
EBioMedicine 47 (2019) 293–300

Contents lists available at ScienceDirect

EBioMedicine

j ourna l homepage: www.eb iomed ic ine.com
Direct transmission of within-host Mycobacterium tuberculosis diversity
to secondary cases can lead to variable between-host heterogeneity
without de novo mutation: A genomic investigation
Marie Nancy Séraphin a,b,⁎,1, Anders Norman c,1, Erik Michael Rasmussen c, Alexandra M. Gerace a,b,
Calin B. Chiribau d, Marie-Claire Rowlinson a,d, Troels Lillebaek c,2, Michael Lauzardo a,b,2

a Division of Infectious Diseases and Global Medicine, University of Florida, Department of Medicine, 2055 Mowry Road Suite 250, P.O. Box 103600, Gainesville, FL 32611, United States
b Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, United States
c International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
d Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, 1217 N Pearl Street, Jacksonville, FL 32202, United States
⁎ Corresponding author at: Division of Infectious D
University of Florida, Department of Medicine, 2055 M
103600 Gainesville, FL 32611, United States.

E-mail address: nseraphin@ufl.edu (M.N. Séraphin).
1 Shared first author.
2 Shared last author.

https://doi.org/10.1016/j.ebiom.2019.08.010
2352-3964/© 2019 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 3 May 2019
Received in revised form 2 August 2019
Accepted 4 August 2019
Available online 13 August 2019
Background: Whole genome sequencing (WGS) has enabled the development of new approaches to track
Mycobacterium tuberculosis (Mtb) transmission between tuberculosis (TB) cases but its utilitymay be challenged
by the discovery thatMtb diversifieswithin hosts. Nevertheless, there is limited data on the presence and degree
of within-host evolution.
Methods:Weprofiled awell-documentedMtb transmission clusterwith three pulmonary TB cases to investigate
within-host evolution and describe its impact on recent transmission estimates. We used deep sequencing to
track minority allele frequencies (b50·0% abundance) during transmission and standard treatment.
Findings: Pre-treatment (n=3) and serial samples collected over 2months of antibiotic treatment (n=16) from
all three cases were analysed. Consistent with the epidemiological data, zero fixed SNP separated all genomes.
However, we identified six subclones between the three cases with an allele frequency ranging from 35·0% to
100·0% across sampling intervals. Five subcloneswere identifiedwithin the index case pre-treatment and shared
with one secondary case, while only the dominant clone was observed in the other secondary case. By tracking
the frequency of these heterogeneous alleles over the two-month therapy, we observed distinct signatures of
drift and negative selection, but limited evidence for de novomutations, even under drug pressure.
Interpretation: We document within-host Mtb diversity in an index case, which led to transmission of minority
alleles to a secondary case. Incorporating data on heterogeneous alleles may refine our understanding of Mtb
transmission dynamics. However, more evidence is needed on the role of transmission bottleneck on observed
heterogeneity between cases.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tuberculosis (TB), predominantly caused byMycobacterium tubercu-
losis, is currently the number one cause of death by an infectious agent
globally [1]. In 2017, an estimated 10·0million people developed active
disease and 1·3million died [1]. Rapid diagnosis and effective treatment
of active cases are among themost effectiveways to control TB and stop
iseases and Global Medicine,
owry Road Suite 250, PO BOX

