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Abstract 

Background:  Despite advances in clinical management, there are currently no novel therapeutic targets for acute 
respiratory distress syndrome (ARDS). DNA methylation, as a reversible process involved in the development and 
progression of many diseases, would be used as potential therapeutic targets to improve the treatment strategies of 
ARDS. However, the meaningful DNA methylation sites associated with ARDS still remain largely unknown. We sought 
to determine the difference in DNA methylation between ARDS patients and healthy participants, and simultane-
ously, the feasible DNA methylation markers for potential therapeutic targets were also explored.

Methods:  Microarray data of human blood samples for ARDS and healthy participants up to June 2019 was searched 
in GEO database. The difference analyses between ARDS and healthy population were performed through limma R 
package, and furthermore, interrelated analyses of DNA methylation and transcript were accomplished by VennDia-
gram R package. Perl and sva R package were used to merge microarray data and decrease heterogeneities among 
different studies. The biological function of screened methylation sites and their regulating genes were annotated 
according to UniProt database and Pubmed database. GO term and KEGG pathway enrichment analyses were con-
ducted using DAVID 6.8 and KOBAS 3.0. The meaningful DNA methylation markers to distinguish ARDS from healthy 
controls were explored through ROC (receiver operating characteristic curves) analyses.

Results:  Five datasets in GEO databases (one DNA methylation dataset, three mRNA datasets, and one mRNA dataset 
of healthy people) were enrolled in present analyses finally, and the series were GSE32707, GSE66890, GSE10474, 
GSE61672, and GSE67530. These databases included 99 patients with ARDS (within 48 h of onset) and 136 healthy 
participants. Difference analyses indicated 44,439 DNA methylation alterations and 29 difference mRNAs between 
ARDS and healthy controls. 40 methylation variations regulated transcription of 16 genes was explored via interrelated 
analysis. According to the functional annotations, 30 DNA methylation sites were related to the imbalance of inflam-
mation or immunity, endothelial function, epithelial function and/or coagulation function. cg03341377, cg24310395, 
cg07830557 and cg08418670, with AUC up to 0.99, might be the meaningful characteristics with the highest perfor-
mance to distinguish ARDS from healthy controls.

Conclusions:  44,439 DNA methylation alterations and 29 difference mRNAs exist between ARDS and healthy 
controls. 30 DNA methylation sites may regulate transcription of 10 genes, which take part in pathogenesis of ARDS. 
These findings could be intervention targets, with validation experiments to be warranted to assess these further.
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Background
Acute respiratory distress syndrome (ARDS) is a life-
threatening form of respiratory failure that accounts 
for 10% of intensive care unit admissions. In spite of 
improvements in basic science and clinical research, 
treatment options for ARDS are still limited and the 
mortality of severe ARDS is 40–46% [1]. Most innovative 
therapies for ARDS have failed in the last decade, and 
clearly, there is a robust need for better insight in disease 
pathogenesis and subsequent emerging treatment strate-
gies [1, 2].

The majority of studies focus on genomic or transcrip-
tomic responses in ARDS [3–5]. Accumulating evidences 
demonstrate that the epigenetic alterations especial DNA 
methylation involved in the development and progres-
sion of many diseases, including various cancers, lupus, 
diabetes, asthma, and a variety of neurological disorders 
[6, 7]. It was reported that DNA methylation can directly 
block transcription by inhibiting the binding of specific 
transcription factors to their target sequences on the can-
didate gene, which could result in an obvious variation 
in transcriptome and lead to the occurrence and devel-
opment of diseases eventually [8–10]. In this scenario, 
valuable DNA methylation  variations  could be used as 
biomarkers for molecular diagnosis of disease. Moreo-
ver, DNA methylation could also be potential target to 
explore new treatment strategy [6–10]. For instance, 
Dhas et al. showed that specific DNA methylation might 
be potential marker for prognosis of neonatal sepsis 
which may improve the treatment strategies [11].

