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Abstract

Langerhans cell histiocytosis (LCH) is a rare neoplasm predominantly affecting children. It 

occupies a hybrid position between cancers and inflammatory diseases, which makes it an 

attractive model for studying cancer development. To explore the molecular mechanisms 

underlying the pathophysiology of LCH and its characteristic clinical heterogeneity, we 

investigated the transcriptomic and epigenomic diversity in primary LCH lesions. Using single-

cell RNA sequencing, we identified multiple recurrent types of LCH cells within these biopsies, 

including putative LCH progenitor cells and several subsets of differentiated LCH cells. We 

confirmed the presence of proliferative LCH cells in all analyzed biopsies using 

immunohistochemistry, and we defined an epigenomic and gene regulatory basis of the different 

LCH cell subsets by chromatin accessibility profiling. In summary, our single-cell analysis of 

LCH uncovered an unexpected degree of cellular, transcriptomic, and epigenomic heterogeneity 

among LCH cells, indicative of complex developmental hierarchies in LCH lesions.
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Introduction

Langerhans cell histiocytosis (LCH) is a rare hematopoietic neoplasm driven by gain-of-

function mutations in the mitogen-activated protein kinase (MAPK) pathway1,2. The name 

of the disease originates from the characteristic expression of CD207, also known as 

langerin, which is conventionally associated with Langerhans cells – a type of resident 

epidermal immune cell3. However, the relationship between LCH cells and Langerhans cells 

remains controversial, and LCH has also been linked to dendritic cells and other myeloid 

cell types4–6. LCH is phenotypically characterized by an accumulation of CD1A and CD207 

double-positive cells in various tissues (Fig.1a). These lesions can develop in almost any 

organ, but are most common in skin and bone1.

LCH severity is clinically assessed by the extent of the disease (involvement of one or more 

organs, i.e. single-system vs. multisystem disease) and the involvement of known risk organs 

(liver, spleen, hematopoietic system). Treatment decisions are currently based solely on 

clinical presentation, as no reliable molecular markers for risk stratification have been 

identified yet. LCH is most commonly driven by the BRAFV600E mutation6–8, but the 

pathophysiology of LCH is different from cancers with oncogenic BRAFV600E mutations, 

such as melanoma, non-small-cell lung cancer, and colorectal cancer. LCH cells carry few 

genetic alterations beyond BRAFV600E or another oncogenic driver in the MAPK pathway 

(MAP2K1, ARAF), and they show no progressive accumulation of recurrent somatic 

mutations9. Instead, high levels of inflammatory infiltrate suggest that cell-extrinsic, 

immunological stimuli could be key contributors to the formation of LCH lesions10–12. LCH 

is lethal in up to 20% of patients with risk-organ-positive, multisystem disease treated 
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according to current standard of care. In contrast, the disease often resolves spontaneously 

following unknown mechanisms in patients with single lesions1,12.

Results

Langerhans Cell Histiocytosis Lesions Are Composed of Distinct Cell Populations

LCH cells within the same lesion show wide variability in their CD1A and CD207 levels 

based on IHC (Fig. 1B) and flow cytometry (Supplementary Fig. S1). To characterize the 

cellular and molecular landscape of LCH lesions, we performed droplet-based single-cell 

transcriptome sequencing of seven LCH lesions. The biopsies were obtained from patients 

with multisystem disease (n = 4) and single-system disease (n = 3), and they were collected 

from different sites: lymph node (n = 1), skin (n = 3), and bone (n = 3), thus representing the 

wide clinical spectrum of the disease (Fig. 1C; Supplementary Table S1). Because the 

percentage of LCH cells within lesions can be low1, two samples were enriched for cell 

populations with specific expression levels of the canonical LCH surface markers CD1A and 

CD207 (Supplementary Fig. S1). A total of 19,044 single-cell transcriptomes passed quality 

control and collectively gave rise to a detailed cellular and molecular portrait of LCH 

lesions, spanning multiple patients and diverse clinical presentations (Fig. 1D, 

Supplementary Fig. S2A and S2B). In the single-cell transcriptome dataset, we identified 

several distinct clusters of immune cells, which we labelled based on known cell-type-

specific marker genes (Fig. 1E and F; Supplementary Fig. S2C). As expected, we observed 

T cells (some expressing FOXP3, indicating that these could be regulatory T cells as 

described before in LCH13), B cells, monocytes/macrophages, and dendritic cells, in 

addition to LCH cells.

Focusing initially on LCH-specific transcriptional profiles that were shared across cells and 

across patients, we compared CD1A and CD207 marker-positive LCH cells with four 

immune-cell populations identified in all biopsies (Supplementary Fig. 2D). The LCH cells 

showed high expression of multiple genes previously reported as specifically expressed in 

LCH cells14,15, including the MMP9 gene, several genes relevant for antigen presentation 

(for instance, CD1E), and genes encoding members of the HLA complex (Fig. 2A,b). We 

combined the results of the individual comparisons into an LCH gene signature derived from 

our single-cell transcriptome data, which distinguished LCH cells from immune cells across 

patients (Fig. 2B; Supplementary Fig. S3A and S3B). We validated this gene signature on 

published LCH bulk transcriptome datasets8,14,15 and were able to confirm its robustness for 

a wider range of LCH samples (Supplementary Fig. S3C and S3D) and in comparison to 

other histiocytoses, namely Erdheim-Chester disease and juvenile xanthogranuloma 

(Supplementary Fig. S3E).

Our LCH gene signature was enriched for genes associated with macrophages as well as 

dendritic cells (Fig. 2C), supporting that LCH cells share relevant properties with both cell 

types. We also observed an enrichment of genes involved in IFN signaling and antigen 

presentation, reflecting the inflammatory nature of LCH lesions. Moreover, MYC-associated 

genes were characteristically enriched in the LCH cells, and the same was true for pathways 

linked to cell cycle and DNA repair (Fig. 2D). In aggregate, our analysis identified an LCH 

gene signature that is consistent with the neoplastic (cell cycle, DNA replication, MYC) as 
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well as the inflammatory (immunity, inflammation, macrophages, dendritic cells) phenotype 

of the disease, it confirmed and extended previous reports describing gene expression 

profiles of bulk LCH samples, and it established a catalog of potential targets for future 

research on disease mechanisms and molecularly guided therapies in LCH.

LCH Lesions Harbor a Developmental Hierarchy of LCH Progenitors and Their Progeny

We next exploited the single-cell resolution of our dataset to investigate cellular and 

molecular heterogeneity among LCH cells. To that end, we clustered the single-cell 

transcriptomes of all biopsies and identified 14 discernible subsets (Fig. 3A). Each of these 

subsets was represented in all samples, despite differences in sample characteristics such as 

disease extent and site of the biopsied lesion (Fig. 3B; Supplementary Fig. S4A). Given that 

LCH is generally considered a clonal disease16,17, we hypothesized that the observed 

heterogeneity with its recurrent subsets of LCH cells may arise from developmental 

processes such as cellular differentiation, de-differentiation, or transdifferentiation. This 

would be in line with the clinical observation of a dynamic nature of LCH lesions, which 

often develop and resolve spontaneously1,12.