. This is an open access article under
transmission in communities [2]. In low incidence settings, investiga-
tion of outbreaks aided by traditional molecular surveillance tools is a
cornerstone of TB control efforts [3]. Conventional genotyping tech-
niques were developed based on the fundamental assumption that
Mtb transmission and infection is clonal [3]. Thus, cases with identical
genotype patterns can be grouped into clusters, i.e. cases that share
transmission links that can be further explored by contact investigation
[3]. Mycobacterial interspersed repetitive unit – variable number
tandem repeat (MIRU-VNTR) and spacer-oligonucleotide typing
(spoligotyping) techniques have, however, been found to overestimate
transmission based on clustering. Whole genome sequencing (WGS)
has shown to be a promising technology that has higher resolution
and canmore accurately determine transmission dynamics and identify
clustersmore in agreementwith the contact investigation data [4].WGS
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Whole genome sequencing (WGS) has greatly advanced our ability
to trace direct Mycobacterium tuberculosis (Mtb) transmission,
but this is increasingly being challenged by recent findings that
within-host populations of pathogens are often heterogeneous.
With current approaches, we implicitly assume one Mtb clone
per tuberculosis (TB) patient and visualize only the predominant
bacterial population to infer transmission links/clusters. A pro-
posed cut off of ≤5 single nucleotide polymorphisms (SNPs) is con-
ventionally used to infer direct transmission between cases.
However, epidemiological analyses of serial clinical isolates have
reported within-host genetic variability that exceeds that of linked
cases, thereby challenging the convenience of a universal SNP-cut
off to delineate Mtb transmission. While a number of studies have
reported on within-host diversity and the impact on direct trans-
mission estimates, there has been less focus on the precise mech-
anisms that drive within-host microevolution. The available
evidence suggest two evolutionary scenarios to explain the ob-
served within-host Mtb diversity in TB cases: The first proposes
the idea of a dominant clone from which minority variants evolve
continuously but are selected against by adequate drug pressure
or the host immune system. The second suggests the presence
of segregated but relatedwithin-host variant populations structur-
ally shaped by drift and adaptation. Nevertheless, epidemiological
evidence to support either scenario in Mtb remain limited.

Added value of this study

Although prior studies have used deep sequencing and profiled
low frequency SNPs in serial isolates to investigate within-host
evolution, they typically have applied this technique to unlinked
cases, and cases with variable drug resistance profiles. In this
study, we instead focus on a single discrete transmission cluster,
documented through reverse contact tracing and traditional
genotyping over 2 years, to investigate within-host evolution and
describe its impact on SNP-based recent transmission estimates
in more detail. We analyse pre-treatment and serial isolates from
three human TB cases under standard treatment, with all cases re-
ceiving the same initial therapy. Thus,we specifically analysed the
dynamics of the same strain within and between host(s) and over
time.

Implications of all the available evidence

Our study expands on the available evidence that Mtb within-host
heterogeneity is in the form of rare variants that seldom reach fix-
ation. We also demonstrate that these rare variants are seeded
during transmission but can be selected against during latency.
More importantly, we show that over time, the within-host popu-
lation dynamics can shift, with the potential to bias the reconstruc-
tion of transmission links in outbreaks that span years. Our report
highlights the need to incorporate minority alleles in addition to
consensus fixed SNPs when estimating recent transmission
links. In addition, we provide the epidemiological impetus for pub-
lic health officials to incorporate the identification of TB patients
that may harbour polyclonal infections, as they may require more
aggressive treatment. It is now accepted that the one genome/
sample approach biases the reconstruction of Mtb transmission
links and may even confound phenotypic drug susceptibility re-
sults. Consequently, we provide important evidence to support
the integration of novel sampling approaches to capture the full
spectrum of within-host diversity.
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is able to identify the direction and temporal sequence of transmission
down to a single nucleotide polymorphism (SNP). This is especially use-
ful in outbreaks that span years or for Mtb prospective genomic surveil-
lance at the local or national level. WGS is revolutionizing TB outbreak
investigations by helping to more efficiently identify recent transmis-
sion. Currently, by applyingWGS, genotype clusters can be further clas-
sified into cases linked to the closest SNP, with a proposed ≤5 SNPs cut
off to define recent outbreaks [5]; although larger SNP cut offs have
been proposed and applied in diverse TB epidemiological settings [6].
WGS has also replaced traditional methods for routine strain typing
[7] and drug susceptibility testing [8] for certain TB programs in low in-
cidence settings.

