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Abstract 

Background:  Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc 
therapy (VMAT) are standard physical technologies of stereotactic body radiotherapy 
(SBRT) that are used for patients with non-small-cell lung cancer (NSCLC). The treat-
ment plan quality depends on the experience of the planner and is limited by planning 
time. An automated planning process can save time and ensure a high-quality plan. 
This study aimed to introduce and demonstrate an automated planning procedure for 
SBRT for patients with NSCLC based on machine-learning algorithms. The automated 
planning was conducted in two steps: (1) determining patient-specific optimized 
beam orientations; (2) calculating the organs at risk (OAR) dose achievable for a given 
patient and setting these dosimetric parameters as optimization objectives. A model 
was developed using data of historical expertise plans based on support vector regres-
sion. The study cohort comprised patients with NSCLC who were treated using SBRT. A 
training cohort (N = 125) was used to calculate the beam orientations and dosimetric 
parameters for the lung as functions of the geometrical feature of each case. These 
plan–geometry relationships were used in a validation cohort (N = 30) to automatically 
establish the SBRT plan. The automatically generated plans were compared with clini-
cal plans established by an experienced planner.

Results:  All 30 automated plans (100%) fulfilled the dose criteria for OARs and plan-
ning target volume (PTV) coverage, and were deemed acceptable according to evalu-
ation by experienced radiation oncologists. An automated plan increased the mean 
maximum dose for ribs (31.6 ± 19.9 Gy vs. 36.6 ± 18.1 Gy, P < 0.05). The minimum, maxi-
mum, and mean dose; homogeneity index; conformation index to PTV; doses to other 
organs; and the total monitor units showed no significant differences between manual 
plans established by experts and automated plans (P > 0.05). The hands-on planning 
time was reduced from 40–60 min to 10–15 min.

Conclusion:  An automated planning method using machine learning was proposed 
for NSCLC SBRT. Validation results showed that the proposed method decreased plan-
ning time without compromising plan quality. Plans generated by this method were 
acceptable for clinical use.

Keywords:  Machine learning, Non-small-cell lung cancer radiotherapy planning, 
Stereotactic body radiotherapy, Machine learning
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Background
Stereotactic body radiotherapy (SBRT) is an attractive alternative to lobar resection in 
patients with early stage non-small-cell lung cancer (NSCLC) not eligible for lobec-
tomy. Compared with surgery, SBRT is noninvasive; it does not involve postoperative 
complications and can realize good local control [1, 2]. Intensity-modulated radiother-
apy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) are typical technolo-
gies used in NSCLC SBRT [3]. IMRT enables good conformity to tumor volume and 
low doses for healthy tissues [4]. Through the development of dynamic delivery using 
multi-leaf collimators (MLC), VMAT can deliver dose efficiently to reduce uncertainties 
in the intra-fraction setup [5, 6]. In IMRT, dose is delivered through a serial of static seg-
ments which is made up of modulated MLCs’ shapes. IMRT employs variable intensity 
across multiple radiation beams leading to the construction of highly conformal dose 
distributions. VMAT is an advanced IMRT technology [7]. The linac rotates around the 
patient and the MLCs continuously reshape and change the intensity of beams during 
dose delivery. Giving the radiotherapy in VMAT shortens the treatment time. VMAT 
is an alternative to fixed-gantry angle IMRT delivery. It allows the simultaneous varia-
tion of gantry rotation speed, treatment aperture shape via movement of MLC leaves, 
and dose rate during treatment delivery. One of the most important factors that affects 
the prognosis of IMRT and VMAT is the quality of the treatment plan, which depends 
on the experience and skill of the planner [8, 9]. Moreover, a plan is often developed 
through trial-and-error, necessitating a long planning time, which can be a limitation.