Pursuing the hypothesis that a developmental hierarchy exists within LCH lesions, we 

exploited previous findings that transcriptional promiscuity is a hallmark of undifferentiated 

cells, including stem cell and progenitor cell populations18–21. We quantified this property 

by calculating the “single-cell entropy” for each single-cell transcriptome, which provides a 

measure of lack of order (interpreted here as a lack of specialization), in analogy to the 

term’s use in physics (thermodynamics). We found that the 14 LCH-cell subsets differed in 

their levels of entropy, forming a gradient of LCH cells with progressively lower entropy, 

corresponding to more restricted transcriptomes and more differentiated cell states (Fig. 3C). 

We therefore labelled the 14 LCH cell subsets by decreasing entropy, starting from LCH-S1 

and LCH-S2 as the least differentiated LCH subsets and ending with LCH-S11 to LCH-S14 

as the most differentiated subsets. We also identified multiple intermediate states, indicative 

of a continuous developmental process unfolding within LCH lesions. For further analysis, 

we focused on the extreme points of this developmental hierarchy, which exhibited markedly 

distinct gene expression (Fig. 3A and D; Supplementary Fig. S4B).

Comparing the highest-entropy, least differentiated cell subsets (LCH-S1 and LCH-S2) with 

the four lowest-entropy subsets (LCH-S11 to LCH-S14), we identified characteristic 

transcriptional profiles associated with each LCH cell subset (Fig. 3D; Supplementary Table 

S2). In both LCH-S1 and LCH-S2, we detected high expression of CD1A and of genes 

associated with cell proliferation, including MKI67 (which encodes the canonical 

proliferation marker Ki-67) and the aurora kinases AURKA and AURKB – consistent with 

the interpretation that these two subsets constitute proliferative, progenitor-like LCH cells. 

Pathway enrichment analyses corroborated their proliferative nature with specific 

enrichment for DNA replication and cell-cycle-regulated genes (Fi. 3E).

In contrast, the lowest-entropy and putatively more differentiated LCH cell subsets LCH-

S11 to LCH-S14 were characterized by high expression of immune genes involved in 

cellular processes such as cytokine signaling, chemotaxis, and IFN signaling. Specifically, 

LCH-S11 cells expressed markers of mature dendritic cells such as CD83 and LAMP3, as 
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well as two receptors involved in Langerhans cell migration, CXCR4 and CCR73,22; LCH-

S12 cells expressed CLEC9A, BATF3, and IRF8, which are characteristic of certain 

dendritic cell populations23; LCH-S13 cells expressed genes associated with interferon 

response; and LCH-S14 cells were characterized by expression of MMP9, CD68, CD63, and 

the peptidase ANPEP (CD13), as well as pathway enrichment for osteoclast differentiation 

and rheumatoid arthritis, suggesting that this LCH cell subset may be involved in osteolysis 

and tissue destruction (Fig. 3D and 3E).

We applied our LCH subset gene signatures to published LCH bulk transcriptome 

datasets8,14,15 (Supplementary Fig. S4C–S4E) and observed patient-to-patient heterogeneity 

in the relative strength of these signatures, supporting that LCH lesions can differ in their 

composition of LCH cell subsets. Moreover, this analysis showed that many of the genes in 

the LCH-S11 signature were also highly expressed in epidermal Langerhans cells, and genes 

in the LCH-S12 signature were highly expressed in dendritic cells, while the signatures of 

these subsets were only weakly detectable in the other histiocytoses analyzed (Supplemental 

Fig. 4E).

Across all LCH cells (independent of their subset), we observed a gradual loss of expression 

for cell proliferation genes such as TUBB, TUBA1B, and MKI67 as entropy levels 

decreased and cells became more differentiated (Fig. 3F). This trend was further associated 

with a decrease of CD1A expression in the lowest-entropy cells (Fig. 3F) and with a 

reduction in the expression of genes associated with epidermal Langerhans cells, which was 

most prominent in the LCH-S12 subset (Fig. 3G). Notably, the LCH-S11 subset displayed 

reduced expression of the overall Langerhans cell signature despite high expression of 

individual Langerhans cell genes in the LCH-S11 gene signature. Taken together, these 

observations lend further support to a model where LCH progenitor cells with high cell 

proliferation and high levels of CD1A marker expression give rise, through a gradual 

process, to differentiated cell subsets that are less proliferative and carry gene expression 

profiles reminiscent of differentiated immune cells, including that of dendritic cells (most 

pronounced in the LCH-S12 subset).

To confirm that the analyzed cell subsets indeed constitute bona fide LCH cells, we 

performed two complementary validations, assaying BRAFV600E mutation status as well as 

cell clonality for representative LCH subsets. We prospectively enriched cells from the 

LCH-S1 and LCH-S12 subsets, as well as CD1A+CD207+ LCH cells and CD1A-CD207- 

non-LCH cells, for the patient sample with the highest percentage of LCH-S12 cells 

(Supplementary Fig. S4F and S4G). We then quantified the BRAFV600E mutation rate in 

each sorted cell population using allele-specific droplet digital PCR24. Reassuringly, both 

LCH subsets as well as the bulk LCH cell population displayed a BRAFV600E mutation rate 

in the range of 85% to 90% (Fig. 3H). We further assessed clonality for the same cell 

populations using the HUMARA assay16,17, which evaluates X chromosome inactivation 

status in female-derived samples (such as the tested LCH lesion). Indeed, we found that both 

LCH subsets as well as the bulk LCH cell population showed substantial skewing similar to 

the positive (monoclonal) control, while non-LCH cells were more similar to the negative 

(polyclonal) control (Fig. 3I). These results demonstrate that the LCH-S1 and LCH-S12 cell 
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subsets constitute bona fide LCH cells of clonal origin that carry the BRAFV600E driver 

mutation.

We next tested whether the results obtained on the merged dataset comprising all seven LCH 

patients were replicated in the individual LCH lesions (Supplementary Fig. S5A-S5C). 

Indeed, cells corresponding to the progenitor-like LCH-S1 subset consistently exhibited high 

levels of entropy in all seven lesion-specific single-cell transcriptome datasets, while cells 

corresponding to the more differentiated cell subsets (LCH-S11 to LCH-S14) had 

substantially lower levels of entropy in each analyzed LCH patient sample.

Finally, to visualize the different LCH-cell subsets in tissue slices of LCH lesions (with 

potential future relevance for clinical diagnostics), we searched our transcriptome dataset for 

subset-specific markers that can be analyzed using IHC or immunofluorescence, and we 

found promising candidates (Fig. 4A and B). Ki-67 (MKI67) and HMMR, in combination 

with the LCH-specific markers CD1A and CD207, were identified as candidate markers for 

the LCH-S1 and LCH-S2 subsets; and CLEC9A, in combination with CD1A and CD207, 

was identified as a candidate marker for the LCH-S12 cell subset (Fig. 4C-E; Supplementary 

Fig. S6A-S6G).

In aggregate, our results support a developmental hierarchy within LCH lesions that is 

seeded by progenitor-like LCH-S1 / LCH-S2 cells and gives rise to more differentiated LCH 

cell subsets, which we interpret as maturing LCH cells (LCH-S11 and LCH-S12), based on 

transcriptome features resembling epidermal Langerhans cell activation and dendritic cell 

maturation25,26, and as aggressive LCH cells (LCH-S13 and LCH-S14), based on the 

expression of genes linked to destructive inflammatory behaviour15,27,28.