WGS has exposed a breadth of within-host genetic diversity in Mtb
infection. A number of studies have reported on thewithin-host hetero-
geneity in Mtb and its implications for TB control [6,9]. Particularly,
some studies have reported that the genomic variability within a TB
patient may be greater than the variability observed between any two
epidemiologically linked cases [6]. The consequence of this finding
may be that we are unable to resolve transmission events using the
standard ≤5 SNP cut off [6]. Other studies have suggested that within-
host diversitymay confound both phenotypic and rapidmolecular diag-
nostics for drug resistance, severely impacting treatment efficacy, and
leading to the selection of drug resistant clones during treatment [10]
Nevertheless, there is limited data on the mechanisms of within-host
evolution in M. tuberculosis [12,17]. Two evolutionary scenarios have
been proposed to reconcile this seeming genomic clonality with the
ability to diversify within hosts. The first proposes the idea of a domi-
nant clone fromwhichminority variants evolve continuously but are se-
lected against by adequate drug pressure [11], or the host immune
system [12]. The second scenario suggests a predominance of spatially
separated but related variant populationswithin the host that are struc-
turally shaped by genetic drift and adaptation [9,11,13,14]. However,
most of the data supporting these evolutionary scenarios have come
from animal studies, or epidemiological studies of unlinked TB cases
[9,11,12,15] In addition, most of the epidemiology studies profiled
SNPs that had become fixed in the sampled population, and as such
did not explore the full spectrum of diversity due to the presence of mi-
nority variants [12,17].

In this study we investigated within-host Mtb evolution and de-
scribe its impact on recent transmission estimates. What sets our
study apart is that we profiled a well-documented Mtb transmission
cluster involving three cases linked by reverse contact tracing and con-
ventional genotyping by MIRU-VNTR/spoligotyping. The availability of
pre-treatment and serial isolates that were obtained during the stan-
dard antibiotic treatment course allowed us to investigate within-host
evolution during transmission and under drug pressure within the
same cluster. In addition, we used very deep (330× – 1500×) sequenc-
ing to track the population turnover of minority alleles with less than
50% abundance [11]. A secondary case was diagnosed soon after the
index was reported, and a third case was identified 22 months later.
We are thus able to account for disease latency in our estimates of the
within-host evolution. We provide further evidence that Mtb within-
host diversity is largely composed of minority alleles, with clonal
evolution driven by negative selection at transmission and during la-
tency. Interestingly, we observed little measureable microevolution
under drug pressure. Our results may have important implications for
how we estimate recent transmission.

2. Materials and methods

2.1. Cluster description

The cluster included three patients. The index case (P1) was a male
in his early 50s. Originally from South America, P1 had lived in the
United States (U.S.) for over a decade before hewas diagnosed with ad-
vanced cavitary pulmonary TB in late 2016. The first secondary case
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(P2), who was confirmed to have TB by a positive culture 17 days after
P1was reported, was a long-termhousehold contact born in theU.S. Pa-
tient three (P3), also born in the U.S., was diagnosed in early 2018 and
linked to P1 by reverse contact tracing and traditional genotyping. All
three cases were HIV-negative and shared identical S spoligotype
(776377377760771) [16] and 24-locus MIRU-VNTR (213325153324 /
14143422332%) profiles. The MIRU loci are ordered as reported in
Mazars et al., 2001,with CDC notations used for ambiguous and indeter-
minate sites [17]. The Florida Department of Health Bureau of Public
Health Laboratories (BPHL) performed phenotypic drug susceptibility
testing (DST) by broth microdilution method (Sensititre™; Thermo
Fisher Scientific, Cleveland, OH, USA) on all pre-treatment isolates and
molecular testing for the detection of multidrug resistance TB (MDR-
TB) by MTBDRplus assay (Hain Lifescience GmbH, Nehren, Germany).
DST was repeated on the last culture positive samples for P1 and P3.

2.2. Ethics statement

The Florida Department of Health TB control program managed the
diagnosis and treatment of the patients, after obtaining their informed
consents for services. Data from the Florida Department of Health TB
Program and the Bureau of Public Health Laboratories were collected
and shared anonymously. The use of the data for this study was ap-
proved by the Institutional Review Boards (IRB) of the University of
Florida (IRB201600135, IRB201700445, and IRB201901133) and the
Florida Department of Health (2013-05-UFL).

