-
wood et al., 2011; Edwards et al., 2012; Griswold et al., 2012).
Importantly, neural regions with rich GluD1 expression are the
neural centers for cognition, memory and learning, emotion, vol-
untary movement, and motivation and rewarding. Therefore, de-
tailed expression and phenotypic analyses in these higher brain
regions are expected to provide important insights toward under-
standing the role of GluD1 in neural development and function.

Distinct synaptic targeting of GluD1
We selected the cerebellar molecular layer
for the present analysis because this region
has been best studied for synaptic expres-
sion and functional role of GluD2. In this
region, GluD1 was enriched at PF syn-
apses in the following order: PF–InS syn-
apse 	 PF–InD synapse 		 PF–PC
synapse. This distribution was distinct
from that of GluD2, which was expressed
in the following order: PF–PC synapse 		
PF–InD synapse 	 PF–InS synapse (Ta-
kayama et al., 1996; Landsend et al., 1997;
Yamasaki et al., 2011; present study). In
contrast, CF–PC synapses were at the
background level for both GluD1 and
GluD2. These expression properties indi-
cate that GluD1 and GluD2 are similar in
that they are selective to PF synapses in the
cerebellar molecular layer, but their syn-
aptic targeting is reciprocally regulated in
target cell- and target site-dependent
manners. Perisomatic baskets are formed
around GABAergic molecular layer in-
terneurons by excitatory PF terminals
(Palay and Chan-Palay, 1974; Zanjani et
al., 2006) and GluD1 was most enriched at
PF–InS synapses forming this pericellular
basket. This molecular-anatomical configu-
ration is in a sharp contrast with that in the
cortex and hippocampus, where periso-
matic baskets are formed around glutama-
tergic principal neurons by terminals of
inhibitory interneurons (Freund, 2003).
This suggests that synaptic targeting of
GluD1 is strategically controlled to con-
struct distinct synaptic organization in spe-
cific brain regions and neurons.

Because previous studies have high-
lighted exclusive expression of GluD2 in
the cerebellar cortex (Araki et al., 1993;
Lomeli et al., 1993; Yamasaki et al., 2011),
low but specific detection of GluD2 in the

cortex and hippocampus was an unexpected finding in the pres-
ent study. Recently, biallelic deletions of GRID2 gene have been
identified in human families with severe cerebellar atrophy and
symptoms (Hills et al., 2013; Utine et al., 2013). It is interesting to
note that all of the affected individuals also showed delay in
speech and cognitive development, implying the role of GluD2 in
the cerebral cortex (Hills et al., 2013). Therefore, it is important
in future studies to clarify how synaptic targeting of GluD1 and
GluD2 is regulated in extracerebellar regions.

GluD1 strengthens synaptic connectivity
We found that the number of PF–InS synapses was significantly
reduced by 47% in GluD1-KO mice, suggesting that GluD1
strengthens the connectivity of PF–InS synapses, as GluD2 does
for PF–PC synapses (Kurihara et al., 1997; Takeuchi et al., 2005).
It has been demonstrated that the connectivity of PF–PC syn-
apses is mediated by binding of GluD2 on PC spines to neurexin
on PF terminals via Cbln1 (Hirai et al., 2005; Ito-Ishida et al.,
2008; Matsuda et al., 2010; Uemura et al., 2010). Cbln1 is pro-
duced and secreted from granule cells and accumulates in the

