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Controlling collective rotational patterns of
magnetic rotors
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Magnetic actuation is widely used in engineering specific forms of controlled motion in

microfluidic applications. A challenge, however, is how to extract different desired responses

from different components in the system using the same external magnetic drive. Using

experiments, simulations, and theoretical arguments, we present emergent rotational pat-

terns in an array of identical magnetic rotors under an uniform, oscillating magnetic field. By

changing the relative strength of the external field strength versus the dipolar interactions

between the rotors, different collective modes are selected by the rotors. When the dipole

interaction is dominant the rotors swing upwards or downwards in alternating stripes,

reflecting the spin-ice symmetry of the static configuration. For larger spacings, when the

external field dominates over the dipolar interactions, the rotors undergo full rotations, with

different quarters of the array turning in different directions. Our work sheds light on how

collective behaviour can be engineered in magnetic systems.
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Magnetic driving is convenient, and in recent years there
have been several suggestions for ways to use magnetic
colloids in microfluidic applications. These include

swimmers1–6, pumps7–10, cilia11–15, and for particle sorting and
segregation16–19. For reviews see refs. 4,16,20,21. When a uniform
rotational magnetic field is applied to a ferromagnetic colloid, the
colloid experiences a torque and rotates with the field. However,
exploiting this to achieve a net motion or flow is not intuitive
because of the low Reynolds number hydrodynamics: a single
rotator in an infinite fluid produces a rotlet flow field without any
pumping22. One way to achieve a net flow is to place the colloid
near a wall, which breaks the symmetry of the rotational flow7–9.
Another possibility is self-assembled magnetic cilia that can
produce fluid flow, if the pathways of the driving and recovery
strokes are different11,12,23.

The majority of work so far has concentrated on a single
magnetic unit, or a collection of many magnetic entities that
move in exactly the same way as the field rotates. To make
progress in exploiting magnetic driving at low Reynolds numbers,
it is of interest to devise systems where the dynamics of each unit
differs, even though they receive the same external driving signal.
Ideally, one would like to be able to fabricate a synthetic system
that mimics the well-known natural example of ciliary arrays that
have evolved to, for example, pump fluids around the body.
While cilia are subject to independent individual driving, they can
develop metachronal waves—phase lags between neighbours—
because of hydrodynamic coupling24,25. Metachronal waves have
been observed in magnetically driven, artificial cilia by patterning
the magnetization direction13 or by modulating the length of the
cilia14, and thereby engineering permanent intrinsic differences
between neighbouring actuating units.

Here we describe the dynamics of an array of magnetic rotors
(Fig. 1a) that are actuated via an oscillatory external magnetic
field, using theory and experiment. We demonstrate surprisingly
complex dynamics in the rotational patterns depending on the
strength of the field as shown in Fig. 1b, and report three distinct
collective actuation regimes, namely a stripe pattern in which the
rotors swing upwards or downwards in alternating stripes, a
quarter pattern in which the rotors undergo full rotations with
different quadrants of the array turning in different directions,
and a staggered pattern in which the rotors show full rotations
with the rotational direction being staggered. We have been able
to devise strategies to achieve dynamical states in which identical
rotors that are actuated using the same external driving
mechanism behave differently. This has been possible because of

the geometry of the system, its finite size and the complex nature
of magnetic dipolar interactions26–28. In particular, we show that
the rotor array can drive an extensional flow. Our simulations
help to interpret the dynamics, and show that other collective
modes are also possible if the rotor array can be fabricated free of
imperfections.

Results
Rotor array system. The system consists of N ¼ NxNy magnetic
rotors with ring geometries (Fig. 2a) positioned on a square grid,
where Nx and Ny are the number of rotors in the x- and
y-directions, respectively. The rotors are fabricated by mixing
silicone rubber and NdFeB magnetic particles and they have a
magnetic moment of m ¼ 2:0 ´ 10�4A �m2. As shown in an inset
of Fig. 2a, the rotors have a small rectangular protrusion, which
shows the magnetization direction. Details of the fabrication
process are given in a subsection in Method ‘Fabrication process’.