2.3. Whole genome sequencing and assembly

Details of sample preparation for genomic DNA extraction, library
preparation, and sequencing using the Nextera XT library construction
kit and Illumina MiSeq system (Illumina, Inc., San Diego, CA, USA) are
described in the supplementary file. The metagenomics composition
of individual paired-end libraries was assessed using KRAKEN (v2·0·7),
followed by BRACKEN (v2·2), against theMiniKraken2 reference database
(downloaded on March 7, 2019) to identify and remove contaminated
reads [18,19].

2.4. Variant calling

The filtered mapped reads (in BAM-format) from the three libraries
re-sequenced at high depth were combined with their respective
normal-depth libraries. We called high-confidence fixed SNPs with
samtools (v1·4) and bcftools (v1·4), consecutively. We retained all ho-
mozygous SNPsmeeting aminimumphredquality score of 20, sequenc-
ing depth of 10, four forward and four reverse read support in non-
repetitive regions of the H37Rv reference genome (excluding all
transposases, pe-, ppe- and pe_pgrs-genes). To identify and track
low-frequency SNPs, we used LOFREQ (v2·1·2) to call SNPs at previously
confirmed high-confidence variant position [20]. We retained all low
frequency SNPs having a minimum of one forward, one reverse read
support, and a phred quality score N20. After confirming the absence
of minority variants in these genomic positions, we excluded an addi-
tional 25 SNPs in or between genes belonging to the ESAT-6 and polyke-
tide synthetases families to avoid underestimation of allele frequencies
due to inconsistent read mapping.

2.5. Assessing composition of subclones in samples

Minimum inclusion criteria for considering a subclone detected
within a given sample involved detection of at least two allelic SNPs
from the respective subclone (except for subclone Sc6 which only had
one identified allelic SNP). Subclone frequencies were then calculated
based on pooled read depths of allele-specific nucleotide against pooled
read depths supporting the respective reference nucleotides. The abun-
dance of the primary clone (Pc) was calculated by subtracting the
combined proportions of all detected subclones (Sc1-6) from 1. We
used the Shannon Diversity index calculated from mapped files
downsampled to a maximum 50× average coverage to track subclone
abundance across sampling intervals [21].

2.6. Phylogenetic analyses

The phylogenetic relationship between the genomes was investi-
gated using distance-based and maximum parsimony methods. The
pairwise genetic distance between genomes (measured in SNPs) and a
comparison between and within host(s) SNP differences were calcu-
lated usingMEGA7 [22].We used the PHYLIP/dnapars algorithm imple-
mented in Seaview to infer a maximum parsimony phylogenetic tree,
optimized by nearest neighbor interchange (NNI) [23],which formed
the basis of the network shown in Fig. 1. Phylogenetic reconstruction of
global diversity of the L4·4·1·1 Mycobacterium Tuberculosis Complex
(MTBC)-lineagewas carried out by first downloading currently publicly
available datasets from the European Nucleotide Archive (ENA),
from studies including N50 whole-genome sequenced Mtb genomes.
MTBC-lineages were then identified by running TB-Profiler [24] on
fastq-files and strains that identified as L4·4·1·1 were included in the
subsequent analysis. Phylogenetic reconstruction was performed with
RAxML (v7·2·8) implemented in the software package Geneious
(v9·1·8) on an alignment consisting of 7554 SNPs with 100 bootstrap
replicates to infer branch support.

2.7. Data deposition

Sequences are available in the EMBL-EBI European Nucleotide
Archive (ENA) under study accession PRJEB30782 https://www.ebi.ac.
uk/ena/data/view/PRJEB30782.