Aberrant Regulatory Programs Orchestrate the Developmental Hierarchy in LCH Lesions

To explore the regulatory basis of the observed developmental hierarchy, we prospectively 

enriched selected LCH subsets from the same sample for which we confirmed BRAFV600E 

mutation rates and cell clonality (Fig. 3H and I). We performed chromatin profiling by assay 

for transposase-accessible chromatin using sequencing (ATAC-seq)29 on enriched cells of 

the progenitor-like cell subset LCH-S1 and of two differentiated cell subsets, LCH-S11 and 

LCH-S12 (Supplementary Fig. S7A and S7B). Transcriptional regulators and signaling 

pathways identified in this analysis may help understand the developmental processes in 

LCH lesions and potentially identify candidate targets for future molecularly guided 

therapies of LCH.

We integrated the ATAC-seq data with our matched single-cell RNA-sequencing (RNA-seq) 

data, to connect chromatin-accessible regulatory regions to the genes that they may regulate. 

To link regulatory regions to their most likely target genes, we considered not only 

proximity in the DNA sequence but also proximity in the chromatin 3D structure according 

to HiC data for hematopoetic cells30. We then plotted the average chromatin accessibility of 

gene-linked regulatory regions against the expression of the respective gene, focusing on 

differences between the LCH-S1 and LCH-S11, and between the LCH-S1 and LCH-S12 

subsets (Fig. 5A). LCH-S12 cells displayed increased gene expression, and a concordant 

gain in chromatin accessibility, for the key myeloid regulatory gene IRF8, whereas LCH-
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S11 cells displayed increased expression and chromatin accessibility for the NF-κB genes 

REL and RELB as well as the immune regulatory genes JUNB and ETV3.

For a more systematic analysis of the regulatory dynamics in LCH lesions, we identified all 

genomic regions that displayed differential accessibility between the LCH-S1, LCH-S11, 

and/or LCH-S12 subsets (n = 1,964; Fig. 5B; Supplementary Table S2). We refer to the set 

of regulatory regions that showed increased chromatin accessibility (activation) in LCH 

subset LCH-S1 relative to LCH-S11 or LCH-S12 as a1 (for “active”) and to those that were 

characterized by decreased accessibility (inactivation) as i1 (for “inactive”). We analogously 

defined region modules a11, i11, a12, and i12 as those specifically active or inactive in the 

corresponding LCH subsets. We characterized these regulatory modules by three 

complementary lines of bioinformatic analysis.

First, enrichment analysis of genes associated with the regulatory regions identified gene 

sets implicated in cancer (LCH-S1) and in immune diseases (LCH-S12), consistent with the 

dual nature of LCH as a neoplasm with a strong inflammatory component (Fig. 5C; 

Supplementary Table S3). We also identified genes involved in various immune-related 

pathways, including interleukin and interferon signaling. Regions that were differentially 

accessible in the more differentiated LCH-S11 or LCH-S12 cell subsets (region modules a11 

and a12) were frequently associated with genes expressed in macrophages, dendritic cell, 

and other mononuclear blood cells, consistent with the transcriptional signatures we 

discovered in the gene expression analysis.

Second, we sought to identify the key regulators of each module using enrichment analysis 

for transcription factor (TF) binding sites. To that end, we performed genomic region 

enrichment analysis using the LOLA software31 for a large collection of TF binding sites 

experimentally determined by chromatin immunoprecipitation sequencing (ChIP-seq; 

Supplementary Table S3). Of all TFs identified as significantly enriched in at least one 

module, 34 TFs were either among the genes previously identified as differentially 

expressed in one of the LCH subsets or directly linked to such a gene (Fig. 5D; 

Supplementary Table S3). Notably, all of these TFs were enriched in regulatory regions with 

inaccessible chromatin in LCH-S1 cells (module i1), while some were accessible in LCH-

S11 (module a11), underlining the contrasting nature of these two LCH subsets. Several TFs 

were enriched in multiple region modules indicating broad relevance for LCH cells, which 

included the AP-1 factors JUNB and FOSL2 as well as the STAT and IRF families of TFs. 

We further observed enrichment of SPI1 (also known as PU.1) binding sites in all modules 

except those linked to LCH-S12 (both accessible [a12] and inaccessible [i12]), indicative of 

a central role of this hematopoietic master regulator in LCH. Interestingly, binding sites of 

the histone lysine demethylase KDM1A (also known as LSD1) were significantly enriched 

in module i1 (inaccessible in LCH-S1 progenitors) but not in other modules, suggesting a 

role of this repressive histone modifier in the development of the more differentiated LCH 

subsets.

Third, we performed enrichment analysis for a comprehensive catalogue of DNA sequence 

binding motifs of TFs obtained from the HOCOMOCO database32 (Fig. 5E). Motif 

enrichment analysis is complementary to LOLA analysis (which uses cell-type-specific 
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ChIP-seq data) as it focuses on DNA binding propensities that are intrinsic to the TF and 

largely independent of cell type. Regulatory regions specifically active in LCH-S1 (module 

a1) were strongly enriched for the MYBL2 motif, which has a known regulatory role in 

cancer stem cells33. In contrast, the a12 module (active in LCH-S12 cells) was enriched for 

motifs of the hematopoietic TFs IRF8 and BATF3. These factors are critical for myeloid and 

dendritic cell differentiation and function34–36, possibly explaining the more mature myeloid 

identity of LCH-S12 cells. Moreover, we observed enrichment for the JDP2 motif in the i1 

module. This suggests that an inactivation of AP-1 may regulate differentiation, in line with 

upregulation of JDP2 transcription in more differentiated subsets (Fig. 3D).

Regulatory Networks Identify Subset-Specific Regulatory Hubs in LCH Lesions

Finally, we integrated our data into gene regulatory network models of LCH, in order to 

combine and visualize the regulatory programs that we identified in the different LCH 

subsets. We assigned the identified TFs (selected based on genomic region enrichment and 

motif analysis) to the regions that they are predicted to bind (based on ChIP-seq data and 

sequence motifs), and then linked regulatory regions to their putative target genes (using 

sequence proximity and HiC data), which gave rise to a network model that incorporates 

data from all LCH subsets. Next, we derived network models specific to each LCH subset by 

parameterizing this global network with the measured chromatin accessibility and gene 

expression levels in each LCH subset using the matched ATAC-seq and single-cell RNA-seq 

data for the most comprehensively characterized biopsy LCH_E (Fig. 6A).

This network-based analysis revealed gene regulatory hubs shared across all LCH subsets, 

such as the hematopoietic TF SPI1 (PU.1; Fig. 6B), but also subset-specific differences (Fig. 