Several studies have focused on decreasing the interactions between the planner and 
the computer to reduce the planning time and improve the consistency of the plan qual-
ity. Methods such as template-based planning with the use of “scripting” tools [10–13], 
which imitate the trial-and-error process involved in manual planning, as well as multi-
criteria optimization (MCO) [14–18] and knowledge-based treatment planning [19–26] 
have been investigated. Knowledge-based automated planning uses historical expertise 
plans as training data to learn the optimal strategies for new patients. This method has 
developed rapidly with the advancement of machine-learning algorithms. However, 
(1) only a few previous automated planning strategies have focused on SBRT, and (2) 
most existing studies have used the training data with an identical beam arrangement 
for different patients, such as seven or nine coplanar beams with equally spaced gantry 
angles in IMRT or a full-arc beam in VMAT [19–26]. These are listed in Table 1. Patient-
specific beam arrangement has not been integrated in the knowledge-based automated 
planning studies.

Although identical beam arrangements are widely used in the traditional radiother-
apy, customized partial arc radiation is generally better than an identical beam arrange-
ment in an SBRT plan owing to variation in the tumor location and the low-dose radio 
sensitivity of healthy lung tissues. The shape, size, and position of tumors are important 
features that need to be considered for an optimized beam arrangement. Therefore, a 
strategy including either beam orientation optimization or available dose prediction is 
required to build automated SBRT planning tools.

Machine learning is a widely used method for analyzing big data from medical 
images and encapsulating it into task-specific information. Radiomics, medical image 
segmentation, and mass lesion classification based on machine-learning algorithms 
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have brought about several breakthroughs in the diagnosis and treatment of cancer 
[27–31]. Machine learning-based automated planning systems have also been pro-
posed by several studies [21, 25, 32, 33]. These methods have been proven efficient 
in head-and-neck cancer [34, 35] and prostate cancer [21, 32, 36]. In this study, the 
feasibility of a machine learning-based automated planning method was studied in 
NSCLC SBRT. We used a machine-learning method to determine the optimal strategy 
for an SBRT plan for lung cancer, including patient-specific objective function and 
beam arrangement. Anatomical features were extracted from individual patients, and 
the final beam arrangement and dosimetric results were predicted. Machine learning-
based mathematical models were proposed and the feasibility of using this method 
in automated planning was validated. The objective of our study was to develop a 
fully automated NSCLC SBRT plan that aims to reduce planning time and meet the 
requirement for consistency in planning quality.

Results
Feature selection

The results of the feature selection are listed in Table 2. VHeart and YPH were excluded 
for model building, because they had no significant correlation with beam and dosi-
metric features. DPL, DPH, XPL, YPL, and XPH were used in beam angle prediction, while 
VPTV, VLung, DPL, DPH, OVZPL, and OVZPH were used in dosimetric feature prediction.

Validation of the prediction model

With regard to the CV of the LOO method, the root-mean-squared error (RMSE) 
of prediction for the start and stop gantry angles was 22.20° and 17.44°, respectively 

Table 1  Studies on knowledge-based automated radiotherapy treatment plans

Database Site Prediction method Dosimetric 
parameter 
predictions

Beam angle 
predictions

Moore [19] 25 IMRT Head-and-neck 
prostate

Analytical formulas Mean doses of 
esophagus, larynx, 
parotid gland, blad-
der and rectum

No

Wu [20] 91 IMRT Head-and-neck Minimal dose 
approximation

Dose-volume objec-
tives for head-and-
neck organs

No

Zhu [21] 198 IMRT Prostate Machine learning DVH of bladder and 
rectum

No

Petit [22] 25 IMRT Pancreas Minimal dose 
approximation

Dose-volume objec-
tives for kidney and 
liver

No

Yang [24] 21 IMRT Prostate Linear regression Rectal dose D15, D20, 
D25, D35, D50, and 
bladder dose D15

No

Nwankwo [25] 95 VMAT Prostate Machine learning Uniformity index, D10, 
D30, D50, D70 and 
D90 in bladder and 
rectum

No

Wang [26] 80 IMRT Esophagus Machine learning Mean heart dose and 
mean lung dose

No
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(Fig. 1). The RMSE prediction for the start and stop gantry angles for external valida-
tion data set was 18.5° and 9.6°, respectively.

