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Introduction
The discovery of  the molecular mechanisms of  circadian clocks has highlighted a new potential for 
improving human health through the translation of  circadian timing concepts to medical practice (1–3). 
In mammals, a molecular oscillator involving 15 clock genes generates an oscillation of  about 24 hours 
that rhythmically regulates cellular metabolism, division, and death within each cell (2, 4, 5). The molecu-
lar clocks in the cells of  all organs are coordinated by an array of  physiological rhythms that are generated 
by the suprachiasmatic nuclei (SCN) in the hypothalamus (6). Thus, the circadian phase of  SCN function 
constitutes a critical measure for inferring timing throughout the organism. The circadian rhythm in core 
body temperature and that in circulating glucocorticoids, which are controlled by the SCN, play a key role 
in the coordination of  the molecular clocks outside the brain (7–9), while the melatonin secretion rhythm 
both informs on the circadian phase of  the SCN and helps calibrate its period (10). The rest-activity cir-
cadian pattern, which integrates lifestyle and social signals, has bidirectional linkage with the SCN and 
thus can moderate the robustness of  SCN rhythmic functions in rodents (11). The circadian timing system 

BACKGROUND. Circadian timing of treatments can largely improve tolerability and efficacy in 
patients. Thus, drug metabolism and cell cycle are controlled by molecular clocks in each cell and 
coordinated by the core body temperature 24-hour rhythm, which is generated by the hypothalamic 
pacemaker. Individual circadian phase is currently estimated with questionnaire-based chronotype, 
center-of-rest time, dim light melatonin onset (DLMO), or timing of core body temperature (CBT) 
maximum (acrophase) or minimum (bathyphase).

METHODS. We aimed at circadian phase determination and readout during daily routines in 
volunteers stratified by sex and age. We measured (a) chronotype, (b)  every minute (q1min) CBT 
using 2 electronic pills swallowed 24 hours apart, (c) DLMO through hourly salivary samples from 
1800 hours to bedtime, and (d) q1min accelerations and surface temperature at anterior chest level 
for 7 days, using a teletransmitting sensor. Circadian phases were computed using cosinor and 
hidden Markov modeling. Multivariate regression identified the combination of biomarkers that 
best predicted core temperature circadian bathyphase.

RESULTS. Among the 33 participants, individual circadian phases were spread over 5 hours, 
10 minutes (DLMO); 7 hours (CBT bathyphase); and 9 hours, 10 minutes (surface temperature 
acrophase). CBT bathyphase was accurately predicted, i.e., with an error less than 1 hour for 78.8% 
of the subjects, using a new digital health algorithm (INTime), combining time-invariant sex and 
chronotype score with computed center-of-rest time and surface temperature bathyphase (adjusted 
R2 = 0.637).

CONCLUSION. INTime provided a continuous and reliable circadian phase estimate in real time. This 
model helps integrate circadian clocks into precision medicine and will enable treatment timing 
personalization following further validation.
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(CTS) involves the several components that generate, moderate, or reset the circadian rhythms at cellular, 
tissue, or whole-body levels, including the retinal light sensor melanopsin, the SCN, the SCN-generated 
circadian physiology, and the network of  molecular clocks in all organs and tissues (2). Studies in healthy 
humans and in patients with cancer or other diseases have revealed large between-subject differences for 
the rhythms in rest-activity (12, 13), body temperature (13), circulating cortisol (14), and melatonin levels 
(15), as well as those in clock gene expression in peripheral tissues (16). More specifically, the extent of  
the circadian variations (double amplitude of  the fitted 24-hour cosine function) in the physiological bio-
markers varied by up to several-fold, and the timing of  maximum (acrophase) or minimum (bathyphase) 
varied by up to 12 hours in humans studied during their daily routine (12–16). Occupational schedules can 
also influence health, through altering CTS function. For instance, night shift work that causes circadian 
disruption was identified as increasing the risks of  breast and possibly other cancers, as well as cardiovas-
cular, gastrointestinal, metabolic, and reproductive disorders (17–19). Recently, circadian rhythm research 
has reached a critical level where translational applications to human health have become fundamental 
for many conditions (20, 21). It is clear that treatment timing can largely affect the occurrence of  adverse 
events and efficacy, thus making the consideration of  individual differences in CTS function essential for 
the proper care of  patients. Such time dependencies have been demonstrated in randomized clinical trials 
and meta-analyses involving patients with malignant, cardiovascular, rheumatological, or neurodegener-
ative diseases (20, 22–25). Similarly, the daily timing of  preventive interventions also appeared critical, 
as shown for vaccination (26). Experimental and clinical studies have further indicated that patients on 
antibiotics or analgesic medications could benefit from circadian timing optimization of  their treatment 
(2). However, human physiology, experimental chronopharmacology, and clinical chronotherapy trial 
data have revealed sex-dependent differences in CTS function and stressed their clinical relevance (23, 
27). For instance, overall survival was improved significantly in men but not in women receiving the same 
fixed-time chronomodulated chemotherapy protocol with oxaliplatin and 5-fluorouracil/leucovorin for 
metastatic colorectal cancer as compared with conventional delivery, as demonstrated in a meta-analysis 
of  3 international randomized trials involving individual patient data (23).