The rotors are placed on an interface between glycerol (>95%
pure; viscosity η ¼ 1:4 Pa � s) and air. They are held in place by a
square array of 3D printed posts, where ‘ is the spacing between
the posts. Hence, because of the posts, the rotors have no
translational degree of freedom, but can freely rotate feeling the
local magnetic fields. A Helmholtz coil system is used to create a
uniform magnetic field along x oscillating in time as:

Bext ¼ ðB sin 2πft; 0; 0Þ; ð1Þ
where B is the amplitude and f is the frequency.

To write down equations of motion describing the system, we
make two simplifying assumptions. First, we assume that the
rotor is a sphere with radius a that has no translational degree of
freedom, but can freely rotate about the z-axis. Second, we ignore
any effect of the liquid–air interface, and consider rotors located
in an infinite fluid with viscosity η and density ρ. Each rotor has a
magnetic moment m ¼ ðm cos θ;m sin θ; 0Þ, where θ is the angle
the moment makes with the x-axis.

A rotor i experiences a magnetic torque:

Tiêz ¼ mi ´ Bext þ
μ0
4π

XN
j≠i

3ðmj � nijÞnij �mj

r3ij

 !
; ð2Þ

where ri is its position vector, rij ¼ rj � ri, rij ¼ jrijj, nij ¼ rij=rij
and êz is the unit vector along the z-direction. The first term gives
the torque from the external magnetic field Bext, while the second
term describes the torque from the dipolar interactions between
the rotors.
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Fig. 1 System set-up and summary of dynamical responses. a Schematic of the system set-up. b Phase diagram of the reported three collective phases as
follows (see Fig. 4c for a full-phase diagram). I Stripe pattern: when the magnetic dipole interaction is dominant, the rotors swing upwards or downwards in
alternating stripes. II Quarter pattern: when the external field dominates over the dipolar interactions, the rotors undergo full rotations, with different
quadrants of the array turning in different directions. III Staggered pattern: when the dipole interactions and the external field are comparable, the rotors
show full rotations with the rotational direction forming a staggered pattern
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We assume Stokes flow in this system, and following Eqs. (3)
and (4) are only valid for low Reynolds number regimes Re � 1.
To the leading order in the hydrodynamic coupling between
rotors, the angular velocity of a rotor i is

ωi ¼
dθi
dt

¼ Ti

8πηa3
� 1
16πη

XN
j≠i

Tj

r3ij
: ð3Þ

The coefficient in the first term 8πηa3 is the friction constant for
the rotation of a sphere, while the second term is a consequence
of the flow field produced by the rotation of the other spheres22.
Note that the coefficient in the second term can be derived by
applying a rotation operator to the rotlet flow field. Although the
hydrodynamic interactions would be expected to play an
important role if the rotors are in close proximity, here they
only have a minor effect: the second term of Eq. (3) is two orders
of magnitude smaller than the first term for the grid size in our
experimental set-up, ‘=a ¼ 5:0.

Considering the rotors as point torques, the flow velocity v at
position x can be expressed by a summation of rotlets as:

vðxÞ ¼ 1
8πη

XN
i

1

jx � rij3
TðriÞ ´ ðx � riÞ

( )
: ð4Þ

To follow the dynamics of the array of rotors, Eqs. (2) and (3)
were solved numerically. The dimensionless parameter ~a ¼
a=‘ ¼ 0:2 was kept constant for all simulations.