To date, studies on DNA methylation about ARDS 
is insufficient. Szilagyi et  al. showed that  myosin light 
chain kinase (MYLK)  epigenetic variations were  impli-
cated in ARDS pathogenesis and might influence ARDS 
mortality [12]. In this study, researchers only focus on 
single genetic variations and the other underlying meth-
ylated CpGs related genes still unclear. Fortunately, the 
author had uploaded the DNA methylation microar-
ray data of patients with ARDS to the Gene Expression 
Omnibus (GEO) databases, which made it possible for us 
to explore DNA methylation in ARDS comprehensively. 
Beside these, there are three mRNA microarray data of 
patients with ARDS in GEO databases which provided by 
Kangelaris et al. [3], Dolinay et al. [4] and Howrylak et al. 
[5]. All of these public data will be helpful to us perform 
integrative analyses of DNA methylation and mRNA in 
ARDS.

In the current study, in order to find DNA methylation 
alterations and mRNA expression differences between 
patients with ARDS and health controls, we utilized dif-
ference analysis on DNA methylation microarray and 
mRNA microarray data. Furthermore, for exploration of 
the potentially meaningful DNA methylation alterations, 

we performed integrative analyses of DNA methylation 
variations and mRNA expression differences. In addition, 
to evaluate the value of these methylation alterations 
to distinguish ARDS, receiver operating characteristic 
curves (ROC) would be calculated.

Methods
Systematic search and data selection
The GEO was searched for all expression microarray that 
matched terms of ARDS. Clinical studies of ARDS using 
peripheral blood of adult were retained. Datasets that 
utilized endotoxin or lipopolysaccharide infusion as vitro 
or animal models for ARDS were excluded. Clinical-gene 
expression microarray derived from sorted cells was also 
excluded (Fig. 1).

Expression microarray datasets of healthy participants 
were searched and set as the control group that matched 
terms of health and GPL10558 (the same platform num-
ber as included gene expression microarray of ARDS). 
Moreover, where longitudinal data were available for 
patients admitted with ARDS, we only included data 
derived from the within 48 h of onset.

Gene expression normalization
ComBat normalization in the sva R package and Perl was 
used to co-normalize these cohorts into a single cohort, 
after re-normalizing from raw data. All datasets were 
downloaded as txt files, and DNA methylation micro-
array were re-normalized and batch corrected through 
minfi, impute, and wateRmelon R packages. Outputs 
from mRNA array were normal-exponential background 
corrected and then between-arrays quantile normalized 
using limma R package. For compatibility with microar-
ray studies, expression was normalized using a weighted 
linear regression, and the estimated precision weights of 
each observation were then multiplied with the corre-
sponding log2 to yield final gene expression values.

Integrative analysis
There are two parts to the integrative analysis shown in 
Additional file 1: Figure S1: on the one hand, the differen-
tially expressed DNA methylation sites and mRNAs were 
determined using the R package limma, which imple-
ments an empirical Bayesian approach to estimate gene 
expression changes using moderated t-tests. A log fold 
change > 0 was defined as hypermethylation or up-regu-
lated genes, and a log fold change < 0 was defined as dem-
ethylation or down-regulated genes. For elimination of 
the influence of human species on DNA methylation, the 
intersection analyses of the DNA methylation alterations 
of the melanoderm and Caucasian groups were taken, 
Additional file 2: Figure S2.
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On the other hand, the methylation sites with bio-
logical function and methylated genes were defined 
as hypermethylation accompanying with down-regu-
lated genes and demethylation accompanying with up-
regulated genes, simultaneously. In this scenario, we 
respectively took the intersection of hypermethylation 
sites and down-regulated genes, and the intersection of 
demethylation sites and up-regulated genes, Additional 
file 3: Figure S3.

The differentially expressed DNA methylation sites 
and mRNA were identified by significance criteria 
(adjusted P value < 0.05) as implemented in the R pack-
age limma. The intersection analyses were performed 
through VennDiagram R package.

Fig. 1  The flow-process diagram. The flow-process diagram on the left was how to screen microarray datasets
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Functional annotation and enrichment of screened 
methylation alterations
Functional annotations and gene-annotation enrichment 
analyses of genes regulated by screened methylation vari-
ations were referenced the UniProt database, KOBAS 3.0 
online database, DAVID 6.8 online database and PubMed 
database.