Thus, it is necessary to reliably determine the circadian phase in real time for each patient, using a non-
invasive and simple method, to fulfill the promises resulting from the discovery of  circadian clock mecha-
nisms for precision medicine. Novel diagnostic tools have to be developed that aim both at the prevention 
of  circadian disorders, which can lead to chronic diseases or their exacerbation, and at the personalization 
of  clock-based therapies for cancers and other chronic diseases.

Toward this goal, the current study aimed at the continuous and remote determination of  the individual 
subject’s bathyphase (timing of  the computed daily nadir) of  the overt 24-hour rhythm in core body tempera-
ture. New digital health methods and an algorithm were designed here for computing internal circadian phase 
(INTime) in people whose circadian rhythms were telemonitored in real time during their daily routine.

Results
Subjects’ characteristics and chronotype. Of  the 37 recruited participants, 33 provided valid data, including 15 
males and 18 females, aged 21–78 years, with a similar distribution according to age (Figure 1 and Sup-
plemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.130423DS1). The majority of  participants had no ongoing medical condition and were not taking 
any medication. Oral contraceptive pills or intrauterine systems were used by 39% of  the female participants.

The morningness-eveningness questionnaire scores revealed that chronotype was categorized as 
“morning” for 15 subjects, “intermediate” for 15 others, and “evening” for 3 participants.

DLMO. Adequate saliva samples were available for 24 of  30 subjects assessed for this endpoint (80%). 
Salivary melatonin data were available for computing DLMO using a threshold based on individual base-
line values for 12 participants (40%) (Figure 2A). The estimated threshold method based on the pooled 
34 baseline values in the same subjects was also applied. Individual DLMOs using both methods differed 
by –32 minutes to +11 minutes and were strongly correlated (Pearson’s correlation, r = 0.96; P < 0.001). 
Thus, we used the estimated threshold method to compute the DLMOs of  the 24 subjects. The median 
clock hour of  melatonin secretion onset occurred at 2050 hours with an IQR of  2001 to 2119 hours and 
individual values spread over 5 hours, 10 minutes (Figure 2B).

Core body temperature. Overall, core body temperature time series were provided by both e-Celsius pills in 
each subject for a median time span of  2.9 days (IQR, 2.0–3.4), ranging from 1.3 up to 14.4 days according 
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to individual gastrointestinal transit. Each of  the 66 pills ingested by the 33 participants provided tempera-
ture time series over durations ranging from 0.2 to 13.4 days (median, 1.6; IQR, 1.1–2.4). There was an 
overlap of  24 hours or more for the records by the first and second pill in 13 subjects. Raw temperature data 
from both pills were correlated within each of  these 13 participants, with a median Pearson’s correlation 
coefficient of  0.86 (IQR, 0.74–0.93) that was highest with a time lag of  –2 minutes.

Our cosinor analysis revealed that most individuals displayed a strong 24-hour rhythmic pattern occa-
sionally with an additional prominent 12-hour component (Figure 2C). We found that the precision of  the 
individual bathyphases, as indicated with 90% CIs less than 55 minutes, was much better than that of  the 
corresponding acrophases, whose CIs largely exceeded this value for 6 subjects (18.2%). The median acro-
phase was located at 1740 hours (IQR, 1520 to 1905 hours), with individual values staggered over 12 hours, 
5 minutes. The median bathyphase occurred at 0330 hours (IQR, 0230 to 0415 hours), with individual 
values spread over a 7-hour span (Figure 2D).