6C). For example, the TFs BATF, TCF3, TCF7L2, and MYBL2 were highly prominent in 

the regulatory network of LCH-S1. MYBL2 is known to be involved in cancer initiation and 

cell proliferation, often associated with poor survival33,37,38. Lysine demethylases (KDMs) 

including KDM1A and KDM4A were also most active in LCH-S1 cells, consistent with the 

progenitor-like state of LCH-S1 and suggesting that developmental TFs may be retained in a 

poised state39–42. The regulatory network of LCH-S12 was instead dominated by the TFs 

IRF8 (an interferon-dependent mediator of macrophage and dendritic cell function and 

differentiation34,36,43), BATF3, and BCL6, which were all closely connected to STAT1. 

Moreover, many connections of SPI1 to its target genes in other LCH subsets were altered in 

LCH-S12 cells, possibly contributing to the specific expression of dendritic cell genes in 

these cells. For the LCH-S11 subset, the regulatory network is centered on NF-κB (REL and 

RELB), STAT3, and AP-1 (JUNB and FOSL2), which are present in all networks but most 

pronounced in LCH-S11 cells. Finally, we observed differential node importance for the 

histone acetyltransferase and transcriptional coactivator EP300 in both LCH-S11 and LCH-

S12 cells, implicating this epigenetic modifier in the specification of more differentiated 

LCH cell subsets.

In summary, we used chromatin accessibility profiling in prospectively purified LCH cell 

subsets in combination with single-cell RNA-seq data and integrative bioinformatic analysis, 

in order to reconstruct the gene regulatory networks that may control LCH-subset-specific 

gene expression. Gene expression of the discussed regulators was largely consistent across 
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all analyzed lesions (Supplementary Fig. S7C-S7E), suggesting that the prototype gene 

regulatory networks put forward here indeed capture the epigenomic program underlying the 

developmental hierarchy in LCH lesions.

Discussion

LCH lesions are thought to arise from hematopoietic progenitor cells that carry an activating 

mutation in the MAPK signaling pathway2,44. Despite their clonality and dependence on a 

single oncogenic driver (most frequently the activating BRAFV600E mutation), LCH is 

pathophysiologically and clinically very different from hematopoietic cancers and from 

BRAFV600E-driven solid tumors. In this study, we systematically investigated the cellular 

and molecular heterogeneity in primary LCH lesions, using single-cell transcriptome 

sequencing in combination with epigenome profiling of prospectively enriched LCH cell 

subsets. Our dataset comprises 19,044 single-cell transcriptomes across seven LCH biopsies, 

representing the wide clinical spectrum of LCH. Integrative bioinformatic analysis of this 

rich resource uncovered an unexpected degree of heterogeneity among LCH cells, as well as 

evidence of a shared developmental hierarchy that underlies all analyzed lesions.

Most notably, we identified two subsets of LCH cells with hallmarks of progenitor cells 

(LCH-S1 and LCH-S2), including high single-cell entropy (indicative of an undifferentiated 

cell state) and higher cell proliferation. Based on our data, we put forward a conceptual 

model in which these progenitor-like LCH cells seed a hierarchy of LCH cells that develop 

into more differentiated cell states (Fig. 7). The four subsets of LCH cells with lowest 

transcriptome entropy (indicative of a differentiated cell state) expressed genes reminiscent 

of different immune cell types, suggesting that hematopoietic differentiation programs 

remain active in LCH cells and contribute to the cellular and molecular hierarchy observed 

in LCH lesions. Specifically, LCH-S12 cells expressed genes associated with dendritic cells, 

including CLEC9A and BATF323; LCH-S11 cells carried features of maturing epidermal 

Langerhans cells, such as expression of CCR7 and CXCR422; and LCH-S13 as well as 

LCH-S14 cells were characterized by high expression of pro-inflammatory genes, 

metalloproteinases (MMP9, MMP12), and aminopeptidases (ANPEP), indicating that these 

LCH cell subsets may contribute to tissue destruction as observed in LCH45. Finally, we 

inferred preliminary gene regulatory network models for three of the LCH cell subsets 

(LCH-S1, LCH-S12, LCH-C11), which implicated key regulators of immunity (including 

JAK-STAT, AP-1, and NF-κB signaling) and development (including several epigenetic 

modifiers) in the regulation of the developmental hierarchy in LCH cells. While the gene 

regulatory networks presented here are based on the analysis of one biopsy by ATAC-seq 

and on external data (ChIP-seq, DNA motifs) from other biological systems, we have 

observed consistent transcriptional activity of key regulators in the other examined biopsies, 

supporting relevance to our conceptual understanding of LCH development.

Our proposed model (Fig. 7) provides a framework for understanding the developmental and 

regulatory dynamics in LCH. This model will need to be refined, validated, and improved by 

subsequent research, taking into account three important points. First, the precise number of 

distinct LCH cell subsets remains somewhat arbitrary, given that cellular differentiation is a 

gradual process, and any separation into a number of distinct cell populations is necessarily 
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a simplification. While our bioinformatic analysis identified 14 LCH cell subsets in a data-

driven manner, for many investigations it will make sense to combine related cell subsets, as 

we have done for the two progenitor-like subsets (LCH-S1 and LCH-S2). Second, it remains 

to be studied to what degree the cells that proceed along the developmental hierarchy in 

LCH lesions undergo irreversible cell fate decisions and to what degree they retain the 

plasticity to change from one LCH subset to another. For example, it seems possible that the 

three closely related cell subsets LC-S11, LCH-S13, and LCH-S14 constitute different 

manifestations (e.g., depending on the cellular microenvironment) of one developmentally 

defined LCH cell subset (Fig. 7, center right). Third, our study focused on (peripheral) LCH 

lesions, while it is entirely possible that the developmental hierarchy in LCH lesions is 

seeded by an unseen LCH cell precursor that is located in different anatomical location. For 

example, a plausible model of multi-system LCH may include an LCH cell precursor in the 

bone marrow, which has acquired the clonal driver mutation and seeds LCH lesions at distal 

sites that support a pro-inflammatory microenvironment. To address the many questions 

posed by our preliminary model, it will be necessary to develop new in vitro (e.g., patient-

derived organoids) and in vivo (e.g., xenograft experiments46) experimental systems for 

LCH research, and to closely align these systems with our observations in primary patient 

samples.

Our model has several potential implications for the future clinical management of LCH 

(and possibly other histiocytic diseases). First, we speculate that inter-individual differences 

in the composition of LCH cell subsets reflect differences in the aggressiveness of the 

disease and may correlate with relevant clinical characteristics including prognosis. There 

are currently no established molecular markers for risk stratification in LCH, which 

constitute an unmet clinical need given the range of treatment options (from watch-and-wait 

to intensive chemotherapy). While single-cell transcriptome sequencing may not be practical 

in a routine clinical setting, we were able to observe differences in LCH subset composition 

in bulk RNA-seq (Supplementary Fig. S4C-S4E), immunohistochemistry, and 

immunofluorescence imaging (Fig.4; Supplementary Fig. S6). After validation in large 

patient cohorts, such markers may help inform patient-specific treatment decisions in LCH. 

Second, our data implicate several immune-regulatory signaling pathways in the regulation 

of the developmental hierarchy, including the potentially destructive LCH-S13 and LCH-

S14 cell subsets. This observation may explain the success of anti-inflammatory drugs such 

as indomethacin in the treatment of LCH, suggesting that such treatment might not only 

alleviate symptoms but indeed interfere with key pathogenic processes. This underlines the 

importance of the current randomization between chemotherapy (mercaptopurine and 

methotrexate) versus an anti-inflammatory drug (indomethacin) in the ongoing international 

study for the treatment of LCH (LCH-IV; ClinicalTrials.gov Identifier: NCT02205762). 