The RMSE of the predicted mean lung dose (MLD), V10, and V20 of the lung was 
0.83  Gy, 3.10%, and 1.71%, respectively, for CV (Fig.  2). For external validation, the 
RMSE of the predicted MLD, V10, and V20 of the lung was 1.00 Gy, 3.64%, and 2.40%, 
respectively.

Comparison of the quality of plans

Table 3 shows a comparison of all 60 plans for 30 patients in the testing set. According to 
the radiation oncologists, 30/30 automated plans fulfilled the dose criteria for OARs and 
PTV coverage for Zhejiang Cancer Hospital and were acceptable for clinical treatment. 

Table 2  Spearman’s rank correlation test

*Significant correlation

Lung dose Beam angle

Mean V20 V10 Start Stop

VPTV

 ρ 0.747* 0.693* 0.731* –0.033 –0.099

 P 0.000 0.000 0.000 0.717 0.273

VLung

 ρ − 0.196* − 0.205* − 0.235* 0.073 0.021

 P 0.029 0.022 0.008 0.416 0.813

VHeart

 ρ 0.014 0.005 0.023 − 0.077 -0.124

 P 0.876 0.953 0.795 0.396 0.168

DPL

 ρ − 0.508* − 0.519* − 0.467* 0.182* 0.234*

 P 0.000 0.000 0.000 0.042 0.009

DPH

 ρ − 0.241* − 0.233* − 0.203* − 0.432* − 0.412*

 P 0.007 0.009 0.023 0.000 0.000

OVZPL

 ρ 0.654* 0.639* 0.583* − 0.33 − 0.66

 P 0.000 0.000 0.000 0.713 0.466

OVZPH

 ρ 0.385* 0.381* 0.254* − 0.075 − 0.061

 P 0.000 0.000 0.004 0.404 0.496

XPL

 ρ − 0.098 − 0.154 − 0.075 0.762* 0.745*

 P 0.277 0.087 0.405 0.000 0.000

YPL

 ρ − 0.100 − 0.155 − 0.074 0.758* 0.740*

 P 0.265 0.085 0.415 0.000 0.000

XPH

 ρ − 0.113 − 0.169 − 0.106 0.756* 0.729*

 P 0.211 0.059 0.240 0.000 0.000

YPH

 ρ − 0.068 − 0.114 − 0.109 − 0.169 − 0.078

 P 0.449 0.207 0.225 0.059 0.385
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A significant difference was observed only in the mean Dmax of the rib: 31.6 ± 19.9 Gy 
in the manual plan and 36.6 ± 18.1 Gy in the automated plan (P < 0.05). Doses to other 
organs and PTV, as well as the total monitor units, showed no significant differences 
between the two planning strategies (P > 0.05). Figure 3 shows a boxplot of dose differ-
ences between the manual plan and the automated plan for each ROI.

The hands-on planning time was estimated and could be reduced from approximately 
40–60 min to 10–15 min using the automated planning procedure.

Discussion
This study demonstrates that machine-learning method can be used to generate clini-
cally acceptable treatment plans automatically for NSCLC SBRT patients. All the plans 
were evaluated and recognized by two radiation oncologists. The anatomical geom-
etry features of patients were extracted from 125 CT scans. The SVR was used to find 
the relationship between these features and the optimized plan parameters for train-
ing plans. Thereafter, the regressive models were used to generate radiotherapy plans 

Fig. 1  Prediction of the gantry angle in the training data sets for model validation
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automatically. As shown in Table  3, for all the 30 validation patients, the automated 
plans generated were comparable with the plans created by expert planners, and were 
acceptable for clinical treatment.

