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Spontaneous Activity Does Not Predict Morphological Type
in Cerebellar Interneurons
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The effort to determine morphological and anatomically defined neuronal characteristics from extracellularly recorded physiological
signatures has been attempted with varying success in different brain areas. Recent studies have attempted such classification of cere-
bellar interneurons (CINs) based on statistical measures of spontaneous activity. Previously, such efforts in different brain areas have
used supervised clustering methods based on standard parameterizations of spontaneous interspike interval (ISI) histograms. We
worried that this might bias researchers toward positive identification results and decided to take a different approach. We recorded CINs
from anesthetized cats. We used unsupervised clustering methods applied to a nonparametric representation of the ISI histograms to
identify groups of CINs with similar spontaneous activity and then asked how these groups map onto different cell types. Our approach
was a fuzzy C-means clustering algorithm applied to the Kullbach–Leibler distances between ISI histograms. We found that there is, in
fact, a natural clustering of the spontaneous activity of CINs into six groups but that there was no relationship between this clustering and
the standard morphologically defined cell types. These results proved robust when generalization was tested to completely new datasets,
including datasets recorded under different anesthesia conditions and in different laboratories and different species (rats). Our results
suggest the importance of an unsupervised approach in categorizing neurons according to their extracellular activity. Indeed, a reexam-
ination of such categorization efforts throughout the brain may be necessary. One important open question is that of functional differ-
ences of our six spontaneously defined clusters during actual behavior.
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Introduction
Despite recent progress in intracellular in vivo methods and op-
tical recordings, extracellular electrophysiological recording of
action potentials of individual neurons remains a leading method
for relating neural activity to behavior. One notable drawback of
this method is that the researcher is left to interpret the activity of
the recorded neurons without knowing what sort of neurons they
are. For instance, researchers recording neurons in the cerebellar
cortex can identify Purkinje cells (PCs) using the complex spike
waveforms and the pause in PC simple spikes caused by each
complex spike. However, the interneurons of the cerebellar cor-
tex are differentiated on the basis of shape, location, and connec-
tivity into different types—Golgi, granule, basket, stellate, and
unipolar brush cells (UBCs)—first described more than a century

ago (Sotelo 2008). Understanding the potentially varied func-
tional properties of these neurons would be easier if they could be
differentiated during extracellular recording. Recent studies have
searched for physiological signatures of those morphological
types in the statistical measures of spontaneous activity (Simpson
et al., 2005; Holtzman et al., 2006; Van Dijck et al., 2013). This
search parallels similar efforts in other brain areas (Parra et al.,
1998; Markram et al., 2004).

A key tool in the effort to identify neurons based on extracel-
lular activity is juxtacellular labeling. This method, developed by
Pinault (1994, 1996), enables anatomical reconstruction of the
extracellularly recorded neurons and has been applied in various
brain regions (Wu et al., 2000; Lee et al., 2005; Thankachan and
Rusak, 2005). Simpson et al. (2005) first applied juxtacellular
labeling to associate spontaneous activity of cerebellar interneu-
rons (CINs) with their morphological type. In 2011, these au-
thors extended this work and proposed an algorithm to identify
the type of a CIN from its spontaneous activity (Ruigrok et al.,
2011). A different algorithm based on the same technique was
proposed by Van Dijck et al. (2013).

Both of these papers make the case that CINs can indeed be
classified on the basis of extracellular recordings. However, re-
ported variability in CIN firing patterns (Holtzman et al., 2006)
and biochemical properties (Simat et al., 2007) led us to question
whether true clusters exist in the spontaneous activity of CINs. To
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address this, we developed an algorithm for classification of
spontaneous neural activity that is not driven by a priori knowl-
edge of classification identity. That is, we set out to determine
whether there is a natural clustering of CIN spontaneous activity.
We tested how well the algorithm generalizes to different datasets
and the extent to which the electrophysiologically defined classi-
fication of CINs matched the morphologically defined classifica-
tion. Although we did find clusters in the spontaneous activity of
CINs, our results raise questions about the possibility of deter-
mining CIN type from its spontaneous activity.

Materials and Methods
Datasets. The results in this study are taken from three different datasets.
To be clear about which datasets are in use, we list them here and give
each an abbreviated name to be used below.

Ruigrok Sim. This is a collection of randomly generated datasets modeling
Ruigrok et al. (2011) based on statistical characterizations of a sample of their
data that the authors generously provided for this purpose.

Barmack Labeled. This is a full dataset of spontaneous neuronal activity
and morphological labeling recorded in mice, published previously by
Barmack and Yakhnitsa (2008).

Givon Mayo Unlabeled. This is extracellular, unlabeled spontaneous
activity collected in cats.

Simulated data. Ruigrok Sim was generated based on a sample of sta-
tistics of the original data provided to us by Ruigrok and his colleagues.
The sample did not include any raw data but only the five features used in
the algorithm for 26 CINs from four types: UBCs, molecular layer in-
terneurons (basket or stellate) and Golgi cells (seven from each type), and
five granular cells, of which only one fired during the recording. With this
limited sample, it was not possible to test directly for deviations from the
normal distribution. Instead, we represented each cell class as a multi-
variate Gaussian fit to data provided. We generated 1000 simulated da-
tasets using the joint normal distributions fit to the means and covariance
matrixes of the data sample. Each simulated dataset had the same num-
ber of CINs from each type as in the original study. For the granular cells,
80% were simulated as silent cells and the other 20% were simulated
using the values of single-firing sample as distribution means and the SDs
from Table 1 from the study by Ruigrok et al. (2011).