Third, a thorough dissection of developmental hierarchies in other histiocytic disorders such 

as Erdheim-Chester Disease may refine our understanding of the similarities and differences 

between these diseases and potentially give rise to more precise molecular diagnoses of 

diseases of the histiocytic spectrum.

In summary, our study charts a detailed molecular map of LCH lesions, uncovering a 

cellular hierarchy that shows evidence of developmental, immunological, and oncogenic 

regulatory mechanisms. Our results reinforce the view that LCH shares important aspects 
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with cancers as well as immune diseases, which makes it a particularly interesting model for 

biomedical research. Moreover, this study demonstrates the power of combining single-cell 

sequencing and epigenome profiling for dissecting complex developmental hierarchies and 

their regulatory underpinnings, thereby providing a rational basis for the development of 

personalized therapies.

Methods

Patient Cohort and Sample Collection

LCH samples were obtained with informed consent from patients undergoing routine 

diagnostic biopsies. Diagnosis was confirmed by central pathology review. Cell suspensions 

were prepared by dissociating collagenase IV (Worthington Biochemical) and dispase II 

(Sigma-Aldrich) treated tissue using a 70 μm cell dissociation sieve (Sigma-Aldrich). Cells 

were then pelleted, re-suspended in CellGro medium (CellGenix), and immunostained for 

fluorescence-activated cell sorting (FACS) using the antibodies specified below. Sorting was 

performed on a BD FACS Aria 1 as described previously15. All protocols for obtaining and 

studying patient material were approved by the responsible institutional review board and 

the ethics committee of the Medical University of Vienna. Sampling was done according to 

the regulations of the Declaration of Helsinki after written informed consent.

IHC

IHC stainings were done on formalin-fixed, paraffin-embedded tissue sections with 

antibodies against CD1A (NCL-L-CD1A-235, Leica Biosystems), CD207 (CMC39221020, 

Cell Marque), and the mutation-specific BRAFV600E antibody (06965814001, Spring 

Bioscience). Staining was performed on an automated Leica BOND III immunohistologic 

stainer. Images were captured with a Leica DM6B using LEICA LAS X software.

Immunofluorescence

OCT-embedded (Tissue-Plus O.C.T. compound, Scigen Scientific), fresh-frozen tissue was 

cut into 7 μm sections and mounted on microscope slides (Dako). After 20 minutes of air-

drying, the sections were fixed in ice-cold acetone (Sigma-Aldrich) for 10 minutes, 

rehydrated in phosphate-buffered saline (PBS) (Gibco Life Technologies) and incubated 

with PBS/2% goat serum (Dako) for 30 minutes at room temperature. This was followed by 

an overnight incubation at 4°C with either CD168 FITC (bs-4736R-FITC, Bioss) or 

CLEC9a PE (30-101-294, Miltenyi Biotec) diluted in PBS/2% bovine serum albumin (BSA, 

Sigma-Aldrich). After washing with PBS, the second step antibodies (i.e. goat anti-rabbit 

IgG Alexa Fluor488 and goat anti-mouse A546, respectively) were applied for one hour at 

room temperature, washed with PBS, blocked, and then stained with CD1a PE or CD1a 

FITC for 1h at room temperature. After washing with PBS, a second round of secondary 

antibody staining was performed (goat anti-mouse A546 or goat anti-FITC A488, 

respectively) for 1h at room temperature. The slides were then counterstained with 4,6-

diamidino-2-phenylindole dihydrochloride (DAPI, Roche Diagnostics), washed again, and 

mounted in aqueous mounting medium (PermaFluor, Thermo Scientific). Negative controls 

were obtained by substituting isotype-matched IgG for the respective primary antibodies and 

by applying the second step antibodies and the anti-FITC antibodies alone. Image 
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acquisition was performed on a Zeiss LSM510 equipped with four lasers and a Zeiss 

Axiovert 200M using a Zeiss Plan-Neofluar 40x objective with oil immersion. Images were 

exported from Zen software (Zeiss).

Flow Cytometry and Cell Sorting

The following antibodies were used for FACS purification of primary LCH samples: CD45-

PerCP (345809, BD Biosciences), CD1A-FITC (555806, BD Biosciences), CD207 PE 

(IM3577, Beckman Coulter), CD14 Alexa Fluor 700 (A7-212-T100, Exbio). To selected 

antibodies for the analysis of LCH subsets, we cross-checked marker gene lists for 

commercially available, high-quality antibodies. The following antibodies were used for 

FACS purification of LCH subsets: CD207 APC-Vio770 (130-112-371, Miltenyi Biotec), 

CD1A PE-Vio 770 (130-112-872, Miltenyi Biotec), CD45 eFluor 506 (69-0459-42, 

eBioscience), CD168 FITC (bs-4736R-FITC, Bioss), CD208 PE (130-104-392, Miltenyi 

Biotec), CD298 PerCP-Vio770 (130-101-294, Miltenyi Biotec), CD300A Alexa 647 

(566342, BD Biosciences), and CD370 VioBlue (130-097-406, Miltenyi Biotec). LIVE/

DEAD stain (Invitrogen) was used for live/dead staining according to manufacturer’s 

description. Cell sorting was performed on a FACSAria instrument (BD Biosciences). The 

FACSDiva software (BD Biosciences) was used for data analysis.

HUMARA Assay

HUMARA assays were performed as previously described47. Briefly, DNA isolated from 

unsorted LCH biopsy cells and LCH-cell subsets was digested with HpaII (NEB) or mock 

digested. Amplification of the HUMARA STR region was performed using Phusion HS II 

Polymerase (ThermoFisher) and the following primers: 5‘-6FAM-

TCCAGAATCTGTTCCAGAGCGTGC-3‘, 5’-GCTGTGAAGGTTGCTGTTCCTCAT-3‘. 

PCR products were analysed and quantified using an Applied Biosystems 3730XL DNA 

Analyzer. The ratio of the active to the inactive X chromosome was calculated using the area 

under the peak. To account for the amplification bias of the smaller allele, a corrected ratio 

was calculated by dividing the ratio of the digested sample (allele 1 / allele 2) by the ratio of 

the mock digested sample (allele 1 / allele 2). Ratios close to 1 indicate a polyclonal cell 

population and ratios above 3 are considered evidence of clonality48. DNA isolated from a 

single-cell-derived cell line and from whole blood of a healthy donor was used as 

monoclonal control (ratio 4.1) or polyclonal control (ratio 0.9), respectively.

Allele-Specific Droplet Digital PCR

Droplet digital PCR for BRAFV600E was performed as previously described24, using the 

Mutation Assay BRAF p.V600E c.1799T-A, Human (dHsaMDV2010027, Bio-Rad 

Laboratories) and the QX200 Droplet Digital PCR System (Bio-Rad Laboratories).