Rest-activity and surface temperature teletransmitted by chest sensor. Rest-activity and temperature time 
series from the chest surface sensor were available for the 33 participants, for a median duration of  7.0 
days (IQR, 6.9–7.3). Large intersubject variations were obvious (Figure 3A). Thus, median number of  
accelerations per minute ranged from 6 to 135 between subjects, with highest values reaching 331 up 
to 538. Median chest surface temperature values (5-minute aggregates) varied from 32.6°C to 36.5°C 
between participants.

Chest surface temperature lowest daily values in fitted curves from individual participants ranged from 
32.1°C to 36.4°C and highest daily values from 34.5°C to 36.8°C.

Rest-activity time series displayed regular 24-hour patterns that were highly reproducible from one day to 
the next in all the subjects, as indicated with prominent 24-hour periods according to spectral analyses (28). 
Harmonic hidden Markov model (HMM) analyses (29) revealed that the median center-of-rest time was located 
at 0305 hours (IQR, 0215 to 0325 hours), with individual values ranging over 5 hours, 15 minutes (Figure 3B).

Spectral analyses (13, 28) of  chest surface temperature time series identified a dominant 24-hour 
periodic component for 21 participants (63.6%), and a dominant 12-hour component for 9 of  them 
(27.3%), resulting in 2 daily maxima as shown in cosinor fittings (Figure 3C). No circadian or 12-hour 

Figure 1. Consort diagram. Flow diagram showing the enrollment of participants, according to sex and age, and the variables that were measured with key 
features. DLMO, dim light melatonin onset. 
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Figure 2. Intersubject variabilities in main circadian biomarkers. (A) Salivary melatonin profiles in 2 female participants (28 years old shown in gray 
and 30 years old shown in blue); the vertical dashed lines represent DLMO, which differed by 1 hour and 11 minutes between both subjects. The dark bar 
represents the mean sleep spans of both participants. (B) DLMO variations among 24 subjects. DLMO could not be computed for 6 participants because 
of improper or lacking information on sampling times (n = 5) or exposure to light greater than 50 lux within 30 minutes of sampling (n = 1). The dark bar 
represents the mean sleep span of the 24 participants. (C) Core body temperature patterns in the 2 same participants shown in A. Five-minute aggregated 
data are displayed as dots; the solid curves illustrate the averaged 24-hour profiles according to 2-harmonic cosinor fitting. Bathyphases with 90% CIs 
estimated by the bootstrap method are indicated with dashed lines and color bands. The dark bar represents the mean sleep span of both participants. 
(D) Core body temperature bathyphase (and 90% CI) variations among the 33 participants. The dark bar represents the mean sleep span of all participants. 
(E) Scatter plots and dashed regression line, with results from both Pearson’s and Spearman’s correlations between DLMO and core body temperature 
bathyphase for the 24 subjects.
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Figure 3. Intersubject variabilities in rest-activity and chest surface temperature. (A) Representative examples of chronograms of chest surface tem-
perature (top) and rest-activity (bottom) of 2 participants (blue represents a female, 71 years old; gray, a male, 34 years old). Hourly aggregated data are 
shown with dots, with solid curves corresponding to Fourier fitting with harmonics estimated using Spectrum Resampling algorithm (28). The dark bars 
represent the participants’ respective sleeping spans. (B) Top: Circadian activity state probability plot from harmonic HMM for a 78-year-old male partici-
pant illustrating the computation method of the center-of-rest time. Three activity states were assumed in the HMM, i.e., inactive state (blue), moder-
ately active state (pink), and highly active state (red). The 3 states’ probabilities sum up to 1. The center-of-rest time was computed as the gravity center 
of the inactive state probability profile (blue), as indicated with a dashed, vertical black line. Bottom: Box plot (5th–95th percentiles) of the center-of-rest 
times in the 33 participants. The dark bar represents the mean sleep span of all 33 participants. (C) Representative examples of the chest surface tem-
perature of the same participants as in A. Five-minute aggregated data are shown as dots, and solid curves represent the averaged 24-hour profiles using 
cosinor fitting. The dark bar represents the mean sleep span of both participants. (D) Range of chest surface temperature acrophases (and 90% confidence 
limits estimated by bootstrap method) of the 24 participants displaying a 24-hour rhythm (left) and the 9 participants with a dominant 12-hour rhythm 
(right). The dark bar represents the mean sleep span of the corresponding participants. 
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pattern was found for 3 participants (9.1%). According to our cosinor analysis, the median nightly acro-
phase of  chest temperature occurred at 0300 hours (IQR, 0210 to 0355 hours), with individual values 
spread over 9 hours, 10 minutes (Figure 3D). The corresponding median daily bathyphase that followed 
the nightly acrophase took place at 1100 hours (IQR, 0940 to 1235 hours), with individual values spread 
over 10 hours, 25 minutes.