Mouse recording and juxtacellular labeling. All data for the dataset Bar-
mack Labeled has been published previously by Barmack and Yakhnitsa
(2008), in which the methods are described in full. Thus, we describe the
methodology here only briefly. C57BL/6J mice (weighing 16.0 –22.0 g) of
either sex were anesthetized with intraperitoneal injections of ketamine
(60 –70 mg/kg) and xylazine (3 mg/kg). Neurons were extracellularly
recorded and juxtacellularly labeled using NaCl plus Neurobiotin-filled
glass micropipettes (10 –15 M�) advanced through folia 8 through 10.
Neurobiotin ejection driven by positive current pulses led to juxtacellular
labeling (Pinault, 1996; Simpson et al., 2005; Holtzman et al., 2006; Bar-
mack and Yakhnitsa, 2008). Spike sorting was done using Spike2 spike
shape recognition software. From the dataset of 110 spike trains, we
removed all spike trains shorter than 10 s (n � 47) and any cells labeled as
PCs (n � 18), leaving 45 spike trains for additional analysis.

Cat recording and PC identification. The data for the Givon Mayo
Unlabeled dataset are described in full detail elsewhere (R. Givon-Mayo,
S. Haar, Y. Aminov, E. Simons, and O. Donchin, unpublished observa-
tions, http://www.bgu.ac.il/~donchin/GivonMayo.html). Briefly, we
collected data from three healthy cats of either sex (weighing 4.0 – 6.0 kg)
with chronic recording chambers implanted over the medial cerebellum.
Spontaneous activity recordings were performed during prolonged an-
esthesia sessions (2– 8 h long), under general anesthesia with propofol
(intravenously) or ketamine/xylazine (intramuscularly). The two work
on different mechanisms in an effort to control for the effects of anesthe-
sia. Propofol induces a positive modulation of GABA inhibition through
GABAA receptors (Trapani et al., 2000), whereas ketamine is a noncom-
petitive NMDA antagonist (Lahti et al., 2001). We inserted two to four
glass coated tungsten microelectrodes (1–2 M�, at 1 kHz; Alpha-Omega
Engineering) into the forelimb area of the C2 zone. The signal was am-
plified (10,000�), filtered (300 – 6000 Hz), digitized at 24 kHz, and

stored on disk. Neurons were sorted offline using a principal component
analysis (PCA)-based program developed by Maarten Frens and Beerend
Winkelman (Erasmus Medical Center, Rotterdam, The Netherlands).
We determined the identity of PCs according to the presence of complex
spikes and a short pause (�10 ms) in the simple spike firing after com-
plex spikes (McDevitt et al. 1982). Fifty-two cells were identified as PCs
and removed from the analysis, as were spike trains recorded for �80 s.
The final dataset consisted of 224 single units identified as CINs recorded
for a median of 358 s (maximum of 1080 s). One hundred nineteen CINs
recorded from two cats were used as training data in the search for groups
in the spontaneous activity and the development of the clustering algo-
rithm. Another 105 CINs, recorded from the third cat, were kept aside as
testing data and were not used during the clustering analysis. The testing
data was all from one cat to neutralize variability between cats during the
testing and to test generalization to a completely new cat.

Statistical measures. Statistical measures of spontaneous activity were
calculated from the interspike intervals (ISIs). The mean, median, SD,
coefficient of variation (CV � SD divided by the mean), dispersion (vari-
ance divided by the mean), skewness, kurtosis, and median absolute
deviation from the median (MAD) were each calculated for each of the
following measures: the ISIs (in seconds), the absolute difference be-
tween successive ISIs, the natural logarithm of the ISIs (in milliseconds),
the instantaneous firing rate (IFR � 1/ISI), the difference between suc-
cessive IFR, and the natural logarithm of the IFR. All other statistical
measures of spontaneous activity suggested by Ruigrok et al. (2011) were also
calculated, including average FR, CV2, ISI variation, frequency variation,
and the values of the second, fifth, 95th, and 98th percentiles of the ISIs and
the difference in successive ISIs. A total of 60 measures were examined.

Spike train analysis. Most of the statistical measures of spontaneous
activity described above are parameterizations of the ISI distribution (the
rest characterize the joint distribution of two or three successive ISIs). In
addition, we also took a nonparametric approach to the entire ISI distri-
bution. Although other studies in the cerebellum (Simpson et al., 2005;
Holtzman et al., 2006) and hippocampus (Parra et al., 1998) have looked
at the ISI distributions, we believe we are the first to take a nonparametric
(very high dimensional) approach.