Fig. 2  Dose prediction in the training data sets for model validation
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In this study, the SVR was used to fit geometry features and plan parameters instead 
of the classical regression method, because the former has the advantage of prevent-
ing over-fit via stopping penalty when the error between predicted and actual values is 
less than a given value. Zhu [21] implemented SVR to establish the correlation between 
the features of the DVH and the anatomical information in a database consisting of 198 

Table 3  Clinical constraints and dose results for various indices

Index Constraints Manual plan Automated plan P value

Mean SD Mean SD

PTV Dmin (Gy) > 45.5 48.4 0.5 48.4 0.3 0.837

PTV Dmax (Gy) < 70.0 66.7 2.5 69.8 2.1 0.594

PTV Dmean (Gy) – 58.1 1.3 58.5 1.3 0.515

PTV HI – 0.31 0.04 0.32 0.03 0.478

PTV CI > 0.8 0.87 0.04 0.88 0.03 0.157

Bronchus Dmax (Gy) < 30.0 9.3 12.5 9.8 10.7 0.841

Esophagus Dmax (Gy) < 32.5 5.9 6.0 6.5 5.8 0.472

Spinal Dmax (Gy) < 30.0 9.7 5.1 8.7 4.2 0.082

Rib Dmax (Gy) < 54.0 31.6 19.9 36.6 18.1 0.005

Heart Dmax (Gy) < 30.0 13.1 12.2 13.0 11.6 0.658

Lung Dmean (Gy) < 5.0 3.4 1.4 3.3 1.4 0.082

Lung V10 (%) < 15.0 9.7 4.3 9.2 4.1 0.050

Lung V20 (%) < 10.0 4.6 2.6 4.4 2.5 0.658

Total MU – 1078 217 1054 198 0.594

Fig. 3  Boxplot showing the dose difference between the manual and automated plans for each ROI. Positive 
values represent reduced dose in the automated plan and vice versa
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high-quality prostate plans. SVR can manage over-fit when the data size increases. Fur-
thermore, the best plan parameters were not identical owing to the subjective variations 
introduced by the planners. An expert plan could be achieved by setting the parame-
ters in different ways, while its robust quality could be attained through minor changes 
in parameters. The error tolerance of SVR was appropriate in the prediction of plan 
parameters.

Although beam orientation optimization is essential and widely discussed [37–39], 
previous studies regarding automated plans often used full-arc beam arrangements 
rather than an optimized one. One of the reasons for this is that PTV with an irregular 
shape is more difficult for beam orientation prediction [26]. However, because of the 
variations in tumor position and low-dose sensitivity of healthy lung tissues, optimized 
beam arrangement may potentially reduce the complications in normal tissue. In that 
case, the beam arrangement strategy must be different from previous auto plan stud-
ies which focus on either head-and-neck [20, 23] or pelvic [24, 25, 40] regions. Data 
set involved in this study includes convex PTVs in early stages of NSCLCs, making the 
prediction of beam orientation feasible. The auto-beam arrangement based on anatomy 
was proposed and validated in this study. iCycle used a priori multi-criteria approach 
to combine beam angle choice into automated plan by sequentially adding beams in an 
iterative procedure [16]. Our SVR method could attain the optimized beam arrange-
ment in a single step.

Feature selection in this study is different from that reported in previously published 
studies that employed overlap-volume histogram (OVH) to infer the dose-volume levels 
[20, 23, 24, 41]. The OVH represents percentage volumes of an OAR that is within a 
specified distance of PTV boundary. The OVH fails to describe the influence of space 
coordinates in the voxel dose. Moreover, a greater number of features increase the accu-
racy of the model but also increase the complexity of modeling and the risk of over-fit-
ting, requiring a large number of training examples for model construction. Besides the 
features commonly used in dose prediction, such as ROI volumes and distances between 
PTV and OARs, three-dimensional coordinate information for each OAR was used to 
describe their relative position in the present study. Using this method of choosing anat-
omy factors, the calculated beam angle and predicted OAR dose can be obtained in real 
time.