Figure 8. Opposing changes in the density of molecular layer interneurons between GluD1-KO and GluD2-KO mice and reduced
somatic size in GluD1-KO mice. A–C, Immunofluorescence for parvalbumin in the cerebellar cortex of wild-type (A), GluD1-KO (B),
and GluD2-KO mice (C). Asterisks indicate the soma of molecular layer interneurons. D, Histogram showing the mean density of
parvalbumin-positive interneurons: 646.0 � 24.3 cells/mm 2 (measured area, 1.36 mm 2) in wild-type, 423.0 � 16.6 (1.59) in
GluD1-KO, and 1138.1 � 42.8 (0.93) in GluD2-KO mice. E, Histogram showing the mean somatic area of parvalbumin-positive
interneurons: 72.1 � 1.7 �m 2 (n � 109 cells) in wild-type, 54.5 � 1.1 (129) in GluD1-KO, and 70.2 � 1.3 (n � 138) in GluD2-KO
mice. Bars on each column represent SEM. ***p � 0.001, Mann–Whitney U test. F–H, Immunofluorescence for parvalbumin
(green) combined with FISH for GAD67 mRNA (red) in wild-type (F), GluD1-KO (G), and GluD2-KO mice (H). Arrows indicate
molecular layer interneurons. Scale bars, 20 �m.
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synaptic cleft of PF synapses on PCs and
molecular layer interneurons (Miura et
al., 2009). Furthermore, Cbln1 also binds
to GluD1 and their interaction induces
synaptogenesis in in vitro experiments
(Matsuda et al., 2010, Yasumura et al.,
2012; Ryu et al., 2012). These findings
suggest that GluD1 strengthens the con-
nectivity of PF–InS synapses by interact-
ing with Cbln1 and neurexins. This
possibility needs to be tested in future
studies.

GluD1 promotes survival and
differentiation of interneurons
Another phenotype in GluD1-KO mice
was a significant (35%) loss of molecular
layer interneurons. We speculate that this
phenotype is secondary to reduced PF–
InS synapses for the following reasons.

Neurotrophin signaling, particularly
that mediated by brain-derived neu-
rotrophic factor (BDNF) and the BDNF
receptor TrkB, is indispensable for devel-
opment of cerebellar interneurons (Lind-
holm et al., 1997; Schwartz et al., 1997;
Carter et al., 2002). BDNF is highly ex-
pressed in granule cells, whereas high-
affinity neurotrophin receptors are
expressed in various cerebellar neurons,
including molecular layer interneurons
(Klein et al., 1990; Alvarez-Dolado et al.,
1994; Gao et al., 1995; Segal et al., 1995;
Benisty et al., 1998). BDNF is required for
the survival, differentiation, and synapto-
genesis of GABAergic interneurons in
vitro (Mertz et al., 2000; Seil, 2003; Spatkowski and Schilling,
2003; Adcock et al., 2004) and ablation of the trkB gene in mice
severely impairs synaptic differentiation in GABAergic interneu-
rons (Rico et al., 2002). Therefore, we assume that GluD1-
mediated formation and/or maintenance of PF–InS synapses
increases both excitatory drive and neurotrophic support to mo-
lecular layer interneurons, thereby promoting their differentia-
tion and survival. The lack of compensatory upregulation of
GluD2 further supports that these phenotypes in GluD1-KO
mice are primarily due to the loss of GluD1.

In our previous study, no significant decrease or increase was
observed for the density of PF–InD synapses in GluD2-KO mice
(Yamasaki et al., 2011). Therefore, it was unexpected to find sig-
nificant increase of PF–InS synapses by 60% in GluD2-KO mice
here. We assume that this synaptic increase is explained, at least
partly, by compensatory upregulation of GluD1 at interneuron so-
mata in GluD2-KO mice. With respect to unaltered density of PD–
InD synapses in GluD2-KO mice (Yamasaki et al., 2011),
compensatory upregulation at interneuron dendrites might also
contribute to the maintenance of PD–InD synapses.

Functional implications
Molecular layer interneurons are the node of a feedforward inhi-
bition from granule cells to PCs. This pathway is driven by PF
activities and casts two modes of inhibition: GABAergic inhibi-
tion onto the soma and dendrites of PCs and electrical inhibition
onto the axon initial segment of PCs (Korn and Axelrad, 1980;

Fritschy et al., 2006: Iwakura et al., 2012; Blot and Barbour, 2014).
Therefore, impaired PF–interneuron synapse formation in
GluD1-KO mice should lead to substantial diminishment of
feedforward inhibition to PCs. Conversely, the formation of
PF–PC synapses that construct the major neural pathway and the
maturation process leading to CF mono-innervation are severely
disrupted in GluD2-KO mice (Kashiwabuchi et al., 1995; Kuri-
hara et al., 1997; Ichikawa et al., 2002; Miyazaki et al., 2010).
Together, GluD1 and GluD2 work in concert to construct the
basic synaptic wiring in the cerebellar cortex through distinct
neuronal and synaptic expressions and also through their shared
synapse-connecting function.
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