Noninvasive prediction of  core temperature bathyphase. No statistically significant correlation was found 
between sex, age, BMI, or concurrent treatment, on the one hand, and the various phase indicators, on the 
other hand, according to 2-sample t test and pairwise Spearman’s correlation (P > 0.10). In contrast, circadian 
phase estimates were correlated to some extent (Supplemental Figure 1). The DLMO was weakly correlated 
with the core temperature acrophase (Spearman’s correlation, r = 0.40; P = 0.05) and bathyphase (r = 0.36; P 
= 0.09) (Figure 2E). Chronotype score was strongly correlated with center-of-rest time (r = –0.70; P < 0.001), 
chest surface temperature acrophase (r = –0.60; P < 0.001), and core temperature bathyphase (r = –0.67; P < 
0.001). The center-of-rest time was further correlated with both chest surface and core temperature acrophases 
(r = 0.67, and r = 0.69, respectively; P < 0.001) and core temperature bathyphase (r = 0.71; P < 0.001). Step-
wise model selection identified the “best” regression model for predicting core temperature bathyphase, with 
an adjusted R2 of  0.637. The resulting model named “INTime” predicted core temperature bathyphase using 
the covariates sex (P < 0.001) and chronotype score (P = 0.009) as well as 2 computed phase indicators from 
the chest sensor data, namely the center-of-rest time (P = 0.033) and chest surface temperature bathyphase (P 
= 0.063) by means of  the following estimated equation: core temperature bathyphase = (1.33 × sex) – (0.058 
× chronotype score) + (0.472 × center-of-rest time) – (0.145  × chest temperature bathyphase), with sex being 
coded as 1 for male and 0 for female and phases in hours and decimal hours.

The accuracy of  the predicted core temperature bathyphase (Figure 4) was computed by the distance 
between the predicted and measured values, whose median was 7 minutes (IQR, –40 minutes to +31 minutes), 
with individual errors from –106 to +108 minutes. As a result, the fitting error was less than 1 hour for 26 
participants (78.8%). In addition, the 90% prediction bands covered most individuals’ measured bathyphase 
values, i.e., 31 in 33 participants (93.9%), indicating a very satisfactory within-sample prediction accuracy.