We characterized the data in the high-dimensional space defined by
the vector of values of the ISI histogram itself. We explored histograms
binned at 1–10 ms bins and choose to work with a bin size of 5 ms. This
bin width was the largest that accurately reflected the shape of the distri-
bution, but our results do not depend strongly on the bin size chosen. We
smoothed the binned histogram using kernel smoothing density estima-
tion with an optimally estimated width based on the MATLAB (R2011b;
MathWorks) statistical toolbox (version 7.6) algorithm (Bowman and
Azzalini, 1997). This algorithm produced a better fit than any fixed band-
width. This process produced a discrete estimate of the underlying prob-
ability density function (PDF) that generated the ISI distribution. Once
each cell was represented by the estimated PDF of its ISIs, we constructed
a matrix of the distances between PDFs and searched for the existence of
well separated groups in this space. To measure the distance between PDFs,
we used two common and accepted information theoretic measures for the
difference between two probability distributions: the Kullback–Leibler dis-
tance (KLD) and Hellinger distance (Basseville, 1989). We applied this pro-
cess twice, first on the PDF itself. Later, we constructed a median-normalized
PDF (MN-PDF) and applied the process there as well.

The KLD (Kullback and Leibler, 1951) is defined as follows:

DKL�P�Q	 � �iP�i	 .
log�P�i		

Q�i	
.

The KLD is a nonsymmetric measure [DKL(P��Q) 
 DKL(Q��P)]. There
are a number of symmetrizing versions of the KLD. We used the harmonic
mean known as resistor-averaged Kullback–Leibler (RKL) distance (John-

son et al., 2001):
1

RKL�P, Q	
�

1

DKL�P�Q	
�

1

DKL�Q�P	
. The RKL is less

sensitive to outlier states than the KLD (Kang and Sompolinsky, 2001) and
from some other symmetrizations.

As an alternative, we used the Hellinger distance (Diaconis and Zabell,
1982). It is defined as follows: H�P, Q	 � �i��P�i	 � �Q�i		2.
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The RKL and Hellinger distances are not distances in the mathematical
sense because they do not obey the triangle inequality. Because standard
clustering algorithms work in Euclidian spaces, or at least spaces with a
true distance, there was a need to embed our results into a Euclidian
space. The method we used was the “any relation clustering algorithm”
(ARCA; Corsini et al., 2005). In the ARCA, “each object is represented by
the vector of its relation strengths with the other objects in the data”
(Corsini et al., 2005), in which the relation can be in any metric. Intui-
tively, two objects are close to each other if they are far away from the
same other objects. The new representation is in Euclidian space, and,
thus, any standard clustering algorithm can be used.

Fuzzy C-means clustering. To test for clusters in the spontaneous activ-
ity of CINs, we used an unsupervised approach that requires no assump-
tions or previous knowledge on the data or the groups. We worked with
a fuzzy C-means algorithm based on the classical “unsupervised optimal
fuzzy clustering” (UOFC; Gath and Geva, 1989). Briefly, the fuzzy
C-means assigns a friendship level to each data point for each cluster
according to the distance of the data points from the center of the cluster.
Each point was classified into the cluster with which it had the highest
friendship. We used the UOFC robust approach for center selection to
ensure the independence of the clustering results from the original esti-
mated cluster centers. We tested different cluster validity indices to de-
termine the number of clusters. In each case, we chose the number of
clusters that gave the best cluster validity. Basic indices, such as partition
coefficient (Bezdek 1981) and classification entropy (Bezdek 1974), and
Xie and Beni (1991) failed to show a clear preference for a specific num-
ber of clusters on most of our clustering attempts. We used instead a
cluster validity index proposed by Zhang et al. (2008) (Vw). This validity
index uses a ratio between a variation measure in each cluster and a
separation measure between the fuzzy clusters, and it is reported to have
very good performance (Zhang et al., 2008). For the parametric data, we
used the fuzzy hyper volume (FHV) and partition density (PD) indices of
Gath and Geva (1989), as well. However, those indices cannot be used on
the nonparametric data because they require the covariance matrix and it
was nearly singular in the nonparametric data.

Dimensionality reduction. Many of the 60 statistical measures of spon-
taneous activity presented above are correlated variables. Thus, cluster-
ing based on these measures was preceded by PCA. PCA was applied to
data in which each statistical measure was normalized to be mean 0 and
SD of 1 to give equal power to each statistical measure. We used PCA on
the nonparametric clustering as well. The distance matrix used in ARCA
clustering produces similar sets of distance vectors for cells with similar
PDFs, leading to redundancy in the feature space.

PCA revealed that the ARCA data sits on a two-dimensional arc. An arc
in the plane defined by the first two principal components suggests that
the data are actually one dimensional. To extract this one dimension, we
used a sliding spline interpolation of second degree to fit each data point
with the nearest point on a single curve defined by the spline. On this
smoothed curve, we measured the distances between each pair of neigh-
boring points and created a new vector of points with those distances.
This vector is a one-dimensional representation of the data. For verifica-
tion, we applied a nonlinear PCA (Scholz, 2012) to the same data. It
produced almost exactly the same results as did the linear PCA.

F statistics. To compare between clustering results and quantify the
grouping success, we used the traditional F statistic: between-group vari-
ability (explained variance) divided by the within-group variability (un-
explained variance). The explained variance was calculated as the sum
squared of the distances of all group centers from the center of all data,

divided by the degrees of freedom (the number of clusters minus one).
The unexplained variance was calculated as the sum square of the dis-
tances of all data points from its group centers divided by its degrees of
freedom (the number of data points minus the number of groups). Be-

Figure 1. PCA clustering results for parametric data. Clustering results for the PCA of 60
statistical measures calculated for the spontaneous activity of the CINs of cats. Results are shown
projected onto the first and second principal components of each analysis. Different colors
stands for different clusters. A, Clustering of PCA of the original measures. B, Clustering of PCA of
the natural logarithm of the original measures. C, Clustering of PCA of a set containing the
original measures (for those measures with nearly Gaussian tails) and the natural logarithm of
measures (for measures with non-Gaussian tails).