Single-Cell RNA-seq

Single-cell RNA-seq was performed using the 10x Genomics Chromium Single Cell 

Controller with the Chromium Single Cell 3’ V2 Kit following the manufacturer’s 

instructions. After quality control, libraries were sequenced on the Illumina HiSeq 4000 

platform in 2x75bp paired-end mode. Supplementary Table S1 includes an overview of 
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sequencing data and performance metrics. Raw sequencing data were processed with the 

CellRanger v1.3.0 software (10x Genomics) for demultiplexing and alignment to the 

GRCh38 human reference transcriptome. Processed data were analyzed using the R statistics 

software and various Bioconductor packages. Specifically, we used Seurat v2.3.449 to load 

pre-processed results from CellRanger into R and to perform quality control (removing cells 

with less than 1,000 genes or mitochondrial content greater than 10%). Unless otherwise 

stated, we used default parameters throughout. We merged all datasets, log-transformed, and 

normalized UMI counts, regressing out UMI count, mitochondrial content, cell cycle scores, 

patient ID, biopsy, sex, and age. We then used canonical correlation analysis (CCA; using 

the RunMultiCCA function) using variable genes in the merged dataset and seven canonical 

vectors. The CCA-aligned space was used as input for low-dimensional projection using t-

SNE with all seven dimensions. Cells were clustered with the FindClusters function 

(resolution = 0.2). Clusters in which at least 25% of cells were double-positive for CD1A 
and CD207 (“positive list”; normalized UMI greater 1), and no more than 60% of cells were 

positive for either CD19, CD3D, CD27, IL32, CD7, NKG7, or CD163 (“negative list”) were 

defined as LCH cells. These criteria select cells with high expression of canonical LCH 

markers and excludes cells which are clearly identified as non-LCH immune cell types. We 

used the same procedure and thresholds to define immune cells using CD1A and CD207 as a 

negative marker list and as positive markers: CD19 for B cells, CD3D for T cells, CD14 for 

monocytes/macrophages, and IL3RA for plasmacytoid dendritic cells. To compare gene 

expression of these immune cell types with that of LCH cells (Fig. 2), we used the 

FindMarkers function. To avoid possible confounding effects by sex differences (cells of 

both sexes are present at slightly variable rates between cell types in our dataset), we 

performed this analysis stratified by sex and used the mean log2 fold change and maximum 

(worst) p-value for each gene. An FDR-adjusted p-value threshold of q ≤ 0.005 was used to 

select differentially expressed genes. To identify LCH cell subsets, we repeated the CCA, 

clustering, and dimensionality reduction after filtering out non-LCH cells and used the 

FindAllMarkers function to perform differential analysis between LCH cell subsets (Fig. 3), 

again stratified by sex and using the same parameters. Differentially expressed genes and 

LCH cell subset markers are listed in Supplementary Table S2. To quantify the single-cell 

entropy (also known as “signaling entropy”) of each cell18,21,50, we used the CompSRana 
function in the LandSCENT v0.99.2 package. Signaling entropy has been described as a 

robust measure of differentiation potential / progress. To be consistent with our other 

analyses, we modified the code of the LandSCENT package to allow use of our pre-

calculated clusters and dimensionality reduction. For the alternative analysis of LCH subsets 

in each sample separately (Supplementary Fig. S5), we filtered the LCH dataset to contain 

only cells from one sample at a time and performed principal component analysis, t-SNE 

dimensionality reduction, and clustering independently (as in the standard Seurat workflow). 

External microarray and RNA-seq for comparisons (Gene Expression Omnibus: GSE35340, 

GSE16395, GSE74442) were downloaded using the GEOquery package and quantile-

normalised. Finally, to define reference gene expression signatures of immune cells, we used 

microarray data from our previous research15 (Gene Expression Omnibus: GSE35340, 

GSE114181). These data were normalised using frma2 (parameters: 

summarize="robust_weighted_average") and ComBat from the sva package51. The probe set 

with the highest variance per gene was chosen for further analysis, and we excluded genes 
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with a z-score below 2 in all samples. We performed differential expression analysis with the 

limma52 package and used the mean rank of p-values and fold changes to determine the top 

genes associated with each of the four immune cell types (CD1C+ dendritic cells [n = 7], 

plasmacytoid dendritic cells [n = 3], monocytes [n = 6], and Langerhans cells [n = 3]), 

limited to genes with an FDR-adjusted p-value less than 0.05 and an absolute log2 fold 

change greater than 1.

Chromatin-Accessibility Mapping

ATAC-seq was performed as described previously53. Briefly, 20,000 to 50,000 cells were 

lysed in a buffer containing digitonin and Tn5 transposase enzyme (Illumina). After 

incubation at 37°C for 30 minutes, tagmented DNA was purified and enriched. After final 

purification, the libraries were quality checked using a 2100 Bioanalyzer (Agilent) with 

high-sensitivity DNA chips. DNA concentration was examined using Qubit Fluorometer, 

and the libraries were sequenced on the Illumina HiSeq 4000 platform in 1x50bp single-read 

mode. Supplementary Table S1 includes an overview of the sequencing data and 

performance metrics. Raw sequencing data were trimmed using Skewer v0.1.12654, 

followed by alignment to the GRCh38 assembly of the human genome with Bowtie 2 

v2.2.455 (parameters: --very-sensitive --no-discordant). Only deduplicated, uniquely mapped 

reads with mapping quality ≥30 were kept for further analysis. To identify accessible 

genomic regions, we used MACS2 v2.1.056 (parameters: -q 0.1 -g hs). Following initial data 

processing, all subsequent analyses were performed in R using Bioconductor packages. 

After merging peaks across all ATAC-seq datasets and removing peaks that overlapped 

blacklisted regions from ENCODE (https://sites.google.com/site/anshulkundaje/projects/

blacklists) or repetitive regions (obtained from the UCSC Genome Browser), we quantified 

for each input dataset the number of reads overlapping the retained peaks. Raw read counts 

were loaded into DESeq2 v1.22.257 for normalization and differential analysis (using a 

minimum absolute log2 fold change of 1 as threshold; n = 2 replicates per LCH subset). We 

refer to the set of regulatory regions that showed increased chromatin accessibility 

(activation) in LCH subset LCH-S1 compared to LCH-S11 or LCH-S12 as a1 (for “active”) 

and to those that were characterized by decreased accessibility (inactivation) in the same 

comparison as i1 (for “inactive”). Analogously, we defined region modules a11, i11, a12, 

and i12 as those that are specifically active or inactive in one LCH subset. To associate 

ATAC-seq peaks with putative target genes, we used chromatin conformation data from 17 

blood cell types30, considering each interaction between a promoter and another genomic 

region observed in these cells as a possible regulatory interaction. Additionally, we assigned 

each peak also to the closest gene promoter in its vicinity. Annotated regulatory regions 

from the analysis of ATAC-seq data are listed in Supplementary Table S2.

Enrichment Analysis for Genes and Genomic aegions

To help understand the biological roles of differentially expressed genes and differentially 

active genomic regions, we employed four types of enrichment analysis (Supplementary 

Table S3). First, we used Gene Set Enrichment Analysis (GSEA; v3.0) to test genes in LCH 

cells compared to immune cells (using the Wilcoxon test statistic as a ranking criterion) for 

an enrichment of annotations from the list of hallmark gene signatures from MSigDB (Fig. 