The rotors interact with the field, and also with each other
through magnetic dipole interactions. The relevant dimensionless
parameters are:

α ¼ B‘3

μ0m
; ð5Þ

β ¼ η‘3f
mB

: ð6Þ

α is the ratio between the external magnetic field and the dipolar
field due to a neighbour rotor. The second parameter, β,
compares the relaxation time of the system to the external field
frequency f . The Reynolds number, Re, is

Re ¼ a2ρf
η

� 10�3; ð7Þ

so inertial effects can be neglected.
We first describe the orientational patterns of the rotors when

the magnetic field is static. Fig. 2b shows the configuration in zero
field, α ¼ 0. The dipole–dipole interactions maximize the angle
between neighbours resulting in the frustrated spin-ice
structure29,30. At the other limit, α � 1, the dipolar forces are
negligible and all the rotors align along the external magnetic field
direction as shown in Fig. 2d. At an intermediate value of α � 1
shown in Fig. 2c, there are small deviations from the uniform
state, predominantly tilting at the corners and edges of the array:
the rotors at the bottom left and top right tilt towards þy, while
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Fig. 2 The array of rotors in static magnetic field and weak oscillating magnetic field. a Schematic of the experimental set-up, consisting of a Helmholtz coil
system, with the 3D printed pin system placed in the centre. The inset shows a rotor mounted on a pin and indicates its dimensions. b–d Snapshots of
orientational configuration under a static field with b α ¼ 0:0, c 0.2 and d 10.0. The external magnetic field is imposed to right. Left column shows result
from the experiment while right shows the simulation. Red arrows describe the magnetic moment direction, while grey arrows in c, d denotes magnetic
field direction created by the rotors. e Experimental observation of the stripe swinging pattern for a 4 ´4 rotor array under α ¼ 0:4 and β ¼ 0:3. The
arrows depict the direction of the magnetic moments, and the two frames show the moment when the external magnetic field reached þB and �B,
respectively

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12665-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4696 | https://doi.org/10.1038/s41467-019-12665-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


those in the other two corners show tilting towards �y. The local
alignments are created by the magnetic field of the rotors as
shown in Fig. 2c, d, and this is due to the finite size of the system.

Collective rotational patterns. We now turn to the dynamics in
an oscillatory magnetic field. The behaviour of a single rotor is
shown in Supplementary Movie 1. The rotor swings backwards
and forwards through 180� at a frequency f , following the field
(see Fig. 1b-(I) where the pattern of rotor movement is shown).
The swinging direction can be either ‘upwards’ (i.e. the polar
angle 0 < θ < π) or ‘downwards’ (�π < θ < 0). The direction of
swing depends only on the initial angle: if a rotor has a compo-
nent of its magnetic moment along þy (�y), it will swing
upwards (downwards). This is a consequence of the small inertia
condition, Re � 1; the rotor does not overshoot during the
swinging and does not undergo a full rotation for any value of α
or β. Despite the simplicity of the single rotor dynamics, rotor
arrays have different collective dynamical modes as the control
parameters are varied. Fig. 2e and Supplementary Movie 2 show
the dynamics of a 4 ´ 4 rotor array when an oscillatory field is
applied for α ¼ 0:4 and β ¼ 0:3 (see also Fig. 1b for the pattern of
the rotor movement). Whether the spins swing upwards or
downwards is controlled by the static configuration, which is the
spin-ice structure. Hence, there are alternating stripes along the
y-direction of rotors that swing up (orange arrows) or down
(green arrows).

A different dynamical behaviour is observed for larger values of
α. Fig. 3a is a schematic representation of the motion of a 4´ 4
square rotor array under the 1D alternating field with α ¼ 6:0
and β ¼ 0:3. Supplementary Movie 3 shows the corresponding
dynamics of the experimental system. There is a clear contrast to
the low α case because the discs can now show full rotations of 2π
during the cycle. This can occur because the combination of the
dipolar interactions and the external field breaks the time-reversal
symmetry in this system. The direction of rotation depends on
the rotor position within the array: those located in the top-left
and bottom-right quadrants rotate clockwise, while those in the
other two corners rotate counter-clockwise. There is, however, a
residual overall chiral symmetry, which is broken due to the
initial conditions.