The purpose of this study was developing an automated planning procedure for VMAT 
plans. IMRT plans were also enrolled to enlarge the size of training data set. Because for 
most tumor site, VMAT and fixed IMRT could produce largely equivalent target volume 
coverage, dose conformity, and homogeneity [42, 43], using a hybrid training data set is 
reasonable. Although there were 59.2% IMRT plans (74 in 125) in training data set, while 
the test data sets were all VMAT plans, the prediction results were acceptable for the 
test data set. The result proves that static IMRT data could be used for training VMAT 
models.

In this study, predictions of only three parameters, V10, V20, and Dmean of the lung, 
were made to ensure that the procedure for the automated treatment plan remained 
uncomplicated. Since the expected benefit from further reducing the Dmax of serial 
organs compared with the constraint value is limited and not aimed for clinical prac-
tice, the optimization objectives for the heart, bronchus, spine, esophagus, and rib were 
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programmed as a template and kept constant for all patients in the study. The key dosi-
metric difference between the automated treatment plan and manual plan in this study 
was the maximum dose for the ribs. This was because a number of patients for whom the 
distance between the PTV mass center and the ribs mass center was short were enrolled. 
The aim of future studies would be to predict the doses for serial organs and combine 
the results into an objective function.

Our study is novel in that it calculated the best start and stop angles for VMAT using 
a machine-learning method, which can be a valuable supplement for the automated 
VMAT plan. The geometrical features used to build the prediction model could be read-
ily extracted from CT scans using the scripts tool in RayStation, enabling the automated 
tool to be applicable to regular practice. In theory, the study proved the relationship 
between anatomy geometry and the treatment plan parameters for NSCLC SBRT. Based 
on this relationship, an automated planning tool was developed to reduce planning time 
and meet the requirements for plan quality.

There are several limitations to this study. First, only coplanar beam plans with 0° col-
limator were considered for the training data set. Studies on SBRT considering advanced 
models with non-coplanar fields and patient-specific collimator angle will be conducted 
in the future. Second, although comparison of the automated and manual plans revealed 
that the former could achieve acceptable sparing of critical structures for the 30 patients 
in the test data set, the results could not prove that those plans are the most optimal 
ones in the present study. Other optimization parameters, such as objective weight, gan-
try spacing, and template-based objective functions, must also be studied to determine 
optimal values. This work is a foundation for further study, and better training data sets 
should be used to produce better quality plans in the future.

Conclusions
Using features of the anatomy of patients to generate a predicted arc angle and an objec-
tive function for an automated treatment plan is feasible. The procedure for an auto-
mated treatment plan was developed in this study involving set start and stop angles for 
the beam arc as well as objective functions that would operate without manual interven-
tion. The dosimetric impact of the automated plan on the PTV, bronchus, esophagus, 
spinal cord, heart, and lung was insignificant (P < 0.05). In the automated plan, the mean 
maximum dose for the ribs was increased (31.6 ± 19.9 Gy vs. 36.6 ± 18.1 Gy, P < 0.05). All 
the 30 validation cases produced results acceptable for applying this method to clinical 
treatments based on oncologists’ evaluation. This procedure could reduce the planning 
time by nearly three-quarters of the time required to formulate manual plans while gen-
erating plans that are as good as ones designed by an experienced planner. Therefore, the 
plans generated by this method are acceptable for clinical use.