Table 1. Ruigrok et al. (2011) identifications on Barmack’s data

Algorithm identification

Juxtacellular Granule UBC Molecular Golgi Borders

Granule 1 1 3 1 5
UBC 0 9 1 6 5
Basket 0 1 2 1 0
Stellate 1 7 9 4 6
Golgi 0 1 9 4 10
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Figure 2. ISI distribution analysis. A, ISI histograms of three cells, 5 ms bins. B, PDF of those cells ISIs. C, PDF of the median-normalized ISIs (ISI � median ISI); the RKL distance between pairs of
PDFs is given between the plots (thus, first RKL is the distance between the 1st and 2nd plot). When distance is taken on the non-normalized PDF, the second cell is much closer to the third than to
the first. Using the MN-PDF makes the second cell much closer to the first, which corresponds to our intuition.

Figure 3. MN-PDF clustering results for the training data using the RKL metric. A, Vw cluster validity suggest six clusters in the data. B, Separation statistics; the average (with SEM
indicated by error bars) distance between MN-PDFs within groups compared with the distance of the group center to the next nearest center. C, The ARCA distances matrix of all cells. Black
is zero and white is a large distance. Each group is marked by a square with the same color as in D. D, The MN-PDFs of all cells in the training data divided into groups by the clustering
algorithm.
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cause the variances are not from normally distributed data, calculation of
a p value from the standard distribution of F might be biased. Instead, we
used a Monte Carlo analysis to generate a null distribution for F. A total
of 1000 F values were generated using a random clustering applied to our
actual dataset. For each repetition, random centers were chosen from a
uniform distribution in the range of the data. Each data point was clas-
sified to its nearest center, and then the F value of the repetition was
calculated. The p value represents the probability of the F value to come
from the distribution of the randomly generated F values.

Results
Testing the Ruigrok et al. (2011) algorithm
Juxtacellular labeled data
Using the technique of juxtacellular labeling on the Barmack La-
beled database, five morphological types of CINs (granule cells,
UBCs, Golgi cells, stellate cells, and basket cells) were identified in
the mouse caudal vermis (Barmack and Yakhnitsa 2008). We
applied the Ruigrok et al. (2011) algorithm on this dataset, which
included 45 labeled CINs, looking for a match between the mor-
phological label and the label of the algorithm. The results, as
presented in Table 1, show a very low detection rate of 24% (not
significantly better than chance) and an incorrect classification
rate of 42%. The remaining 34% fell in the “border area” defined
by the algorithm.

Simulated data
Given the results of applying the Ruigrok et al. algorithm on a
new dataset, we explored its success rate on a simulated dataset,
Ruigrok Sim, which is based on its training data. We applied the

Ruigrok et al. algorithm on each of the 1000 simulated data of the
simulation. The detection rates were lower than those reported for
70% of simulated datasets [median, 72.1%; interquartile range
(IQR), 5.8%], and the incorrect classification values were much
higher than the reported 2% for 99.9% simulated datasets (median,
9.3%; IQR, 4.6%). Although the simulated detection rates are a bit
lower than those reported by Ruigrok et al., the interesting difference
is not there but in the incorrect classification rates, which suggest an
over-fit of the algorithm borders to the training data.

The clustering approach
Statistical methods
As an alternative to the Ruigrok et al. algorithm, we developed a
clustering algorithm on the Givon Mayo Unlabeled dataset. We
began by calculating 60 different statistical measures (see Mate-
rials and Methods). As a first attempt, we tried running the
UOFC-based clustering on the feature space used in the Ruigrok
et al. algorithm (average FR, median ISI, CVlog, CV2, and the
fifth percentile of the ISI distribution), as well as on the first four
moments of the ISI train (mean, variance, skewness, and kurto-
sis) and their natural logarithms. None of those feature spaces
showed any clear grouping (F(2,116) � 1.15, p � 0.89; F(1,117) �
0.37, p � 0.96; F(3,115) � 1.09, p � 0.98 respectively). Next we
used PCA to convert the database of all statistical measures into a
set of linearly uncorrelated variables. PCA was performed on the
original set of measures (Fig. 1A), on their natural logarithms
(Fig. 1B), and on a set composed of the original measures for

Figure 4. MN-PDF clustering results for all data using the Hellinger metric. A, Vw cluster validity suggest six clusters in the data. B, Separation statistics; the average (with SEM indicated by error
bars) distance between MN-PDFs within groups compared with the distance of the group center to the next nearest center. C, The ARCA distances matrix of all cells. Black is zero and white is a large
distance. Each group is marked by a square with the same color as in D. D, The MN-PDFs of all cells in the training and testing data divided into groups by the clustering algorithm. The training data
are in gray in the background and the testing data in color.
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those with nearly Gaussian tails (skewness �2) and the logarithm
of measures with non-Gaussian tails (Fig. 1C). UOFC-based cluster-
ing was applied on the first seven principal components of the orig-
inal set (covering 91% of the variance), the first five principal
components of the natural logarithm of the original set (covering
94% of the variance), and the first five principal components of the
mixed set (covering 93% of its variance). All showed no clear group-
ing (F(6,112) � 1.76, p � 0.98; F(4,114) � 2.08, p � 0.18; F(4,114) � 1.88,
p � 0.42 respectively. Because there was no consistency between the
different cluster validity indices (FHV, PD, Vw), the statistics pre-
sented are for the clustering result with the best F statistics.