3. Results

3.1. Description of isolates

The initial pre-treatment isolates were available from all three cases
(one each). In addition, 19 sputum samples were collected from P1 and
seven from P3 over the course of 2-month intensive treatment phase to
monitor progress. We only had the sputum sample collected at diagno-
sis for P2. Phenotypic drug susceptibility testing (DST) revealed full
susceptibility towards the standard drugs rifampin, isoniazid,
pyrazinamide, and ethambutol. Of the 26 original within-patient iso-
lates, eight were later discarded from P1 due to very low sequencing
coverage resulting from significant nontuberculous mycobacterial
(NTM) contamination (Supplementary file). Furthermore, two samples
from P3 were not sequenced due to lack of growth and substantial con-
tamination, respectively. Overall, 19 isolates were included in the anal-
yses, comprising twelve from P1, one from P2, and six from P3. Retained
libraries comprised over 99% MTBC reads, except for one sample
(UF01–18) comprising 98% MTBC reads and 1·9% NTM reads. Due to
the detection of almost 2·0% contaminated reads in included samples,
we also removed mapped reads that differed by N5% identity to the
H37Rv reference genome as well as reads with less than half of their
length mapped. All libraries included in final analyses had at least
99·9% of the mapped reads assigned to Mtb. We performed deep se-
quencing onfirst and last samples fromP1 and P3 (and the single P2 iso-
late), to ensure at least 500× coverage, in order to track low-frequency
SNPs following transmission and over the course of treatment. The time
of isolation and sequencing coverage for all genomes are available in
Supplementary Table 1.

3.2. Initial genotyping and isolates in a global context

We first determined that all sequenced isolates constituted a single
genotype, namely MTBC L4·4·1·1, based on the confirmed presence,

https://www.ebi.ac.uk/ena/data/view/PRJEB30782
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Fig. 1.Maximumparsimonyphylogenydrawnusinghigh confidencefixed SNPs.Node sizes correspond to thenumber of samples representing each subclonepopulation.We chose the
most dominant clone (primary or subclone) from each sample. This represents an allele frequency was below 50% in some samples (P1-04, P1-07, P1-09, and P2-01), while still being the
most abundant clonal population.
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at N99% frequency, of all nine informative SNP markers specific to this
particular sublineage [7]. Furthermore, consistent with the DST results,
no well-known drug resistance conferring mutations were detected in
any of the isolates.

Typically, in the absence of evidence of mixed-strain infection or
contamination, SNPs are identified as present when their allele fre-
quency exceeds 75%–90%. However, SNPs can justifiably be considered
major alleles as long as they constitute more than half of the population
(thus, a frequency N 50%), provided they are not located within or very
near to repetitive- or inserted genome elements, in which case they are
more likely a result of mis-mapped sequencing reads. In total, we iden-
tified 674 SNPs, universally conserved in all 19 isolates (99·8% of SNP-
calls above N95% frequency, with all calls above 80% frequency), and
14 allelic SNPs present at N50% frequency in at least one isolate. From
these 14 genome-positions, we were able to identify six distinct
subclones (Sc1-Sc6) among the 19 isolates, each discernible through
1–3 allele-specific SNPs, which derived directly from a single, primary
clone (Pc) lacking all 14 allele-specific SNPs (Supplementary Fig. 1).
Thus, only 2% of the detected SNP positions contributed to the observed
genetic heterogeneity.

By comparing the seven clones identified among the 19 samples in-
cluded in this study to publicly available whole-genome sequencedMtb
isolates belonging to the sameMTBC sublineage (Supplementary Fig. 2),
we saw that they formed a deeply branchedmonophyletic clade within
L4·4·1·1. Eighty-five out of the 674 conserved SNPswere clade-specific
(i.e unique to our isolates), while the majority (84%) of all other SNPs
appeared universally conserved throughout L4·4·1·1. Despite 144 of
the global isolates being from the American continent (South America,
Canada and Greenland), our clones grouped among isolates of African
and European origin. Furthermore, based on global genome typing stud-
ies, the L4·4 sublineage is not normally associated with South America
or the USA, which sees a significantly higher abundance of generalist
sublineages such as L4·1·2/Harlem, L4·3/LAM and L4·10/PGGE
[25,26]. However, presence of this sublineage in this part of the world
is still consistent with recent analysis suggesting a strong temporal cor-
relation between European colonialization and the spread of L4
sublineages to Africa and the Americas [26].
3.3. Within-host genetic diversity and impact on observed heterogeneity
between cases

As most SNP-based transmission analyses operate with a single
clone per isolate, we traced the frequencies of each of the allele-
specific SNPs across all isolates, to assess the proportion of individual
subclones against the primary clone (Supplementary Fig. 1). Nine iso-
lates contained the appropriate subclone-specific SNPs at N50% fre-
quency, and thus appeared to be comprised of one of the six
subclones, while the 14 SNPs were absent or below this threshold in
ten isolates and were therefore initially identified as Pc isolates
(Fig. 1). Six of the isolates were largely dominated (N80% abundance)
by a single subclone (Sc1 and Sc3-Sc6, respectively), while the Pc
completely dominated five isolates, all from patient P3. The Pc had the
highest abundance in ten samples (35% – 100%), although three of