Discussion
Intersubject differences in chronotype make it crucial to perform circadian rhythm measurements 
without interfering with the daily life of  people, to successfully translate and broadly apply circadian 
clock concepts to precision medicine. The current study represents an important step toward such a 
goal because it revealed interindividual differences by 7 hours for the bathyphase of  core body tem-
perature; by 5 hours, 10 minutes for DLMO; by 5 hours, 15 minutes for center-of-rest time; and by 9 
hours, 10 minutes for the acrophase of  chest surface temperature, thus highlighting large intersubject 
variability for these distinct and correlated estimates of  circadian phase. The endogenous circadian 
rhythms in core body temperature, as continuously recorded using a rectal probe (30), and those in cir-
culating melatonin concentrations were robustly coordinated in healthy humans. As a result, the bat-
hyphase of  core body temperature has been largely used as an adequate reference for the endogenous 
circadian phase in humans (31, 32), based on studies performed under constraining constant routine 
protocols in human chronophysiology laboratories (30, 33). Although salivary DLMO at home might 
have proved a precise indicator of  circadian phase, it could be estimated in only 80% of  our very com-
pliant participants. Reasons involved occasional environmental light contamination both outside and 
at home, possible food contamination by melatonin-containing aliments, and need for alterations in 
daily and familial routine, including meal timing. To circumvent such drawbacks and to enable clinical 
applications of  circadian clocks, the current study has identified a noninvasive method that provides a 
precise and continuous estimate of  individual circadian bathyphase of  core body temperature in real 
time from remote people during their daily routine. Within-sample accuracy was less than 1 hour for 
78.8% of  the participants. The use of  this model in medical practice requires information on sex, score 
from the chronotype questionnaire, and 2 circadian timing parameters extracted from chest rest-ac-
tivity and surface temperature monitoring. Both of  them are easily amenable to automatic, real-time 
computation out of  teletransmitted time series being recorded during the daily routine of  the person. 
We expect that INTime will enable circadian timing of  treatments, i.e., chronotherapy, to irreversibly 
complement the basic principle of  today’s toxicology, “The dose makes the poison.” This paradigm, 
which was proposed by Paracelsius more than 500 years ago (2), has driven the current adjustment 
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of  drug dose levels to body weight or surface area, pharmacokinetics, or drug polymorphisms, which 
have become indispensable information for both regulatory approval and safe medical use of  medica-
tions. Although there is strong evidence that time of  day of  treatment delivery can matter as much as 
dose (2, 3, 22–24, 26, 27), we have been lacking metrics for the determination of  optimal treatment 
timing in individual patients. Indeed, results from randomized clinical trials and meta-analyses have 
shown that the patients’ benefits resulting from drug timing could be as large as 5-fold, yet they could 
depend upon patients’ sex and CTS function (23, 27). The need for the personalization of  treatment 
timing was further highlighted by up to 8 hours’ difference in optimal timing of  the anticancer drug 
irinotecan, as a function of  mouse sex and genetic background. In this large study, optimal timing was 
predicted by a mathematical model combining the circadian mRNA expression patterns of  clock genes 
Bmal1 and Rev-erbα in the liver or colon, which also governed the key pharmacological mechanisms 
of  this drug (34, 35). Recent results have further highlighted consistent relations between 24-hour 
temperature cycles and circadian patterns in metallodrug toxicity both in vitro and in vivo (36). The 
findings are in line with previous studies linking the circadian rhythms in mouse tolerability for 16 
anticancer drugs to the intraperitoneal temperature cycle (37).

Both the limited sample size available for DLMO estimations and the weak correlations between 
DLMO and other timing indicators precluded any attempt toward the search for a prediction model 
of  DLMO. Moreover, the ability to reset most peripheral clocks with physiological temperature cycles 
but not with melatonin supported a potential key role of  this rhythm for the biomedical applications 
of  circadian clocks. The limitations of  our study involve the measurement of  core body temperature 
within various segments of  the gastrointestinal tract and the lack of  a validation sample of  the INTime 
model. Previous studies have shown that the circadian patterns in body temperature measurements 
were very similar if  taken from gut using an ingested pill or from the rectum using a dedicated probe 
(38), thus supporting gut temperature bathyphase as a reliable circadian phase biomarker. Moreover, 
INTime predicted circadian phases to range from 0155 to 0705 hours in a distinct cohort of  18 healthy 
subjects whose sex, chronotype, center-of-rest time, and chest surface temperature bathyphase had 

Figure 4. Relations between measured and predicted core body temperature bathyphases in the 33 participants. Red asterisks indicate the computed 
bathyphases of core body temperature, with their respective 90% confidence limits shown as horizontal limited lines, according to cosinor analysis of real 
measurements. Dots and gray bands represent the within-sample predicted bathyphases with corresponding 90% prediction bands, as computed using 
the INTime model.
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been determined previously (13). In this independent sample, median, IQR, and extremes of  predicted 
individual circadian phases matched those in the current study (Supplemental Figure 2) very well, 
although accuracy could not be computed because core body temperature rhythms were not recorded. 
By bootstrapping the residuals of  the INTime model fit, we obtained pseudo data sets with arbitrary 
size n. By applying 1000 Monte Carlo simulation trials, we found that n = 600 and n = 1000 samples 
would be required to stabilize the INTime model fit so that the corresponding 90% and 95% CIs of  the 
adjusted R2 were less than 10% of  the given value of  0.637.

Our findings have a major potential impact for the reduction of  severe adverse events from treatments, 
whose reduction represents a critical challenge for improving patient quality of  life, treatment compliance, 
treatment efficacy, and human health care cost burden. As an example, a 10.8-fold increase in the yearly 
rate of  emergency visits for cancer treatment–related toxicities has been documented over 10 years in a 
large US study, where 91% of  the emergency visits translated into emergency admissions, and 4.9% of  
deaths, resulting in related costs of  billions of  US dollars (39).