Methods
Patient data

A total of 125 patients with stage-I NSCLC underwent SBRT in 2015–2017 according 
to the protocols of the Zhejiang Cancer Hospital, Zhejiang, China. Clinical treatment 
plans for all patients were generated using the RayStation TPS (RaySearch Laboratories, 
Stockholm, Sweden).
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The clinical target volume, planning target volume (PTV), and organs at risk (OARs) 
were delineated by experienced radiation oncologists and reviewed by senior physicians. 
The data comprised 74 IMRT plans and 51 VMAT plans. The IMRT plans were delivered 
using 11–13 step-and-shoot coplanar beams with a gantry spacing of 20° between the 
beams and arranged in a fan shape; the plans had dosimetric features similar to those 
of the VMAT plans. The latter were delivered using two arcs with a gantry spacing of 4° 
between the control points, with the distance between the start and stop angles varying 
from 220° to 260°. The start and stop angles of the arcs were decided by expert plan-
ners based on the anatomy of individual patients. The PTV was 3.19–357.20 cm3 (mean, 
36.92 cm3). Patients were treated using five fractions and prescribed 50 Gy to the PTV. 
The prescription dose covered at 95% of the PTV, and the maximum dose did not exceed 
150% of the prescription dose. The dosimetric constraints of the OAR partly consulted 
Radiation Therapy Oncology Group (RTOG) protocols 0813 and 0915, and are listed in 
Table 3. To conform the ALARA principle, all plans were optimized further using a trial-
and-error process to achieve optimal sparing of OARs and were considered expert plans. 
These plans were used for clinical treatments and for the present study.

Characteristics of plans: geometry features, beam angles, and achievable dose for organs 

at risk (OARs)

In radiotherapy, the parameters of treatment plans are determined by the planners 
according to anatomical data based on computed tomography (CT) images. Intuitively, 
the beam orientation and constraints of OAR dose tend to correlate with the anatomic 
features of images from patients.

In the present study, 11 anatomical features were extracted from digital imaging and 
communications in medicine documents: (1) PTV volume (VPTV); (2) lung volume 
(VLung); (3) heart volume (VHeart); (4) distance between the PTV mass center and the 
lung-mass center (DPL); (5) distance between the PTV mass center and the heart-mass 
center (DPH); (6) overlap length of the PTV and the lung in the z-axis (OVZPL, intro-
duced by Wang et al. to predict the Pareto front in esophageal cancer [26]); (7) overlap 
length of the PTV and the heart in the z-axis (OVZPH,); (8) distance between the PTV 
mass center and the lung-mass center in the x-axis (XPL); (9) distance between the PTV 
mass center and the lung-mass center in the y-axis (YPL); (10) distance between the PTV 
mass center and the heart-mass center in the x-axis (XPH); and (11) distance between the 
PTV mass center and the heart-mass center in the y-axis (YPH). PTV is major concerned 
in treatment planning, in that 9 PTV related features were extracted. Meanwhile, deliv-
ered tumor cause inevitable dose to lung and heart which may cause radiation toxic-
ity in normal tissue. Five lung-related features and five heart-related features were also 
extracted to evaluate delivery dose in this study. The OVZPL, XPL, and YPL are shown in 
Fig. 4. These data could describe the volume, relative position, and shape of the regions 
of interest (ROIs), because the tissue anatomy of each patient was similar. The start and 
end angles of the arc or IMRT fan were recorded as features of the beam angle. The 
couch and collimator angles were 0° for all cases. The V10 (percentage lung volume of 
10 Gy) and V20 (percentage lung volume of 20 Gy) of the lung and mean lung dose were 
recorded to represent the dose features. These dosimetric parameters were exported 
from the TPS using Python scripts.
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Feature selection

Spearman’s rank correlation test was used to evaluate the correlation between the ana-
tomical features and the beam angle and dosimetric features. Spearman’s rank correla-
tion coefficient is a non-parametric rank statistic proposed as a measure of the strength 
of the association between two variables. It can be used in feature selection without 
making any assumptions about the frequency distribution of the variables [26]. If the P 
value was > 0.05, no significant correlation was found between the two variables. Irrele-
vant anatomical features were excluded from prediction modeling. The reserved features 
were used to predict beam angle and lung dose before determining the beam angle and 
objective function parameters for an automated plan using a machine-learning model.

Prediction and validation

Figure 5 is a flowchart of the major steps in the automated planning. The goal of train-
ing is to establish two mathematic correlations. One maps the anatomic information 
extracted from patient images and the selection of the beam angle. The other maps the 
anatomic information and V10, V20, and the mean dose of the lung. For convenience in 
the modeling, all plans were normalized at 95% of PTV in 50 Gy. All training data were 
standardized by removing the mean values and scaling to unit variance as a common 
requirement for machine-learning estimators.

