Skip to main content
. 2019 Aug 13;47:543–552. doi: 10.1016/j.ebiom.2019.08.023

Table 1.

Performance comparison in multi-site pooling classification.

Methods ACC SEN SPE F1 AUC
CON Adaboost 75.6(3.8)** 77.0(4.4)** 74.2(4.4)** 76.2(3.8)** 84.2(3.6)**
CON Random Forest 76.0(3.5)** 81.0(3.9)o 71.4(5.5)** 77.4(3.5)** 84.0(3.4)**
CON SVM 79.4(3.1)* 80.4(3.5)o 78.4(3.9)* 79.6(3.3)* 86.8(3.2)*
RNN GRU_1_last 51.6(3.6)** 52.0(5.3)** 51.2(4.3)** 52.0(3.8)** 51.2(3.6)**
RNN GRU_1_ave 77.8(3.4)** 78.4(3.8)** 77.0(3.5)** 78.2(3.4)** 86.8(3.5)*
RNN GRU_2_ave 78.0(3.9)** 80.8(5.1)o 76.0(4.2)** 78.8(3.9)* 86.8(4.1)*
CMLP Multi_CNN_MLP 77.8(3.4)** 76.2(4.0)** 79.2(4.8)○ 77.2(3.4)** 86.4(3.1)**
CRNN Simple_CNN_GRU_2_ave 80.8(3.0)○ 80.2(4.3)○ 82.0(3.5)○ 80.8(3.1)○ 89.2(2.8)○
CRNN Multi_CNN_GRU_1_ave 80.6(3.5)○ 80.8(4.1)○ 80.6(4.3)○ 80.8(3.3)○ 88.2(3.6)○
CRNN Multi_CNN_GRU_2_ave 81.2(3.4)○ 81.4(4.1)○ 81.0(4.9)○ 81.0(3.5)○ 88.6(3.7)○
CRNN Multi_CNN_LSTM_2_ave 81.6(2.9)○ 82.6(3.6)○ 80.4(3.8)○ 82.0(2.7)○ 89.4(2.8)○
CRNN MsRNN(Proposed) 83.2(3.2) 83.1(3.7) 83.5(3.7) 83.3(3.2) 90.6(3.0)

CON: conventional classification methods; RNN: RNN-based methods; CMLP: CNN linked with multi-layer perception; CRNN: CNN-RNN based methods; SVM: Support vector machine with Gaussian kernel; LSTM: Long short-term memory network; GRU: gated recurrent unit. GRU_1: one layer of GRU; GRU_2: two-layer stacked GRU; #_last: the output of the last GRU step is connected to the next layer. #_ave: the average of the outputs of all GRU steps is connected to the next layer; SimpleCNN: Convolutional layer has fixed kernel size; Multi_CNN: Convolutional layer has different kernel size; ○ denotes that the methods have no significant difference (two-sample t-test) with the proposed. */** denote respectively that the methods are significantly worse than the proposed model with P value = .05/0.01. Details of all these mentioned architectures are shown in Supplementary file Fig. S2. The last row is our proposed method.