2D). We considered pathways with an FDR-adjusted p-value below 0.05 significant. Second, 
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we used the Enrichr API58 (v1.0) to test differentially expressed genes and genes linked to 

enhancers of interest for significant enrichment across a broad range of gene sets (Figs. 2A 

and C, 3E, and 5C). In all plots, we report the Enrichr combined score calculated as 

log(Old.P.value)×Z.score by Enrichr. This amounts to a product of the significance estimate 

and the magnitude of enrichment. Third, we used Locus Overlap Analysis31 (LOLA; 

v1.12.0) to test regulatory regions identified in our ATAC-seq data for significant overlaps 

with experimentally determined transcription factor binding sites from publicly available 

ChIP-seq data (Fig. 5D). To this end, we used the codex, encode_tfbs, and 

cistrome_cistrome databases contained in the LOLA Core database. We considered only 

terms with an FDR-adjusted p-value below 0.005 and a minimum absolute log2 fold change 

of 1 significant. We focused on transcription factors that were found in our lists of 

differentially expressed LCH subset markers or that were closely related to those (by 

performing a fuzzy string match, e.g. including STAT3 when only STAT1 was in the marker 

list). Fourth, we searched the DNA sequences underlying sets of ATAC-seq peaks for 

matches to known DNA binding motifs from the HOCOMOCO database v1132 (Fig. 5E). 

For this search, we used FIMO (v4.10.2)59 (parameters: --no-qvalue --text --bgfile motif-
file), and regions with at least one hit (p < 0.0001) were counted. To test for differential 

motif enrichment, we compared the number of regions with at least one match to a given 

motif with the respective frequency of motif hits in the set of all ATAC-seq peaks by using 

Fisher’s exact test. Motifs with an FDR-adjusted p-value below 0.05 and log2 odds above 

log2(1.5) were considered significant. We focused on motifs matching factors that were 

differentially expressed.

Network analysis

Integrating the results of gene-centric and region-centric enrichment analyses as well as the 

DNA motif search, we inferred a gene regulatory network of LCH subsets. In this network, 

we defined “regulatory edges” (arrows in the network) as connections pointing from a 

transcription factor to its targets. The source nodes of these edges were ATAC-seq peaks 

which either had an overlap with one of the enriched ChIP-seq datasets (LOLA analysis) or 

a match with an enriched DNA binding motif. All source nodes belonging to the same TF 

were merged into one node. Targets of the edges were all genes linked to the respective 

ATAC-seq peak. LCH-subset-specific networks were constructed by using the single-cell 

RNA-seq and ATAC-seq data for the respective subset. We defined node sizes proportional 

to expression level and out-degree (“node importance”) as follows: ng = Ng
2 × Eg

2 where Ng 

= max(0, xg – xmed) is the difference of expression of a gene (xg) from the median 

expression (xmed) of all genes (normalized and scaled UMI counts) and 

Eg = ∑p ∈ P2
y − y80th is the sum of edge weights (y) over the 80th percentile (y80th) of all 

weights (normalized ATAC-seq read count). Edges were weighted by accessibility (mean of 

all data for the respective cell subset). Furthermore, browser-based network visualizations 

were generated to support interactive exploration of the regulatory networks using the 

visNetwork package in R (Supplementary File S1, Supplementary Website: http://LCH-

hierarchy.computational-epigenetics.org). Node size in these networks is proportional to 

node importance, which was calculated in the same way as described above.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

This study sketches a molecular portrait of LCH lesions by combining single-cell 

transcriptomics with epigenome profiling. We uncovered extensive cellular heterogeneity, 

explained in part by an intrinsic developmental hierarchy of LCH cells. Our findings 

provide new insights and hypotheses for advancing LCH research and a starting point for 

personalizing therapy.
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Figure 1. Single-cell transcriptome analysis captures cellular and molecular diversity of LCH 
lesions
A) Clinical presentation and incidence2 of Langerhans cell histiocytosis (LCH). Shown are 

an x-ray image of LCH bone lesions in the skull (top right), a photography of extensive LCH 

skin lesions (bottom right), and a hematoxylin and eosin staining of an LCH biopsy (bottom 

left).

B) Cellular heterogeneity in an LCH biopsy (lymph node), as revealed by immunostaining 

for CD1A, CD207, and an antibody that specifically detects mutated BRAFV600E protein.

C) Overview the of patient biopsy samples analyzed by single-cell RNA-sequencing in this 

study.

D) Low-dimensional projection (t-SNE plot) of the combined single-cell RNA-seq dataset 

across all analyzed biopsies, comprising a total of 19,044 single-cell transcriptome profiles.

E) Molecular heterogeneity in LCH illustrated by low-dimensional projection (as in panel D) 

of all single-cell transcriptome profiles overlaid with the expression levels of selected 

marker genes (dark blue color indicates high expression levels).

F) Cellular heterogeneity in LCH illustrated by low-dimensional projection (as in panel D), 

annotated with cell types inferred from marker gene expression.
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Figure 2. Characteristic gene expression patterns distinguish LCH cells from other immune cells 
present in LCH lesions
A) Scatterplots comparing gene expression (mean normalized UMI counts plotted on 

logarithmic scale) between LCH cells and non-LCH immune cell populations. Differentially 

expressed genes specific for LCH cells are colored in red, whereas genes specific for the 

immune cell populations are colored in violet (monocyte/macrophages), blue (T cells), green 

(B cells), and orange (plasmacytoid dendritic cells). The top three enriched categories from 

the ARCHS4 tissue database based on Enrichr are shown below.

B) Heatmap showing the expression of the genes in the LCH gene signature (genes 

overexpressed in LCH cells compared to at least three of the four immune cell populations in 

panel A) in the LCH and immune cells analyzed (rows). Cell type and patient are indicated 

by the colored bars on the right.

C) Enrichment analysis with Enrichr for the LCH signature genes using three databases (top 

to bottom: ARCHS4 Tissues, Gene Ontology, or Jensen Diseases), ordered by the Enrichr 

combined score58. FDR-adjusted p-value: *, p < 0.1; ***, p < 0.001. Further details are 

provided in Supplementary Table S3.

D) Gene set enrichment analysis (GSEA) for LCH cell gene expression compared to 

immune cells using MSigDB hallmark signatures, including a GSEA plot for the most 

significant gene set (MYC_TARGETS_V2, top) and all significant enrichments visualized in 

the bar plot (bottom). FDR-adjusted p-value: *, p < 0.1; **, p < 0.05; ***, p < 0.001
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Figure 3. LCH lesions comprise proliferating LCH progenitors and multiple differentiated LCH 
cell subsets
A) Low-dimensional projection (t-SNE plot) of LCH cell transcriptomes, excluding non-

LCH immune cells. LCH cells were clustered into 14 subsets. Dashed lines highlight the 

putative progenitor cell subsets (LCH-C1, LCH-C2) and the most differentiated cell subsets 

(LCH-C11 to LCH-C14) based on the analysis of transcriptome entropy (panel C).

B) Percentage of cells assigned to each of the 14 LCH cell subset (from panel A) for each 

analyzed patient biopsy sample.