For the exploration of the interaction of screened 
genes, STRING online database was used to plot the pro-
tein–protein interaction network (PPI).

Evaluation the value of methylation alterations 
to distinguish ARDS from healthy volunteers
To identify novel methylation alterations which would to 
distinguish ARDS from healthy volunteers, the receiver 
operating characteristic curves (ROCs) were performed 
to calculate the area under the curve (AUC) on screened 
DNA methylation variations using ROCR R package.

Software and versions
Perl 64 was used to merge data; R x64 3.4.4 was con-
ducted to process data, analyse data and plot diagrams; 
Cytoscape 3.6.1 was performed to plot network diagrams.

Results
Characteristics of the datasets
After search strategy and inclusive criteria, 5 studies con-
taining one DNA methylation dataset (GSE67530) [12], 
3 mRNA datasets of patients with ARDS (GSE32707, 
GSE66890 and GSE10474) [3–5], and one mRNA data-
set of healthy people (GSE61672) [13] were used to build 
the methylation and mRNA expression profiling datasets, 
Table 1.

DNA methylation microarray was the M-values (log2 
ratio of the intensities of modified probe vs unmodi-
fied probe) of CpG probes (485,577 probes) that passed 
quality control and batch corrected. Gene microarray 
datasets were mRNA expression profiling after quality 
control and batch correction, with the median number 
of mRNA probes assayed as 25,128 (ranging from 22,277 
to 47,220). Our integrated dataset included a total of 99 
patients with ARDS and 136 health participants. The 
number of samples investigated ranged from 13 to 106 
cases (median 30) across the studies. All datasets were 
from United States, and there was no statistical differ-
ence among datasets in age, and male.

Screening of differentially expressed genes 
and methylation sites
In total, 22,654 hypermethylation sites and 21,785 dem-
ethylation sites were identified in Manhattan chart 
(Fig.  2). Sorted by adjusted P value from small to large, 
the top 10 methylation variations between patients 
with ARDS and healthy volunteers were cg17078393, 
cg04794690, cg01564818, cg07748255, cg07369374, 
cg23856138, cg21726551, cg25032321, cg10431989 and 
cg26852712. Obviously, 9 up-regulated mRNA and 20 
down-regulated mRNA were identified in volcano plot 
(Fig. 2 and Additional file 4: Table S1).

Exploration of methylation sites with biological function 
and methylated genes
16 genes were differentially methylated by interrelated 
analyses criteria, including 32 hypermethylation sites 
and 8 demethylation sites, demonstrated in Table 2 and 
Fig.  3. Overall, according to the function annotation, 

Table 1  Microarray data information

a  APACHE II score
b  APACHE III score

Information Transcriptome 
ARDS 1

Transcriptome 
ARDS 2

Transcriptome 
ARDS 3

Transcriptome 
health

P Genome ARDS Genome 
health

P

Sample 18 29 13 106 39 30

Series GSE32707 GSE66890 GSE10474 GSE61672 GSE67530 GSE67530

Platform GPL10558 GPL6244 GPL571 GPL10558 GPL13534 GPL13534

Year 2012 2015 2008 2015 2017 2017

Country USA USA USA USA USA USA

Contributor Dolinay T Kangelaris KN Howrylak JA Wingo AP Zhang W Zhang W

Age: mean (SD) 54.0 (14.5) 59 (19) 56.2 (4.8) 50.91 (10.4) 0.88 52.5 (17.5) 58.2 (15.1) 0.67

Male% 46.4 55.0 46.0 41.5 0.89 59.0 46.7 0.44

Caucasian% 82.1 NA 84.0 59.4 46.15 50.0

APACHE II score, 
mean (SD)

30.46 (9.0)a 116 (39)b 20.7(1.5)a 23.5(6.67)

Direct lung injury % 50 72 38 100%
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Fig. 2  Differential methylation sites and mRNA expression. The Manhattan Figure at the top shows the differential methylation sites between the 
patients with ARDS and the healthy controls. The red line shows the 10 sites with minimum P values. The volcano figure at the bottom shows the 
mRNA expression. The red points indicate high-expression mRNA in ARDS, and the green points indicate low-expression mRNA according to the 
threshold of the FDR
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30 methylation alterations were finally screened to be 
involved in the pathogenesis of ARDS through their 
potentially regulated 10 genes (Fig. 4), with the mRNA 
expression of 10 potentially regulated genes demon-
strated in Additional file 5: Figure S4.