In order to characterize the pattern, we count the number of
rotations during 25 cycles of the field and introduce the
parameter

R ¼ nþ � n�
nþ þ n�

; ð8Þ
where nþ and n� are the number of counter-clockwise and
clockwise rotations, respectively. Fig. 3b shows the parameter R
for each rotor. The rotors with jRj ¼ 1 continuously rotate in the
same direction (always clockwise corresponding to R ¼ 1 or
counter-clockwise corresponding to R ¼ �1), while they rotate
evenly in both directions for R ¼ 0. Rotors at the corners almost
always rotate in the same direction. The four central rotors,
however, do not have a preferred direction and they typically
swing during a cycle.

The preference for a particular rotational direction is a
consequence of the dipolar forces leading to an initial tilting of
the rotors near the edges of the array (see Fig. 2c). After the first
half turn the alignment pattern is such that a given rotor will
continue in the same sense, as long as it has sufficient time to
relax towards its preferred orientation. Hence, the quarter pattern
is seen for smaller values of β. This is an example showing that
identical rotors, driven by the same field, can behave in different
ways to each other because of collective effects.

As shown in Supplementary Movie 3 and Fig. 3d, the
simulation reproduces the same quarter pattern under a

condition α ¼ 6:0 and β ¼ 0:03 (i.e. the same α, but 10 times
smaller β than the experiment). The fact that we could only see
the quarter pattern for relatively smaller values of β in the
simulation is because of the simplifications in our equations; for
example, the model is not considering the effects of the liquid–air
interface. The simulation result is also different in terms of the
rotational patterns: all rotors are showing quarter pattern in the
simulation, while the inner layer is not showing full rotation in
the experiment. We believe this difference arises because of
imperfections in the grid structure in the experiment. Fig. 3f
shows a rotational pattern with a grid that has a small Gaussian
noise (with standard deviation σ, in both the x- and y-directions)
in the rotor position. Increasing the noise level, the inner layer is
not showing full rotation similar to what is observed in the
experiment.

To investigate how the rotational phase varies across the array
we classify the rotors into three categories depending on their
position as shown in Figs. 3c, d. Fig. 3e compares the time history
of vorticity strength, jωj, for each category for a value of β that
isolates individual rotations. The figure indicates that the corners
start to rotate first, and the phase then propagates towards the
centre of the system. This phase propagation is also clearly shown
in the simulations and Supplementary Movie 4. This is a finite
system size effect: the rotors at the corners start to rotate first
because they have the maximum tilting angle from the external
magnetic field as shown in Fig. 2e. In other words, the corner
rotors flip earlier than the others because they are closer to the
opposite direction. This variability in the tilting angles give rise to
the phase lag. This metachronal-wave-like phase propagation can
be seen clearly in larger systems, such as the 20 ´ 20 array shown
in Supplementary Movie 5.

Fluid mixing and pumping. This collective rotation can be used
to mix or pump fluid as shown in Fig. 3c and Supplementary
Movie 6. The particle image velocimetry (PIV) method is utilized
to visualize the flow field. The instantaneous flow velocities close
to the rotors were ~100mm s�1 (corresponding to dimensionless
speed v=ð‘f Þ � 20). As a result of the symmetry of the quarter
pattern, the rotors pull the fluid into the centre from the
y-direction, perpendicular to the external magnetic field, and
push it out in x-direction thus creating a dipolar (or 2D exten-
sional) flow. The dipolar flow field is reproduced by our simu-
lations (Fig. 3d), and the flow magnitude is in the same order as
in the experiment (maximum velocity ~v=ð‘f Þ ¼ 30; see also
Supplementary Movie 4).