ISI PDF analysis
The statistical measures of the ISI trains, which failed to show
clear grouping, are measures of the distribution of ISIs. Previous
studies in the cerebellum (Simpson et al., 2005; Holtzman et al.,
2006) and in the hippocampus (Parra et al., 1998) have looked at
the ISI distribution, but none took a nonparametric approach.
For that purpose, as described in Materials and Methods, we
estimated the PDF that generated each ISI distribution and mea-
sured the distance between each pair of PDFs (Fig. 2, A shows
sample ISI distributions and B shows their PDFs). Our feature
space was the matrix of distances between PDFs, and we applied
the UOFC-based clustering algorithm to this matrix. The Vw
cluster validity index suggested three groups in this dataset for the
RKL metric and two for the Hellinger metric, showing no consis-
tency between the two. This analysis did not show clear grouping
for any metric (F(2,116) � 3.41, p � 0.426 and F(1,117) � 4.05, p �
0.046 for the two distance metrics, respectively). The problem
with the application of our PDF distance approach on the PDFs
of the ISIs was the strong influence of the difference between the
centers of the distributions on the distance between the distribu-
tions themselves (Fig. 2B). As a result, distributions with close
centers but a different shape would be closer than distributions
with a similar shape but different centers (Fig. 2B). Thus, the
measure of distance does not capture the multidimensional dis-
tance between the histograms because it is dominated by the
distance between the centers of the distributions. Therefore, we

normalized the distributions by subtracting the median ISI from
all ISI trains and constructed MN-PDFs. It is important to note
that subtracting the median from the ISI distributions does not
actually remove this information from the distribution. That is
because the median ISI is highly correlated with other features of
the shape. For instance, the Spearman’s correlation of the median
ISI with the MAD ISI measure gives an R of 0.96. Rather, what the
MN-PDF does is to better match the dimensions of our nonpara-
metric representation in the analysis (Fig. 2C).

Our new feature space was the matrix of distances between
MN-PDFs. We applied the UOFC-based clustering algorithm to
this matrix. The Vw cluster validity index suggested six groups in
the dataset (Fig. 3A) for both distance metrics, and the F statistics
suggested a good separation (F(5,113) � 23.95, p � 0.001 and
F(5,113) � 25.56, p � 0.001 for RKL and Hellinger distance met-
rics, respectively). Figure 3B describes the separation of the clus-
ters by presenting the distances between and within groups.
Figure 3C presents the matrix of the Euclidian distances between
the ARCA representations of the PDFs, used for the clustering
algorithm, ordered by groups. The matrix emphasizes the small
distances between cells within group versus the bigger ones be-
tween cells from different groups. Figure 3D shows the PDFs of all
cells in data color coded by group.

Testing data
How robust are the six groups we found in the data? To answer
this question and confirm that the grouping results are not ran-
dom, we applied the algorithm to our testing data. The testing
dataset includes 105 CINs recorded all from the same cat (to
avoid variance between animals). The testing data was not used
for the construction of this clustering nor for any adjustments.
Only after reaching satisfying clustering results on our training
data, set all the parameters, validity indices, etc., and finding the
number of clusters to be six and the characteristic of each cluster,
we applied the algorithm unchanged to the testing data. We
found six clusters in the testing data as well (F(5,99) � 23.24, p �
0.001 and F(5,99) � 25.09, p � 0.001 for RKL and Hellinger dis-
tance metrics, respectively). By eye, these six clusters seem very

Figure 5. Anesthesia effect on the groupings. Distribution of the cells recorded under different anesthesia protocols over the different groups. A, The PDF of the cells colored by their anesthesia protocol. B,
Permutation histograms of the differences between the friendships of the cells recorded under different anesthesia protocols show no significant difference. The red line is the difference in the original data.
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similar to those in the training data (Fig. 4D). Next we applied
clustering on the full dataset (training and testing data), and here
we received the same six well separated groups (Fig. 4A–D; F(5,218) �
22.66, p � 0.001 and F(5,218) � 24.14, p � 0.001 for RKL and Hell-
inger distance metrics, respectively). The fact that there are six
groups of CINs with separable spontaneous activity may indicate
different underlying functional roles. Indeed, differences in
spontaneous activity are, by their nature, functional because it is
the spontaneous activity that maintains the state of the cerebellar
computational network.

Anesthesia protocol effect
To test for the possible effects of anesthesia on the results, we
performed recordings under two different anesthesia protocols:
ketamine/xylazine and propofol. The clustering algorithm was
applied on the dataset once again, this time separately on the two
sets recorded under two different anesthesia protocols. The re-
sults (Fig. 5A) show that the same groups exist in the data re-
corded in both anesthesia protocols, and the cells in both
protocols are evenly spread between the groups. To check statis-
tically if the clusters are represented in both drugs equally, we
tested whether the friendship levels (see Materials and Methods)
of cells recorded under the different drug protocols were affected
by the drug type. We took the set of the friendship levels assigned
to each neuron and its drug type and created 1000 permutations
of the friendship levels to which drug types were randomly reas-
signed. For each cluster, we then checked the difference between
the median friendship levels under the two drugs in the orig-
inal data compared with the same difference in all permuta-
tions (Fig. 5B). This difference was not significantly different
from 0 (mean p � 0.6), suggesting no significant difference
between the populations.