Peptidase inhibitor 3 (PI3), C-X3-C motif chemokine 
receptor 1 (CX3CR1) and FYN proto-oncogene, Src 
family tyrosine kinase (FYN) have been confirmed 
to be related to the pathogenesis of inflammation or 
immunity, endothelial function, epithelial function, and 
coagulation function in both ARDS animal models and 
in vitro experiments. It was noteworthy that the mRNA 

level of PI3 in the plasma of patients with ARDS was 
significantly decreased.

The dual specificity phosphatase 6 (DUSP6), DNA pol-
ymerase beta (POLB); and solute carrier family 3 mem-
ber 2 (SLC3A2) genes only had in  vitro experimental 
evidence, and paired immunoglobin like type 2 receptor 
alpha (PILRA), SRSF protein kinase 2 (SRPK2), ring fin-
ger protein 1 (RNF1) and tripartite motif containing 33 
(TRIM33) might be related to the pathogenesis of ARDS, 
as shown in Additional file 6: Table S2.

Gene Ontology (GO) and pathway enrichment analy-
ses indicated that the 10 screened genes were enriched 

Table 2  Relationship between methylation sites and mRNA, with AUC of methylation sites

AUC​ area under the receiver operating characteristic curves

Low expressed 
mRNA

Hypermethylation sites AUC to distinguish 
ARDS

High expressed 
mRNA

Demethylation sites AUC 
to distinguish 
ARDS

CX3CR1 cg00262061 0.89 SH3GL1 cg07830557 0.99

CX3CR1 cg03341377 0.99 SH3GL1 cg08418670 0.99

CX3CR1 cg05046858 0.87 SLC3A2 cg02838784 0.79

CX3CR1 cg24310395 0.99 SLC7A1 cg21175585 0.83

CYTIP cg19506253 0.97 SLC7A1 cg26117398 0.77

DUSP6 cg06705834 0.66 TBC1D22B cg08784966 0.93

DUSP6 cg06864046 0.62 TBC1D22B cg12800266 0.95

FYN cg00801571 0.93 TBC1D22B cg22902977 0.74

FYN cg01557421 0.8

FYN cg02115050 0.7

FYN cg02755956 0.9

FYN cg02789394 0.98

FYN cg02816367 0.72

FYN cg04657000 0.94

FYN cg07725064 0.95

FYN cg11412876 0.61

FYN cg12636607 0.92

FYN cg17076443 0.6

FYN cg17587997 0.99

FYN cg20706496 0.93

FYN cg21021905 0.91

FYN cg25189764 0.91

OSBPL8 cg24739189 0.83

PI3 cg24476939 0.93

PILRA cg20784591 0.75

POLB cg07069743 0.49

POLB cg18894794 0.63

RCBTB2 cg00750684 0.54

RNF19B cg10014674 0.55

SRPK2 cg13660622 0.74

SRPK2 cg15857470 0.93

TRIM33 cg18199720 0.66
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in 9 functions and 25 pathways, as shown in Additional 
file  7: Figure S5, Additional file  8: Figure S6. These 
functions and pathways included 2 types. The first type 
was related to endothelial and epithelial apoptosis and 
repair, including mTOR and MAPK pathways. The sec-
ond type was related to inflammation or immunity, 
including adaptive immune response and leukocyte 
migration.