Figure 4a shows rotational patterns for different external magnetic
field directions defined via BextðϕÞ ¼ B cos 2πftðcos ϕ; sin ϕ; 0Þ.
When the external field is titled by 45 or 90°, it is observed that
the quarter pattern also rotates by 45 and 90°. This method of
creating an extensional flow has the advantage that the flow direction
can be easily switched by rotating the external magnetic field. If we
place this system at an intersection of microfluidic channels10, it can
pull fluid from two directions and push it to the other two directions.
At intermediate angles (ϕ ¼ π=8 or 3π=8), the rotors are creating
S-shaped vortex patterns and not showing the quarter pattern. As a
demonstration, we show in Supplementary Movie 7 that the
pumping can be achieved in a microchannel.

Figure 4b shows tracer particle movements after 50 cycles of
actuation, whereas Supplementary Movie 8 demonstrates mixing
in our experiment (ϕ ¼ 0). By changing ϕ, the rotors with
opposite rotations determine the mixing landscape and produce
drastic differences in the mixing modes. Mixing in low Reynolds
number flow (or laminar flow) is challenging31–33, and has so far
been achieved by adding polymer additives34 and fixed micro-
fluidic patterning35–37. Our method allows us to control the
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mixing mode dynamically by tuning the external field, and as
such introduces a practical approach for mixing fluid in low
Reynolds number regimes.

Phase diagram. We next use the simulations to explore the
parameter space in more detail. Figure 4c shows which of the
collective rotational patterns are stable for different values of α
and β. For large α the quarter pattern is observed, as long as β is
sufficiently small, so that the system can relax to its zero field
configuration between oscillations. For smaller values of α the
stripe dynamics is stable. This is in agreement with the experi-
ment, although the agreement is only qualitative because of the
simplifications introduced in the model.

The simulations allow us to identify a range of parameters
where at least two other states are stable. These, which we shall

call staggered patterns, are shown in Figs. 4d, e. The rotors
undergo full rotations but the pattern of clockwise and antic-
lockwise rotations varies. The corresponding flow fields are also
shown in Figs. 4d, e. Importantly, these different rotational
patterns allow us to access different length scales of fluid mixing.
As shown in Fig. 3, we find that by incorporating a very small
irregularity in the positions of the rotors, the simulations no
longer give the same behaviour, and result in random rotational
patterns. Hence, a perfect lattice structure is required to obtain
these patterns. We believe this sensitivity can explain why we
were unable to observe these staggered patterns experimentally.

For a comprehensive understanding of the phase diagram, we
present theoretical arguments that predict the existence and
approximate locations of the main phase boundaries. The
magnetic dipole–dipole interaction between two rotors decays
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with their distance r in the form of 1=r3; therefore, the interaction
can be considered as short-ranged in our 2D system. We can thus
approximate the magnetic energy of the ith rotor as:

Ui ¼ �mi � Bext þ
μ0
4π

X
hiji

3ðmj � nijÞnij �mj

r3ij

0
@

1
A; ð9Þ

keeping only the magnetic dipolar interaction with the neigh-
bouring rotors (hence the notation hiji). As shown in Figs. 2b, d,
the magnetic moments of the rotors will be aligned with the
magnetic field if Bext is strong, and they form a spin-ice structure
if Bext is negligible. By comparing the magnetic energies of one
rotor in these two configurations, we find αc ¼ 1=π (shown in
Fig. 4c) as the critical value at which the two contributions match.
For α > αc the rotors will be aligned with Bext, whereas for α < αc
the rotors will prefer the spin-ice structure.