Cluster properties
To explore the properties of the clusters found, we span the la-
beled data on each of the 60 statistical measures we defined above
and looked for the measures that most strongly relate to the clus-
tering results. The statistical measures look at parameterization
of six different distributions, two of which are the ISI distribution
and the natural logarithm of the ISIs. Most parameters of those
two distributions are highly correlated (by definition) and, as
might be expected, some parameters of those distributions are
highly correlated to the clusters found by our nonparametric
clustering, which was applied on the ISI distribution. Specifically,
the mean, median of both distributions, and the MAD of the ISI
distribution show very high correlation (r � 0.9). The four other
distributions are not derived from the ISI distribution, but some
of their parameters do correlate to our clusters from the ISI dis-
tribution. The mean, median, and MAD of the distribution of the
absolute difference between successive ISIs, as well as the median
of the IFR, and the mean and median of natural logarithm of the
IFR, all showed very high correlation (r � 0.9) to the clusters.
Those distributions describe measures of regularity and random-
ness of the spike train that cannot be driven from the ISI distri-
bution itself but, interestingly, are described by the clusters
driven from the ISI distribution.

Dimensionality reduction
With six clusters and a large number of dimensions, there must
be a significant redundancy in the dimensionality of the data.
PCA on the distance matrix of the MN-PDFs (see Materials and
Methods) produced two components spanning 98.1% of the
variance for RKL metric or three components spanning 98.9% of
the variance for the Hellinger metric. For both metrics, the span
over the first two principal components was an arc (Fig. 6, top

Figure 6. MN-PDF dimensional reduction clustering results for RKL metric. Two typical PDFs from each group, one closest to the cluster center and the other with distance from the first equal to
the median distance between pairs in the group. Position on the page reflects the first two principle components (x position determined by the 1st PC, y position determined by the 2nd PC). Top
insets, The full dataset collected from the cat (training and testing data) presented on the first and second principal components with the same group colors as in Figures 3 and 4. Bottom insets, The
same data presented using a one-dimensional representation reflecting arc length along the one-dimensional curve on the top insets. Colors are the same as on the top insets and reflect the original
algorithm.
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insets; for the Hellinger metric, we looked at the span over the
first three principal components, which was a one-dimensional
curve in three-dimensional space). As described in Materials and
Methods, we fit a sliding spline to those curves and extracted the
one-dimensional data. The one-dimensional data from using the
two different distance measures was nearly identical (Pearson’s
correlation of r � 0.999).

Clustering results into six groups over this single dimension
led to the same clustering results as before, both with the RKL
(Fig. 6, bottom insets) and with the Hellinger distance metrics
(F(5,218) � 44.1, p � 0.005 and F(5,218) � 48.6, p � 0.001 for RKL
and Hellinger metrics, respectively). However, in one dimension,
the cluster validity index (Zhang et al., 2008) did not produce a
clear determination for the number of clusters (Fig. 7A). Never-
theless, looking at the two measures the cluster validity index is
constructed from (separation and variation) reveals that, al-
though the variation continues to drop as the number of clusters
is increased, the separation measure peaks at six groups (Fig.
7B,C). The one-dimensional clustering allows visualization of

the quality of the clustering, a key part of assessing its success.
Importantly, dimensionality reduction causes information loss
that generally leads to worse classification. Therefore, achieving
the same clustering results in this less informative space suggests
that those clusters are inherent in the data and not an artifact of
the multidimensional representation.

It was natural to ask whether this one dimension can be con-
structed from some specific parameterization of the ISI distribu-
tions. We found the one-dimensional data to be very highly
correlated to the natural logarithm of the median ISI (Pearson’s
correlation, r � 0.94 for both RKL and Hellinger metrics), which
is interesting considering that the ISI trains were normalized by
the median ISI. The one-dimensional data was actually best cor-
related to the natural logarithm of the MAD ISI (r � 0.99 for both
metrics), which is very reasonable because MAD ISI is a measure
of variance around the median. It was also highly correlated to the
logarithm of the median and the MAD of the absolute difference
between successive ISIs (Pearson’s correlations were r � 0.985
and r � 0.982, respectively, for both metrics). Each of those mea-
sures is presumably carrying some noise and, therefore, cannot
produce the exact grouping by itself. Our expectation is that this
one-dimensional parameter will ultimately reflect some underly-
ing biophysical property of the neuron that has a role in driving
firing but that is only loosely correlated with it. This would be
consistent with our results.