C) LCH cell subsets ordered by the median single-cell entropy of the corresponding single-

cell transcriptomes. High entropy indicates promiscuity of gene expression, which has been 

described as a hallmark as undifferentiated cells. Dashed lines highlight the putative 

progenitor cell subsets (LCH-C1, LCH-C2) and the most differentiated cell subsets (LCH-

C11 to LCH-C14) as in panel A.

D) Heatmap showing expression levels of differentially expressed genes between the two 

LCH subsets with highest entropy and the four subsets with lowest entropy. Selected 

hallmark genes are highlighted for each subset.

E) Enrichment analysis with Enrichr for the LCH subset signature genes (from panel D) 

using KEGG pathways and Gene Ontology, ordered by the Enrichr combined score. FDR-

adjusted p-value: *, p < 0.1; **, p < 0.05; ***, p < 0.001. Further details are provided in 

Supplementary Table S3.
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F) Smoothed line plots displaying the relation between decreasing entropy (x-axis; ranked) 

and the expression of selected genes. The cell cycle genes TUBB, TUBA1B, and MKI67 
showed the highest Pearson correlation (r) between entropy and expression. A weaker 

correlation was found also between entropy and the expression of the canonical LCH marker 

gene CD1A.

G) Expression of genes characteristic of (non-LCH) epidermal Langerhans cells in each 

LCH cell subset, displaying the mean of the scaled UMI counts of all genes in the LCH 

subset signature.

H) Assessment of BRAFV600E mutation burden (in percent) based on allele-specific qPCR 

in sorted LCH-S12 cells, LCH-S1 cells, CD1A/CD207-negative (non-LCH) cells, CD1A/

CD207-double-positive LCH cells, and bulk biopsy cells. All data refer to patient sample 

LCH_E.

I) Assessment of cell clonality using the HUMARA assay in the same sorted cell 

populations as in panel H, and in known polyclonal and monoclonal cell lines as negative 

and positive controls, respectively.
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Figure 4. The cell surface markers HMMR and CLEC9A identify specific LCH cell subsets
A) Low-dimensional projection (t-SNE plot) of LCH cell transcriptomes (same layout as in 

Fig. 3A) overlaid with the intensity of LCH-subset-specific gene expression signatures 

(calculated as the mean scaled UMI count for all genes in the signature). Dark red color 

indicates high expression levels.

B) Low-dimensional projection (t-SNE plot) of the LCH cell transcriptomes (as in panel A) 

overlaid with the expression of selected LCH-subset-specific marker genes (dark blue color 

indicates high expression levels). Expression of HMMR is specific to LCH-S1 cells, MKI67 
expression overlaps strongly with both the LCH-S1 and LCH-S2 cell subsets, and CLEC9A 
is detected almost exclusively in LCH-S12 cells.

C) Immunohistochemistry image of HMMR (brown) staining of an LCH biopsy.

D) Immunofluorescence image of HMMR (green), CD1A (red) and DAPI (blue) staining of 

an LCH biopsy.

E) Immunofluorescence image of CD1A (green), CLEC9A (red) and DAPI (blue) staining 

of an LCH biopsy.
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Figure 5. Characteristic patterns of chromatin accessibility distinguish between LCH cell subsets
A) Scatterplots contrasting differential gene expression with differential chromatin 

accessibility between progenitor-like LCH-S1 cells and the more differentiated LCH subsets 

LCH-S12 (top) and LCH-S11 (bottom). The x-axis denotes differences in gene expression 

(mean normalized UMI count based on scRNA-seq) and the y-axis displays the mean 

difference in chromatin accessibility over all regulatory regions linked to the respective gene 

(mean of two replicates, mean normalized reads per million [RPM]). Colored points denote 

LCH-subset-specific marker genes (from Fig. 3D).

B) Heatmap showing ATAC-seq signal intensity for 1,964 differentially accessible regions 

identified in pair-wise comparisons of one LCH cell subset against the two other subsets. 

Regions are grouped into six modules based on differential chromatin accessibility. ATAC-

seq signal intensity scores are scaled by column (ATAC-seq peaks) for better visualization of 

differences.

C) Enrichment analysis with Enrichr for genes linked to each of the six modules of LCH-

subset-specific chromatin accessible regions, showing the top-3 most enriched terms ordered 

by the Enrichr combined score58. FDR-adjusted p-value: *, p < 0.1; **, p < 0.05. Further 

details are provided in Supplementary Table S3.

D) Heatmap of transcription factor binding enrichment for LCH-subset-specific modules, 

based on LOLA31 analysis using a large collection of ChIP-seq peak profiles. Top: LOLA 

enrichments colored by the log2 odds ratio of enriched overlap between the region modules 

and ChIP-seq peaks for the corresponding transcription factor, compared to the background 

of all regulatory regions in the ATAC-seq dataset. Bottom: Mean expression (normalized 
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UMI count) of the gene encoding each transcription factor in different LCH subsets 

(showing gene expression in LCH_E, which matches the ATAC-seq data, as well as the 

mean expression across all patient samples). Further details are provided in Supplementary 

Table S3.

E) Enrichment of transcription factor binding motifs for LCH-subset-specific modules, 

based on HOCOMOCO32 motif occurrences identified using FIMO59. Top: Motif 

enrichments colored by the log2 odds ratio of enriched overlap between the module regions 

and DNA motif hits for the corresponding transcription factor, compared to the background 

of all regulatory regions identified in the ATAC-seq dataset. Bottom: Expression levels of the 

genes encoding the corresponding transcription factors (as in panel D). Right: Consensus 

DNA motif for selected transcription factors. FDR-adjusted p-value, Fisher’s exact test: *, p 

< 0.1; **, p < 0.05, ***, p < 0.005.
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Figure 6. Characteristic gene regulatory networks underlie the observed LCH developmental 
hierarchy
A) Gene regulatory networks inferred for three LCH cell subsets (LCH-S1, LCH-S12, LCH-

S11), based on single-cell transcriptome and ATAC-seq data, and the key regulators 

identified by the enrichment analysis in Fig. 5D and E. Nodes in the network correspond to 

the enriched transcription factors as well as their putative target genes (based on sequence 

proximity and chromatin 3D structure). Node size is proportional to both gene expression 

level and node out-degree (i.e., number of outgoing connections from the transcription 

factor) in the respective LCH subset. Edge colors indicate the module of the corresponding 

peak, and edge visibility is proportional to chromatin accessibility. The network layout was 

automatically generated using the igraph package. A browser-based version for interactive 

data exploration is available in Supplementary File S1 and on the Supplementary Website: 

http://LCH-hierarchy.computational-epigenetics.org).

B) Bar plots showing the top-10 transcription factors ranked by node importance (calculated 

as a combination of gene expression level and node out-degree) in the networks in panel A.

C) Bar plots showing the top-10 transcription factors ranked by differential node importance 

(node importance in one network relative to the mean across all three networks) in the 

networks in panel A.
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Figure 7. Speculative model of the LCH developmental hierarchy and underlying regulatory 
mechanisms
Schematic representation of the developmental hierarchy in LCH lesions based on the 

combined analysis of single-cell transcriptomes (Fig. 2 and 3) and epigenome data from 

prospectively sorted LCH cell subsets (Fig. 5 and 6).
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