In the phase diagram, there is a region of ‘no pattern’, where no
specific patterns can be identified in the collective dynamics of the
system. This behaviour originates from the fact that the rotation
of the rotors in this regime is significantly slower than the
oscillations of the magnetic field. This happens for large α, where
the magnetic energy due to the external magnetic field dominates
the magnetic dipole–dipole interaction. Therefore, to estimate the
threshold for this behaviour, we will only consider the
contribution due to the external field. Then, the angular velocity

of a given rotor can be simplified as:

ω ¼ dθ
dt

¼ mBext sin θ

8πηa3
¼ mB

8πηa3

� �
sin 2πft sin θ: ð10Þ

This equation can be integrated to yield

tan
θðtÞ
2

����
���� ¼ tan

θ0
2

����
���� exp ‘3ð1� cos 2πftÞ

16π2a3β

� �
; ð11Þ

where θ0 is the initial angle. Since the cosine function is bounded,
we can recast the above solution into the following form, in terms
the maximum and minimum values for the angle θ in a given
cycle:

tan θmax
2

��� ���
tan θmin

2

��� ��� ¼ exp
‘3

8π2a3
� 1
β

� �
: ð12Þ

If the above ratio remains to be around unity, the orientations of
the dipoles do not change appreciably from the initial values that
are randomly distributed. If the ratio becomes significantly larger
than unity, the angles could deviate substantially from the initial
values and merge into a collective pattern of persistent rotations.
The threshold for the change in behaviour occurs at some value
βs ¼ c0‘

3=ð8π2a3Þ, where c0 is of order unity. We can also
estimate the onset of ‘no pattern’ by incorporating a slipping
condition: ω < 2πf , or in other words, β > sin θ ‘3=ð16π2a3Þ.
We can provide an estimate of βs by averaging the right-hand side
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of Eq. (3), which gives: βs ’ 1
π

R π
0 sin θdθ � ‘3=ð16π2a3Þ ¼

‘3=ð8π3a3Þ. This estimate is shown in Fig. 4c.

Rotational patterns for different grid configurations. To
investigate how generic our observations are, we examine the
effect of the grid configuration on the collective properties of the
rotors, as reported in Fig. 5. When we change the local structure
from a square lattice (Fig. 5a) to a diagonal square lattice
(Fig. 5b), the rotational pattern is not significantly modified. By
tilting these structures by 90° (Fig. 5d, e), the position-dependent
rotational pattern flips and shows counter-clockwise rotation at
the bottom-right and the top-left corners. We also observe several
other rotational patterns such as Fig. 5c, f–h, which contain
mixed clockwise/counter-clockwise rotation patterns. These
observations suggest that the local lattice structure (square or
hexagonal) has a weak effect on the rotational patterns, while the
overall grid shape has a larger impact.

The differences in these patterns can be traced back to the
degree of roundness of the global grid boundary. As shown in the
previous sections, the dipolar interactions give rise to the
rotational preferences for small tilting angles (Fig. 5i). When
the overall shape of the grid is rounded as in Fig. 5j, this tilting
angle follows the smooth boundary since the dipole moments
tend to align with their neighbours. As a result, the corners
exhibit opposite rotations for Fig. 5i, j. When the global shape has
both features of Fig. 5i, j, the system exhibits complex patterns as
seen in Fig. 5c, f, g.

Discussion
We have described the collective motion of magnetic rotors that
are placed on a square grid. The rotors, and pins that constrain
their positions, are fabricated using 3D printing technology and
actuated by a uniform, oscillating magnetic field. By changing
the magnetic field strength relative to the dipolar interactions
between rotors we identified two different collective modes in
experiments. When the magnetic dipole interaction is

dominant the rotors swing upwards or downwards in alter-
nating stripes, reflecting the spin-ice symmetry of the static
configuration. For larger spacing, when the external field
dominates over the dipolar interactions, the rotors undergo full
rotations, with different quadrants of the array turning in dif-
ferent directions. This is a consequence of the dipolar pertur-
bations to a fully aligned state, which occur because of the finite
size of the array.

The motion can be used to drive an extensile flow, even at zero
Reynolds number, and hence it gives a new possibility of
achieving magnetic mixing or pumping at low Reynolds number.
In particular, the flow direction can be easily controlled by
rotating the external magnetic field.