Morphology of clusters
After verifying the robustness of the algorithm and rejecting the
possible relation to the anesthesia protocol, we looked for a rela-
tion between the clusters of spontaneous activity and the mor-
phological types of the CINs. For that purpose, we returned to the
Barmack Labeled dataset and applied the clustering algorithm on
it. Although it is a relatively small dataset (only 45 CINs), the
clustering algorithm generated the same clustering we had seen
on the Givon Mayo Unlabeled dataset. That is, the cluster validity
measure Vw suggested six clusters for both metrics (the F statis-
tics suggested a good separation; F(5,39) � 67.31, p � 0.005 and
F(5,39) � 48.22, p � 0.001 for RKL and Hellinger distance metrics,
respectively), and the results showed about the same clusters as
found on the previous two datasets (Fig. 8A–D). Considering the
variation between the different species (cats vs mice) and the
different laboratories and recording systems (Ben-Gurion Uni-
versity with tungsten microelectrodes vs Oregon Health and Sci-
ence University with glass micropipettes), the similarity between
those clusters is remarkable. Furthermore, the application of the
dimensional reduction algorithm on this new dataset produced
the same arc shape after the PCA, and, after transforming into a
one-dimensional representation of these data, the clustering re-
sults on the single dimension remains the same (Fig. 9A–C). The
clusters in the one dimension were significantly distinct (F(5,39) �
100.36, p � 0 � 0.01 and F(5,39) � 95.45, p � 0.005 for RKL and
Hellinger metrics, respectively).

Looking for correlation between clusters of spontaneous ac-
tivity and the morphological types of the juxtacellular labeled
dataset, we found no such correlation. As presented in Table 2,
the different morphological CIN types are spread between the
spontaneous activity groups. We did not have access to the data to
test correlation of the clusters with the morphological types in the
Ruigrok Stats database. This difference between morphology and
spontaneous activity may be because spontaneous activity is
driven to a large extent by cerebellar inputs and depends on de-
tails of the input received by the different neurons or it may be the
result of spontaneous activity being driven by intrinsic biophys-

Figure 7. Cluster validity for single-dimensional representation. A, The Vw cluster validity
index (Zhang et al., 2008) does not produce a clear determination for the number of clusters
when using the one-dimensional representation in Figure 8C. B, The variation continues to drop
as the number of clusters is increased. C, The separation measure peaks at six groups.

Haar et al. • Clustering Cerebellar Interneurons J. Neurosci., January 28, 2015 • 35(4):1432–1442 • 1439



Figure 8. MN-PDF clustering results for mice juxtacellular data using the RKL metric. A, Vw cluster validity suggest six clusters in the data. B, Separation statistics; the average (with SEM indicated
by error bars) distance between MN-PDFs within groups compared with the distance of the group center to the next nearest center. C, The ARCA distances matrix of all cells. Black is zero and white
is a large distance. Each group is marked by a square with the same color as in D. D, The MN-PDFs of all cells in the mice juxtacellular data divided into groups by the clustering algorithm.

Figure 9. Dimensional reduction clustering results for mice juxtacellular data using RKL metric. Two typical PDFs from each group, one closest to center and the other with a median distance
between from the first. Position on the page determined by the first two principal components, as in Figure 6. Top insets, The full mice juxtacellular dataset presented on the first and second principal
components with the same group colors as in Figure 8. Bottom insets, The full dataset presented on the one-dimensional representation showing the same clustering results as the original algorithm.
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ical properties that vary widely across the different morphological
types. To what extent the CINs modulate their spontaneous ac-
tivity differently for different inputs may reveal how spontaneous
activity and morphological type interact.

Discussion
We applied an unsupervised approach to the clustering of neurons
on the basis of their spontaneous activity. The essential motivation
was to improve our confidence in the determination of neuronal
type based on electrophysiological signatures, a problem of great
interest in the analysis and interpretation of extracellular recordings.
However, our study failed to find evidence that the “morphological
type” of CINs can be determined from their spontaneous firing pat-
tern. Indeed, although we did find reproducible clusters in the ISI
histograms of CIN spontaneous activity, none of these clusters over-
lapped with morphologically defined cell types.

Our algorithm was based on modern approaches to cluster-
ing, including distance measures taken from the KLD between ISI
histograms that were then embedded into a high-dimensional
Euclidean space (Corsini et al., 2005). Our decision to use a high-
dimensional (i.e., nonparametric) approach was made after ef-
forts to cluster on the basis of specific selected features of the
spontaneous firing patterns did not produce successful cluster-
ing. Of course, any clustering algorithm must be validated against
data on which it was not trained. In our case— using a sophisti-
cated algorithm arrived at after significant trial and error—this is
particularly true. We reserved nearly half of our data for the pur-
pose of validation and only applied the algorithm to it once every
aspect of the algorithm had been determined. No additional ma-
nipulation of the algorithm or its parameters was allowed. The six
clusters that we found in the original data were also found in this
validation data. The clustering was also robust when tested on a
new dataset from a different animal, as well as under two different
anesthesia protocols and when tested on a separate dataset col-
lected in mice. It is worth mentioning that many physiological
factors, including but not at all limited to anesthesia, core tem-
perature, and heart rate, may influence spontaneous activity. Al-
though we controlled for these factors, spontaneous activity may
be affected by other factors as well. Thus, the fact that we have
seen the same six groups across different preparations, in different
laboratories, and in multiple anesthetic protocols seems to transcend
at least some physiological factors. It may be that these groups would
not be found in some specific physiological conditions.

Thus, we tentatively propose that the six groups of neurons
found by our algorithm represent a classification of CINs worthy
of additional study, despite the fact that none of them coincided
with any morphological group.