Fig. 2. Within and between host pairwise genetic distance. Genomes are ordered by the date of isolation. Genetic distance is measured in SNP. Between-host SNP distances are
highlighted in blue, green and yellow, respectively. Bold numbers/boxes indicate pairwise SNP distance above the conventional ≤5 SNP cut off to define direct transmission.
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these (P2–01, P1–04 and P1–09)were in reality dominated bymixtures
of different subclones (see below).

The pairwise genetic distance between any two isolates, when only
considering their respective most abundant subclone is shown in
Fig. 2. Consistent with the epidemiology and genotyping data, pre-
treatment samples from all three patients (P1-01, P2-01and P3-01)
were separated by zero SNPs, thus strongly supporting direct transmis-
sion. Interestingly, however,five of the six subclones (Sc1-Sc5)were de-
tected in the index case (P1), demonstrating a significant within-host
diversity, while only one (Sc6) was found exclusively in a secondary
case (P3). Furthermore, while all isolates dominated by Pc were within
three SNPs of all other isolates, the genetic distances were five or six
SNPs between isolates inwhich Sc2, Sc3 or Sc4were themost abundant,
thereby exceeding the conventional threshold for recent transmission
(Fig. 2). However, because the five subclones in P1 were demonstrably
related directly to the primary clone, we could confidently rule out
mixed infection (i.e transmission to P1 frommultiple sources). On aver-
age, we measured a mean SNP-distance of 3·2 (n = 66) within P1,
while P3 only had a distance of 0·33 (n = 15). Overall, we measured
a mean distance of 2·19 SNPs between all isolates (n = 177). The
mean between-host SNP-distance from P1 to P2 and P3 was 1·8 and
1·9, respectively, while we only saw a mean distance of 0·17 SNPs be-
tween P2 and P3. On the whole, we therefore saw between-host SNP
distances within the conventionally defined limit of direct transmission
(b2 SNPs) [5].

Intriguingly, eight of the isolates were revealed to be comprised of
complexmixtures of three ormore clones (Fig. 3). Isolates consisting al-
most entirely of single subclones appeared on days 15, 29, 31 and 59,
while within-host heterogeneity, expressed via the Shannon diversity
index, was the highest at days 6, 23, 25 and 38 of treatment in P1. Sur-
prisingly, we also saw a high degree of heterogeneity, comparable to P1,
in the pre-treatment sample of P2. Most importantly, all five subclones
(Sc1-Sc5) detected in P1 were represented in the P2 pre-treatment
sample. We also note that diversity seemed to decrease after 1 month
of treatment (days 38–59), and that all P3 isolates, apart fromP3-01, ap-
peared to consist mostly of pure clones (Pc or Sc6, respectively).
3.4. Deep sequencing for detection of ultra-low-abundance subclones in
heterogeneous sputum isolates

Initially, our analyses of the isolates seemed to suggest evidence of
significant within-host microevolution occurring in P1, as multiple
subclones, all deriving directly from a single clone (Pc), appeared as
pure isolates at various times over the course of treatment. However,
as we later observed, subclone-mixtures also appeared in subsequent
isolates, suggesting amore dynamic picture than simple purifying selec-
tion on emerging de novo mutations. Conversely, from days 6–59 of
treatment in P1, we sawamore or less steady increase in the abundance
of Sc4, which increased from 7·7% to 94·1%, while Sc3 and Sc5were un-
detected after day 39 of treatment, which also saw an overall decrease
in sample heterogeneity (Fig. 3). This bore a distinct signature of purify-
ing selection, possibly influenced by drug pressure. We therefore be-
came interested at the realistic detection limit of subclones by
supplementing selected isolates, the pre-treatment- (P1-01, P2-01, P3-
01) and final (P1-12 and P3-06) isolates of the three patients with
deep sequencing, corresponding to 1–4 isolates per MiSeq flow cell.
This allowed the detection of subclones at as low as 0·2% allele fre-
quency, although this corresponded to only nine sequencing reads
over two allelic SNP positions (Supplementary Table 3). This level of
sensitivity was sufficient to confirm the presence of all five subclones
in the P1 and P2 pre-treatment isolates.
3.5. Functional consequences of within-host heterogeneity