In conclusion, using a teletransmitting dual-function chest sensor and INTime, treatment timing can 
be personalized both between and within patients, thus potentially reducing adverse events and improv-
ing therapeutic outcomes. Such personalized chronotherapy deserves prospective testing and could help 
invert the steadily rising economic burden of  treatment morbidities in cancer and chronic diseases.

Methods

Study design and human subjects
The study aimed at (a) the estimation of  the internal circadian phase during daily routines, a process that 
usually requires a constraining circadian physiology protocol in the laboratory (30, 33), and (b) the assess-
ment of  the relevance of  age and sex to the noninvasive circadian biomarkers selected for informing on the 
CTS during human daily routines (Figure 5).

We aimed to recruit 30 adult volunteers stratified by sex and age above or below 40 years with valid data.
Eligibility criteria included the ability to work or to perform usual activities and to be aged 18 years 

or more. Exclusion criteria involved any uncontrolled pathological or psychological condition; any known 
gastrointestinal disease; any ongoing treatment with glucocorticosteroids, melatonin agonists or antago-
nists, lithium, or analgesic; any contraindication to the use of  electronic devices; and night shift work or 

Figure 5. Study picture. Schematic description of the study design. GPRS, General Packet Radio Service. Icon credit: Pixabay (https://pixabay.com/).  
User license available at https://creativecommons.org/licenses/by/4.0/.
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crossing of  more than 3 time zones within the past 4 weeks. Volunteers were recruited locally through flyers 
and advertisements in newsletters and local journals. The study participants were asked not to change their 
free-living daily schedule throughout the study, except on the evening when they were to collect 6 hourly 
samples at home in dim light starting at 1800 hours until usual bedtime.

Data collection and processing
Main characteristics of  the subjects, including sex, birth date, marital status, professional activity, and past 
and current illnesses and treatments, were recorded upon study entry. Chest surface temperature, activity, 
and 3D orientation were recorded every minute for 1 week using the PiCADo mobile eHealth platform 
(13). These 3 variables were measured using a chest sensor (Movisens) and a pocket-sized gateway (Eeleo). 
Anonymous data were transmitted via Bluetooth from the sensor to the connected gateway and then trans-
mitted to a secure and dedicated server via GPRS every 24 hours. Because the devices used were not water-
proof, their short removal was allowed for showers, baths, or occasional needs. A body weight scale was 
also connected to the gateway via Bluetooth, with daily measurements acquired before breakfast.

Saliva was self-collected by the participants using saliva collection aids (SalivaBio Passive Drool, Sali-
metrics) and 2-mL micro tubes (SARSTEDT AG & Co.). Participants were asked to collect 5 hourly samples 
at home during an evening in dim light starting at 1800 hours and a sixth one at 2300 hours or before retir-
ing, whichever came first. Dim light conditions were verified using a wrist actigraph (Motionlogger Micro 
Watch, Ambulatory Monitoring Inc.), with all subjects being reminded not to occlude the light sensor with 
sleeves. A salivary sample was considered invalid for melatonin determination if  light intensities greater than 
50 lux (40) had been recorded by the wristwatch light detector within the 30 minutes preceding collection.

Core body temperature was measured using an electronic, ingestible pill (e-Celsius Performance pill, 
BodyCAP Medical). Participants were asked to ingest 1 such pill in the morning for 2 consecutive days. 
Data were transmitted via radio frequency to a dedicated monitor (e-Viewer Performance Monitor, Body-
CAP Medical). Data were transferred from the monitor to the computer of  the biomedical engineer after 
both pills had been eliminated through the stools. The abnormally low or high core body temperature val-
ues in the first few hours of  recording were deleted because they were typically due to the temperature of  
food or drink ingestion. Data from the first ingested pill were used until pill elimination in the feces. Data 
from the second pill were used thereafter to obtain a complete time series. Participants provided a detailed 
diary with time of  awakening and retiring, mealtimes, intense activity times, and medication times (if  any).

Chronotypes were determined using the largely validated morningness-eveningness self-assessment 
questionnaire (41).