This lack of overlap appears inconsistent with the published
algorithms that identify morphological type on the basis of spon-
taneous activity (Ruigrok et al., 2011; Van Dijck et al., 2013), as
well as previous reports of consistency in the spontaneous activity
(Edgley and Lidierth, 1987; Vos et al., 1999; Simpson et al., 2005;
Holtzman et al., 2006; Prsa et al., 2009). Although this may arise

because of differences in the species studied, in the precise cere-
bellar recording locations, or in other aspects of the experimental
methodologies, it may also mean that the published algorithms
over-fit their data. There are a number of reasons to believe this.
First, we are not the only ones. Sultan and Bower (1998) pro-
duced similar findings in their effort to classify molecular layer
interneurons. Others have reached similar conclusions regarding
the relationship between spontaneous activity and neural mor-
phology in other parts of the brain (Markram et al., 2004). Sec-
ond, it seems the published algorithms do not generalize well.
Performance of the Ruigrok et al. (2011) algorithm on mouse
CINs was well below their results on their own data. Van Dijck et
al. (2013) also tested the Ruigrok et al. algorithm on new data and
arrived at similar results [correct classification of 44 of 92 (48%)
rat CINs]. Badura et al. (2013) used the Ruigrok et al. algorithm
to check the identity of CINs recorded in the molecular layer and
found only 64% of those cells to be molecular layer interneurons
according to the algorithm. Indeed, even testing on simulated
data, drawn to be as close as possible to the training data, still lead
to reduced performance. Third, the algorithms are not consistent
with each other. A review of the above-cited literature on the
consistency of spontaneous activity in different CIN subtypes
does not produce any consensus view. Finally, published results
indicate great variability in firing within CIN subtypes. Sponta-
neous activity of Golgi cells is highly variable (Holtzman et al.,
2006), possibly the result of the existence of five classes of bio-
chemically distinct subgroups (Simat et al., 2007). CINs of the
molecular layer are also known to fall into distinct categories
electrophysiologically (fast and slow firing), but each category
contains both stellate and basket cells (Jörntell et al., 2010;
Ruigrok et al., 2011). In summary, it is possible that the existing
efforts to classify based on extracellular spontaneous activity are
overambitious.

Of course, it still may be possible to develop an algorithm that
does succeed in classifying. That is, perhaps we are not looking at
the “right” features of the spontaneous activity, features that
would produce a clustering consistent with morphological type.
Although our search was rather extensive and included the fea-
ture spaces used in all previous studies on this topic, this cannot
be ruled out. In any case, if such a classifying feature exists, it is
not one that is arrived at intuitively.

Although our results may be disappointing to researchers
hoping to be able to make strong claims about the identity of
extracellularly recorded interneurons (they were for us), we feel
that they represent more than a negative result. First, we hope
that the field can now move past the efforts to determine the
morphological types of CINs in this way. Second, we believe that
the six groups of CINs found consistently by our algorithm could
play a key role in understanding the functional roles of CINs. A
first effort in this direction is reflected in recent work from our
group exploring how pausing and synchronization of CINs is
different in the different groups (R. Givon-Mayo, S. Haar, Y.
Aminov, E. Simons, and O. Donchin, unpublished observations).
Of course, we must still test the extent to which these groups,
defined on the basis of spontaneous activity, respond differently
during awake behavior. Finally, we think that our work repre-
sents a methodological innovation. The effort to identify neurons
based on extracellularly recorded spontaneous activity is com-
mon in various areas of the brain. Ours is one of the first studies
to successfully apply modern techniques of classification and
clustering to the study of extracellularly recorded neural activity.
Specifically, the use of an unsupervised learning approach allows us

Table 2. Clustering results of juxtacellular data

Clustering algorithm identification

Juxtacellular 1 2 3 4 5 6

Granule 6 2 2 0 0 0
UBC 1 3 1 1 2 2
Golgi 2 4 5 2 0 0
Basket 0 0 1 0 0 0
Stellate 4 0 2 2 2 1
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to ask which clusters really exist in the activity before we take the next
step and try to relate these clusters to identified neuronal types.

Of course, one concern with an approach such as ours is that
advanced modern methods, hand-tuned at least somewhat to cere-
bellar data, may not be applicable in other datasets. We feel that this
is unlikely to be a serious problem. First, we think that the essence of
our approach should generalize: there is value in examining data as
free as possible from assumptions regarding the best parameteriza-
tion or the clusters that one expects to find. Although changes in
things such as quality of data, firing rate, and stability may affect the
details of the approach, this essential insight should still hold. Sec-
ond, although this must be tested empirically, we also believe that the
details are likely to generalize. This is because the specific approaches
we have chosen (the distance measure, the embedding, the clustering
algorithm, and the separation index) are all standard tools in the field
of clustering that have been shown to be powerful on a wide variety
of datasets. Thus, although hand-tuning may always be necessary,
we think our particular technical approach will represent an excel-
lent first attempt for most datasets.

We think that our results should encourage researchers to try
similar approaches on their own data. Such techniques could
provide insight into the natural groupings of activity of neurons
recorded in other areas of the brain. They could prompt a reex-
amination of existing categorization algorithms in other brain
areas, and it is even possible that they could reveal a relationship
between neural activity and morphology in other areas in which it
has not previously been shown convincingly. As such, we see our
contribution not only to the current understanding of CINs but
also as a challenge to researchers in all parts of the brain.
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