Assessment of diagnostic efficacy on screened methylation 
sites
AUC was calculated on screened DNA methylation 
alterations based on ROC analyses, Table 2. The AUC on 
cg03341377, cg24310395, cg07830557 and cg08418670 
were up to 0.99, which meant that these DNA methyla-
tion alterations could be most significant characteristics 
to distinguish ARDS from control subjects.

Fig. 3  Circle diagram for the interrelated analysis and PPI analysis results. This diagram shows the positions of methylation sites and their target 
genes on 24 chromosomes after screening by preliminary interrelated analysis between DNA methylation and mRNA microarray datasets. The red 
lines represent the relationship between DNA methylation and their target genes. The blue lines represent interactions between proteins coded by 
these genes according to Protein Interaction Analyses
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Discussion
DNA methylation has been most studied and is classi-
cally associated with gene silencing via hypermethylation 
of CpG islands located in promoter regions of various 
diseases suppressor genes. In addition, DNA methylation 
is an attractive investigative tool for the study given that 

methylation is a reversible process. For instance, in mye-
lodysplastic syndrome, demethylating agents have been 
tested in phase I clinical trials [14]. However, DNA meth-
ylation research on ARDS was inadequate and recent 
studies only focused on single genetic variations [15, 16]. 
Detailed studies of other novel candidates might lead to 

Fig. 4  Network diagram for the relationship between the screened genes and the 4 mechanisms of ARDS. Colour depth represents the log-fold 
change of genes. Function represents the 4 mechanisms of ARDS. Genes in cluster A was confirmed to be related to the pathogenesis of ARDS 
in both ARDS animal models and in vitro experiments. Genes in cluster B was confirmed to be related to the pathogenesis of inflammation or 
immunity, endothelial function, epithelial function, and coagulation function in in vitro experiments. Genes in cluster C might be related to the 
above mechanism because these genes are related to immune regulation, angiogenesis and the cell cycle
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identification of unsuspected evolutionarily conserved 
mechanisms triggered by ARDS.

To our knowledge, this was the first study of all-
encompassing analysis for DNA methylation alterations 
in ARDS, indicated in Additional file 9: Table S3. As fur-
thermore research targets for improvement of therapies 
in ARDS, the present study uncovered 30 methylation 
alterations and their regulating DNA in ARDS regions. 
Meanwhile, as diagnostic molecules for ARDS, the clini-
cians might be interested in the top 10 difference meth-
ylation sites and 4 high diagnostic efficacy CpG islands 
variations.

Due to microarray experiments from human blood 
samples as the object of this study, 7 animal model stud-
ies and 10 studies not on blood samples were eliminated, 
leaving only 4 studies of microarray experiments and 1 
study of transcriptome sequencing. In the consideration 
of comorbidity of hematologic malignancy existing in 
patients of transcriptome sequencing study, the sequenc-
ing data were eventually removed. Previous studies uti-
lized only one single database, with a relatively small 
sample size. Transcriptome microarray datasets were not 
found healthy participants, which means in the need of 
searching healthy volunteers data. The data of healthy 
participants (generalized anxiety disorder score = 0) from 
one dataset related to anxiety disorder was extracted, 
according to matched terms of health and GPL10558 
(the same platform number as included gene expression 
microarray of ARDS) in consideration of compatibility 
with microarray studies.

After merging these cohorts into a single cohort by 
Perl, batch correction and co-normalization were per-
formed through ComBat normalization in the sva R 
package, which was a frequently-used method to decease 
heterogeneity among microarray studies [17–20]. In 
addition, the threshold values of screening differential 
mRNAs were P value < 0.05 in previous studies, which 
might lead to partially false positives. The significance 
criteria of adjusted P value < 0.05 aimed for reduction of 
false positives [21, 22]. Strikingly, it has been reported 
that the most epigenetic mutations appear unrelated to 
biological function [23].

Since DNA methylation could directly block tran-
scription by inhibiting the binding of specific transcrip-
tion factors to their target sequences on the candidate 
gene in the result of an obvious variation in transcrip-
tome, integration with methylation data and matched 
transcriptome data was conducted to screen meaning-
ful methylation mutations and methylated DNA regions 
[24].