Data management
Teletransmitted chest sensor data were stored on the server based on HL7 standards (international stan-
dards for transfer of  clinical and administrative data). Data were downloaded from the server to the com-
puter of  the biomedical engineer only. Anonymized data were saved on a secure storage server according to 
the national Data Protection and Freedom of  Information Acts guidance. Data transmission was inspected 
at least twice a week during the monitoring sessions to ensure adequate functioning.

e-Celsius temperature data from the ingestible pills were received on the BodyCAP monitor. Similarly, 
after retrieval of  the monitor from the subjects, data were downloaded and saved on a secure storage server 
according to the national Data Protection and Freedom of  Information Acts guidance.

Statistics
Salivary melatonin secretion. DLMO is commonly computed as the time when melatonin concentration in 
plasma or saliva exceeds a threshold computed as the mean of  3 consecutive daytime values before rise plus 
twice the standard deviation of  these 3 points (42). For those subjects with insufficient baseline data, an 
estimated threshold value was computed as the mean plus twice the standard deviation of  the pooled base-
line melatonin values in the subjects with adequate baseline data. This estimated threshold was first vali-
dated in the subjects with adequate baseline data by Pearson’s correlation, before its use for all the subjects.

Chest surface temperature and core body temperature. A single core temperature time series linked the tem-
perature data measured by the first pill, until its elimination, and the second one, afterward. The temperature 
data were first aggregated by 5-minute mean and smoothed using a 1-hour moving average window, then 
computed as an averaged 24-hour profile. We further fitted the following 2-harmonic cosinor model (43),  
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with periods T1 = 12 hours and T2 = 24 hours to describe the average day oscillation of  both chest surface 
and core body temperatures based on prior evidence (13):

  (Equation 1)
where y(t) is the temperature at time t; M is the mesor (mean level of  the fitted cosine function); a1 and a2 
and b1 and b2 are the coefficients of  the cosinor model, and e(t) is the error. Given the periods T1 and T2, the 
coefficients were estimated by least-squares linear regression. We report the overall acrophase θ̂        max, i.e., time 
of  maximal value in the fitted values ŷ(t), and the overall bathyphase θ̂  min, i.e., time of  minimal value in ŷ(t). 
Note that for core body temperature, we considered mainly bathyphase because it could be identified with a 
better precision than acrophase in most individuals. Ninety percent CIs for θ̂        max and θ̂  min were evaluated and 
reported by applying n = 1000 bootstrap trials (44).

Telemetric rest-activity. A recently developed 24-hour harmonic HMM approach (29) was fitted to the 
data to compute numerical quantifiers that were associated with circadian rhythm in rest-activity data. The 
HMM approach categorizes the actigraphy measurement into 3 states, namely inactive/rest, moderately 
active, and highly active, in a probabilistic way. We focused on the inactive/rest state, in particular the cen-
ter-of-rest time over a 24-hour span, which provided an estimation of  the average center-of-rest time point 
during the recording period.

Prediction of  core body temperature bathyphase. The main aim of the study was to provide a method for the 
continuous and remote estimation of  the individual subject’s bathyphase of  the overt 24-hour rhythm in core 
body temperature. The potential for core temperature bathyphase to be predicted by DLMO, rest-activity, 
chest surface temperature, and chronotype as well as the subject’s characteristics was investigated using a mul-
tivariate linear regression model. Potential predictors were first explored via pairwise Spearman’s correlations. 
An initial regression model was formulated by considering all phases, with sex, age, and BMI, as explanato-
ry variables. A parsimonious regression model was then identified by a stepwise model selection procedure 
based on corrected Akaike’s information criterion for small sample size using the R function StepAICc (45).

Significance of  explanatory variables was also tested by 2-tailed t test where a possible significant effect 
was considered for P values smaller than 0.1. The distribution of  the time distance between predicted and 
real core body temperature bathyphase measures (residuals) was computed to study the reliability of  the 
prediction. A prediction accuracy of  less than 1 hour was considered precise enough for clinical applications.

Data access statement
R-codes to obtain the datasets corresponding to the salivary melatonin profiles, the core body tempera-
ture patterns, and the rest activity and chest surface temperature patterns displayed in Figure 2, A and C; 
and Figure 3, A and C, as well as the R-codes for cosinor analyses are available at https://github.com/
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