In the quarter state different rotors have a different phase,
somewhat analogous to a metachronal wave. Metachronal waves
are achieved in biological cilia by hydrodynamic interactions or
modulated driving. They have been demonstrated in fabricated
cilia by designing the magnetic units that are intrinsically dif-
ferent from one another; for example, by imposing a size gra-
dient14 or patterning the magnetization direction13. Here, by
contrast, all the rotors are identical and the phase lag is an
emergent property of the magnetic interactions between the
dipoles as well as the geometry of the system.

We have demonstrated surprisingly complex dynamics in an
array of magnetic rotors driven by an oscillating field. The results
suggest several directions for further research. On the theoretical
side, it will be interesting to understand how changes in the size
and shape of the array affect the dynamical behaviour. Techno-
logical implementations will need to explore ways to miniaturize
the devices, and the rotor configurations that will maximize the
strength of the flow fields.

Methods
Dimensionless form of the governing equations. In this subsection, we describe
the dimensionless form of the governing equations and the numerical methods.
Defining the dimensionless form of the toque as T	 ¼ T‘3=ðμ0m2Þ, we find the
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Fig. 5 Collective rotational patterns with different grid configurations. a–h Patterns with different grid configurations; the simulations performed for α ¼ 5:0
and β ¼ 0:05 for all configurations. Red circles represent rotors that rotate counter-clockwise, while blue circles show clockwise rotation. Gray shows a
rotor that has no rotational preference. i, j Schematics showing the relation between the global grid shape and the rotational patterns
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dynamical equation for the angular velocity (Eq. (3)) as:

ωi

f
¼ 1

αβ

T	
i

8πða=‘Þ3 �
1

16π

X
j≠i

T	
j

ðrij=‘Þ3
( )

: ð13Þ

Also, the flow field given by the rotlets (Eq. (4)) is given by:

vi
‘f

¼ 1
αβ

1
8πr	3

εijkT
	
j r

	
k ; ð14Þ

where r	 ¼ r=‘.
In our simulations, the initial orientations θðt ¼ 0Þ of the rotors were random,

and the orientations were updated with the 1st-order Euler method with a time
step fΔt ¼ 1:0 ´ 10�3.

Fabrication process. The mould used to fabricate the rotors was 3D printed
(Formlabs Form 2) from a design created on Autodesk AutoCAD. The liquid
silicone rubber was mixed with the curing catalyst in a 10:1 ratio by weight. NdFeB
powder, with an average grain diameter <10 μm, was added to the rubber mix so
that it comprised ~28% of the total volume. The liquid magnetic rubber was then
placed in the 3D printed mould and cured at room temperature for 6 h. The cured
rotors were then placed in a Vibrating Sample Magnetometer and the magnetizing
field was ramped up to 1.8 T over 17 min to saturate the rotors along the major axis
of the geometry. The resulting magnetic moment was m ¼ 2:0 ´ 10�4 A �m2. The
rotor radius is 1.3 mm, the inner radius is 0.6 mm, and the depth is 0.9 mm.

Arrays of posts were 3D printed with different separations (4.0 and 6.3 mm).
The arrays of posts were used to fix the rotors at a given position and distance from
other rotors. The posts were fabricated with a radius of 0.5 mm so that the rotation
of the rotors was unhindered. The system was placed within a Petri dish containing
glycerol (η = 1.4 Pa � s) so that the rotors were positioned on the glycerol–air
interface.

Experimental set-up. The coil system is powered by a signal generator and power
amplifier to generate the sinusoidal field, and the amplitude and frequency of the
field can be varied.

The rotor motion was observed and recorded using a high-speed camera at 240
fps. The associated fluid flow field was tracked using open source PIV Software
(PIVLab38). The PIV images were created by placing tracer particles on the surface
of the fluid, and the velocities of the particles were tracked and averaged over 3000
frames of the recording. The experimental setup was designed and constructed for
the project by Platform Kinetcs Ltd (https://www.platformkinetics.com/).

Table 1 shows the experimental values that we use in our experiments.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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