We looked at the genes affected bymutations in these 14 variable re-
gions (Supplemental Table S2). All but one occurred in protein-coding
regions, with seven leading to amino acid changes (missense). Themu-
tations were mainly in genes required for Mtb replication, lipid synthe-
sis, or cellular metabolism [27]. For example, we observed a missense
variant (Thr128Met) in the lipoprotein gene lppE in subclone-4, while
subclone-3 had a synonymous variant in LppF at position 2,172,722 in
LppF. The lipoprotein genes LppE and LppF encode membrane-



Fig. 3. Subclonepopulation anddiversity across sampling intervals. Genomes are ordered by the date of isolation. Colours represent eachof the six subclonepopulations,while the black
line represents the Shannon diversity index across sampling interval. The diversity index was normalized for sequencing depth by downsampling eachmapped genome to an average of
50×.

298 M.N. Séraphin et al. / EBioMedicine 47 (2019) 293–300
anchored proteins that are involved in virulence and immunoregulatory
processes [28,29]. Another interesting missense mutation (Asp422Ala)
was in the phoR gene, which codes for the sensor histidine kinase
PhoR, part of the two-component regulatory system PhoPR. PhoPR has
a regulatory role in virulence and cell wall composition and is believed
to control the expression of approximately 2% of the Mtb genome [30].
These regulatory systems alter gene expression in response to stimuli
such as external stress. The response regulator PhoP regulates processes
such as lipid metabolism, stress responses, and persistence, but the ac-
tion of the sensor histidine kinase PhoR is less understood [31,32]. The
presence of these mutations in genes required for membrane and cell-
wall synthesis and the absence of mutations in drug targets, supports
our hypothesis that these mutations did not occur over the study sam-
pling period.

4. Discussion

In this studywe confirm the findings of a number of epidemiological
studies that Mtb is variable within-host [9,11,33–36]. Within our index
case sampled at eleven different time points, we identified five
subclones over the course of the TB infection and treatment separated
by up to 6 SNPs. This observation may have profound implications for
transmission dynamics studies [37]. In addition, we show that the
bulk of the diversity is in the form of minority alleles, which are often
not taken into consideration bymost within-host epidemiological stud-
ies. Within-host heterogeneity in Mtb and its impact on transmission
and drug susceptibility testing has been documented [38]. Nevertheless,
our understanding of the mechanisms of within-host diversification
remains limited [11]. Recently, Herranz et al. 2018 reported thatMtb ac-
quires limited genetic diversity during prolonged infection, reactivation
and transmission involving multiple hosts [34]. This is in line with our
own observations. It took 2 months of combination therapy with four
effective drugs for P1 and P3 to successfully eradicate their Mtb infec-
tion. This gave us the unique opportunity to track the fate of theminor-
ity allele populations identified at baseline under drug pressure and
between hosts. We observed that all six subclones were present in
pre-treatment samples and in sputa collected at subsequent time
points, demonstrating that none of these subclones became fixed over
time, with the primary clone remaining dominant in all three patients.
Given that at the estimated mutation rate of 0·25–0·30 SNP/genome/
year during latent infection [39,40] three SNPs would take on average
10–12 years to develop, we would argue that part of the diversity ob-
served in P1 could have been transmitted to him as we observed in
the case of P2. However, more experimental data that include the date
of infection are needed to confirm these findings.

