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Predicting patients' outcome after treatment is challenging. Usual manually delineated by radiologists. In the training set, a support vector

clinical variables and standard exploitation of imaging fails to deliver ac-
tionable predictive models with sufficient accuracy in a number of can-
cer types and associated treatments, including cervical cancer, one of
the most frequent malignant tumour in women with over 500,000
cases annually worldwide, associated with 270,000 deaths [1]. For
women diagnosed with locally advanced cervical cancer (LACC), treat-
ment inWestern countries is usually pelvic external beam radiotherapy
(EBRT) in association with cisplatin-based chemotherapy (CRT),
followed by brachytherapy (BT). Alternatively, preoperative neoadju-
vant chemotherapy (NACT) is increasingly being considered in Asian
countries in order to reduce tumour volumes and allow for a surgical
removal.

Within this context, there is a crucial need to identify biomarkers
predictive of outcome, in order to personalize treatment. Radiomics
has emerged as a potential solution to provide such biomarkers from
available routine pre-treatment images, by considering that the content
of images can be extracted through machine (deep) learning, beyond
the capabilities of the human eye, even the expertly-trained one [2,3].
The resulting features can be mined, similarly to other -omics domains,
in order to identify the relevant ones. One advantage of radiomics is that
it exploits diagnostic images that are available already, so it does not re-
quire additional exams (imaging or biological).

Despite a number of encouraging results, radiomics faces challenges
that have until now prevented its widespread use in clinical practice.
These include false-positives [4], the lack of standards and resulting lim-
ited reproducibility [5], the lack of fully automated detection and delin-
eation, and the lack of multi-centric validation [6]. This last point is
addressedwithin the context of LACC by the study by Sun, et al. recently
published in EBioMedicine [7]. They investigated the prediction of re-
sponse to NACT in LACC using radiomic features extracted from pre-
treatment magnetic resonance imaging (MRI) T1 and T2 sequences.
They included 275 patients from 8 cohorts (5 were used as a training
set, 3 as the testing set). IBSI (image biomarkers standardization initia-
tive)-compliant radiomic features were extracted from the twoMRIs, as
well as from both the intratumoural and the peritumoural regions
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machine with recursive feature elimination was exploited to identify
the most relevant features. Then a random forest was used to build
models, which were then evaluated in the testing set. Importantly, the
robustness of the findings was evaluated by training/testing themodels
on different training and testing sets. The models based on a single se-
quence and single tumour region reached AUCs ≥ 0.94, with 100% spec-
ificity but limited sensitivity (76% at best). Those based on combinations
of sequences reached AUCs ≥ 0.98, with 100% specificity and sensitivity
up to 84% for the bestmodel. Moreover, these results were robust to dif-
ferent splitting of the data into training and testing sets. In a subset of
232 patients for which the clinical variables (age, FIGO stage, gross
type) were available, the radiomic models significantly outperformed
the model based on clinical features (AUC of 0.6). This is in line with
the results of Lucia, et al. with the radiomic model reaching an accuracy
of 0.90–0.97 versus 0.56–0.60 for the clinical model [8].

One challenging aspect of multicentric radiomic studies is the sensi-
tivity of radiomic features with respect to the variability of scanner
models, acquisition protocols and reconstruction algorithms and pa-
rameters. Recently, a radiomic model exploiting FDG positron emission
tomography (PET) andMRI apparent coefficient diffusion (ADC)map to
predict outcome in LACC was validated in a multicentric context (3 dif-
ferent centers), thanks to the use of the ComBat harmonization tech-
nique [8]. In that respect, the study of Sun, et al. showed that z-score
normalization [9] of each slice of the MR images intensities as well as
of the features of each patient could allow good performance, despite
different 3.0-T and 1.5-T MRI scanner models from several different
vendors across the 8 centres.

One important limitation of the study by Sun, et al. is that regions of
interest weremanually delineated. Although reproducibility was evalu-
ated through blind analysis by two radiologists, a fully automated delin-
eationwill need to be developed so the proposed radiomicmodel can be
exploited clinically. Artificial intelligence has already shown the poten-
tial of highly accurate image segmentation within the multimodality
imaging context [10]. Another limitation is that clinical data were not
available for all patients, compromising the comparison between the
radiomic models and standard clinical variables carried out only on a
subsample of the overall study population. Finally, the models might
not be directly applicable to cohorts in the Western countries for
which treatment management differ.
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Nonetheless, thework by Sun, et al. contributes to the growingnum-
ber of studies that show validating radiomic models in a multicentric
context is feasible. Such results may help the radiomics approach to
translate faster into the clinical routine practice.
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