Until now, the most significant 10 methylation vari-
ations found through difference analyses were lack of 

studies, with the function of their methylated gene 
related to immunity and cell proliferation, which could 
be appealing to researchers for further studies [25–29].

Tejera et al. [30] and Wang et al. [31] had confirmed 
that the mRNA level of PI3 in patients with ARDS was 
significantly decreased, which in turn might increase 
the activity of neutrophil elastase indirectly for PI3 
plays a central role in controlling the excessive activity 
of neutrophil elastase. Liu and his colleagues [32] had 
showed that CX3CR1 was the crucial molecule that 
regulates the EGFR, Src and FAK pathways, which are 
crucial for epithelial and endothelial cell growth. The 
reduction of CX3CR1 in patients with ARDS could lead 
to damage to epithelial and endothelial cell regenera-
tion. However, the mechanism of down-regulated PI3 
and CX3CR1 in ARDS is unclear. Our study showed 
that the hypermethylation on cg24476939 of PI3 and 
4 hypermethylation sites of CX3CR1 might explain 
down-regulation of PI3 and CX3CR1 in ARDS. Similar 
to PI3 and CX3CR1, FYN, DUSP6, POLB and SLC3A2, 
PILRA, SRPK2 and RNF1 were confirmed to be related 
to the pathogenesis of ARDS, including inflammation 
or immunity, endothelial–epithelial barrier, and coag-
ulation function [33–36]. The present study verified 
above variations on mRNA levels in ARDS. Moreover, 
methylation alterations in these DNA regions of mol-
ecules might be responsible for the mRNA level vari-
ation in ARDS, which might be potential therapeutic 
targets for ARDS.

In addition, the ROC analyses on screened methyla-
tion alterations indicated that the AUC on cg03341377, 
cg24310395, cg07830557 and cg08418670 was up to 
0.99, which meant that these DNA methylation altera-
tions were valuable targets to distinguish ARDS from 
healthy controls, Table 2.

There are several limitations to the present study. 
First, as a retrospective study of primarily publically 
available data, we are not able to control for demo-
graphics, infection, patient severity, or individual treat-
ment, and there was no analysis combined with clinical 
data because the microarray data did not provide clini-
cal information. Second, although 4 microarray data-
sets were merged, a larger sample size may have been 
better. The ideal method of transcriptome and genome 
interrelated analysis should measure DNA methylation 
and mRNA in the same samples and then perform a co-
expression analysis. However, in the public database, 
there was no such completed microarray data regarding 
ARDS. Besides, for the limitation of bioinformatics, the 
further studies and experiments should be conducted 
to sequentially verify and research these methylation 
alterations screened by our analyses.
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Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1296​7-019-2090-1.

Additional file 1: Figure S1. The flow-process diagram of the integrative 
analysis for exploration of the potentially meaningful DNA methylation 
alterations.

Additional file 2: Figure S2. The Venn diagram for the intersection of 
methylation sites between Melanoderm and Caucasian. The left Venn 
diagram was the intersection of hypermethylation sites between Mel-
anoderm and Caucasian. The right Venn diagram was the intersection of 
demethylation sites between Melanoderm and Caucasian.

Additional file 3: Figure S3. The Venn Diagram for the intersection of 
methylation alterations and mRNA variations. The left Venn Diagram was 
the intersection of the genes between demethylation sites and high 
expression mRNA. The right Venn Diagram for the intersection of the 
genes between hypermethylation sites and low expression mRNA.

Additional file 4: Table S1. Log fold change, P value and adjusted P value 
of differential mRNA.

Additional file 5: Figure S4. The Violin Diagram for mRNA expression of 
10 screened genes.

Additional file 6: Table S2. Annotations link in UniProt database and 
Search strategy in Pubmed database for screened genes.

Additional file 7: Figure S5. The Bar Diagram for GO term enrichment 
analyses of 10 screened genes.

Additional file 8: Figure S6. The Bubble Diagram for KEGG pathway 
enrichment analyses of 10 screened genes.

Additional file 9: Table S3. Our study provides ARDS researchers with 
five valuable research points.
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