Another observation in our study is that the five subclones identified
in P1 were recovered in P2, diagnosed within a couple of weeks, while
only the primary clone was observed in P3 diagnosed almost 2 years
later. The role of purifying selection inMtbwithin-host clonal evolution
has previously been reported [9,11,12]. However, there is as of yet little
known about the role of transmission bottleneck in curtailing within-
host diversity in Mtb [12]. Based on our data, we would hypothesize
that the mechanisms of within-host clonal evolution in Mtb are likely
ambiguous and largely dependent on host and environmental factors.
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Some transmission events are a mixture of clones while in others, one
dominant clone is transmitted. Perhaps this transmitted diversity is nec-
essary to guarantee infection and, ultimately, the survival of this obli-
gate pathogen and this warrants further investigation [41].

We did not identify mutations conferring resistance to the anti-
tuberculosis drugs in any isolates from P1 and phenotypic drug resis-
tance conducted at baseline and 2 months after treatment initiation.
However, we did not explore alternative drug resistance mechanisms,
such as antibiotic tolerance, as explanation for why P1 took so long to
eradicate the infection without observed de novo mutation in any of
the serial isolates collected while under therapy [42–44]. Among the
four antibiotics to treat drug susceptible TB, rifampin (RIF) is the most
important and targets the RNA polymerase, beta subunit to inhibit bac-
terial transcription [45]. Recent data suggest RIF preferentially inhibits
one of the two rpoB promotor regions, resulting in increased expression
from the second promotor and increased bacterial growth under
drug pressure [44]. This hypothesis should be addressed in future
investigations.

There are some limitations to our study. First, we only had one ge-
nome for P2, which limited our ability to explore the full spectrum of
within-host clonal evolution during transmission and under drug pres-
sure. In addition, several of the within-host isolates were too contami-
nated to be useable. This may have limited our ability to track the full
dynamics of thewithin-hostminority allele turn over in these discarded
time-intervals. In addition, we selectively deep sequenced a limited
number of isolates and had uneven genome coverage across sampling
intervals, which meant that some low frequency SNPs were likely not
observed.We subcultured the isolates, first on LJ and thenMGIT, to gen-
erate enough genomic DNA for sequencing. It is possible that these se-
rial subculture steps resulted in a loss of genetic heterogeneity, which
would partially explain the observed changes in genetic diversity
[46,47]. One approach to circumvent this bias is direct sequencing
from sputum sample [47]. However, the design of our study limited us
to working with isolates. All three patients in our study initially pro-
vided sputum samples following standard procedures for TB diagnosis
and treatment management at the clinic. Two patients in particular,
P1 and P3 had several isolates collected over the course of therapy.
We tracked subclonal populations across these sampling intervals and
observed distinct signatures of drift and negative selection under drug
pressure (Fig. 3). Nevertheless, we must acknowledge ascertainment
bias in the underlying within-host diversity. Indeed sampling effects
whereby subclonal populations are differentially captured would also
present as purifying selection. These data raise major concerns that
evenwhenmultiple samples are analysed,we donot capture the under-
lying within-host heterogeneity in clinical practice [11, 48]. Our study,
however, has several strengths in that it provides an in-depth look at
the variability within and between a cluster of patients who are pan-
susceptible to first-line therapy and thus avoids variability introduced
due to differing history of acquired drug resistance. Additionally, be-
cause we have an epidemiologically well linked TB cluster, we are able
to compare the intra- and inter-patient variability without ambiguity
as to the cases' relatedness.

WGS is becoming the new “gold standard” in molecular epidemiol-
ogy of TB. Mtb is exceptionally slow-growing and slow to mutate, and
the level of genetic diversity is very low compared to other pathogens.
Nevertheless, WGS has shown that there is more diversity than previ-
ously recognized. WGS provides unparalleled sensitivity to detect
small genetic changes, enabling the determination of directionality of
transmission by comparing numbers of SNPs between cases and over
time. However, in order to effectively utilizeWGS in public health, clin-
ical practice, and research into Mtb, we must understand the extent of
intra-patient variability. More analyses are needed to elucidate the
mechanism and functionality of this variability. Future studies on this
subject should include greater numbers of patients (both index and sec-
ondary cases) and more in-depth sequencing of isolates. As more TB
programs transition toWGS for routine strain surveillance and outbreak
investigation, more data is needed on the role of transmission bottle-
neck in observed heterogeneity between cases. Ultimately, these data
may help guide the integration of minority allele frequency to refine
transmission estimates [49].
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