Support vector regression (SVR) was implemented as the modeling method. SVR is 
a supervised learning method used for data regression. For complicated problems that 

Fig. 4  OVZPL, XPL, and YPL demonstration
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are not regressed to a linear function, SVR introduces a kernel function that projects the 
data into a higher dimensional space where it can be regressed to a linear function. By 
introducing the kernel, SVR gains flexibility in the choice of the form of regression func-
tion, which needs not be linear and even needs not have the same functional form for all 
data, since its function is non-parametric and operates locally. As a consequence, they 
can work with geometry features which show a non- linearly relation to the beam angles 
and OAR doses. SVR also introduces a tube of width ε; and finding a function that is at 
most ε deviations from the targets actually obtained for all the training data becomes 
problematic [44, 45]. By choosing an appropriate ε, SVR can be robust even when the 
training data have some bias; for example, the results of training plans are slightly vari-
ation according to the discretion of planers. In machine learning, a hyperparameter is 
a parameter whose value is set before the learning process begins. Hyperparameters 
include ε and the kernel function, which are not learned directly within the estimators 

Fig. 5  Flowchart of the major steps in automated planning: a Modeling method. b Use of the two models
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in SVR. An exhaustive grid-search method was introduced to find the appropriate val-
ues for the two hyperparameters, by searching the parameter space for the best cross-
validation (CV) score. The CV method is used to determine how the results of statistical 
analysis generalize to an independent data set. The leave-one-out (LOO) method was 
used in each model for CV. In LOO, an entire data set with n patients was separated into 
a training data set with n − 1 patients and a validation data set with 1 patient [46]. The 
SVR model was developed using the training data set and applied to the validation data 
set. The SVR and Gridsearch algorithms were implemented using Scikit-learn [47].

A total of 125 cases were used in the training data set. With an LOO method, in each 
iteration, one case was randomly chosen as validation set and other 124 cases were 
training sets for cross validation. After models training, 30 cases outside the training 
pool were used as a test set for external validation. The actual values of the gantry start 
angle and stop angles, V10, V20, and mean dose of the lung were collected from the treat-
ment plans generated by expert planners. The corresponding predicted value was cal-
culated using a prediction model and the standard deviation of the resulting error was 
calculated.

Automated planning approach and assessment

Two factors of planning were determined automatically: gantry angles and objective 
functions. The start and stop gantry angles were predicted and used as an arc parameter 
for VMAT. Objective function parameters were calculated from the machine-learning 
model and individualized. For each patient, an automated plan was generated based on 
the predicted arc start and stop angles and the optimization objectives.

As a test for the automated planning procedure, two strategies were used to develop 
SBRT plans for the 30 cases in the testing set: (1) manual plan (designed by an expe-
rienced planner through trial-and-error) and (2) automated plan (designed by the 
automated planning procedure). All 60 plans were normalized at a 50-Gy dose (for 5 
fractions) covering 95% of the PTV.

Two experienced radiation oncologists at Zhejiang Cancer Hospital reviewed the 
dose–volume histograms (DVHs) and dose distributions of the 30 automated plans and 
judged the acceptability of the plans for clinical treatments. The radiation oncologists 
was asked to decide each plan was clinical acceptable or not. For the PTV, the mean 
dose (Dmean), maximum dose (Dmax), minimum dose (Dmin), and homogeneity index (HI) 
as defined by the International Commission on Radiation Units and Measurements 83 
[48], and the conformity index (CI) as defined by Paddick et al. [49] were evaluated. For 
OARs, Dmax for the bronchus, esophagus, spine, ribs, and heart, as well as Dmean, V10, 
and V20 for the lung, were evaluated for comparison.

Statistical analyses

Statistical analyses of dosimetric differences were performed using the Wilcoxon rank 
test based on the correlation between the manual plan and the automated plan using 
SPSS v21 (IBM, NY, USA). A P value < 0.05 was considered significant.
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