Table 2.
Method | MCC | ACC | SN | SP | AUC |
---|---|---|---|---|---|
1. RF | 0.715 | 0.858 | 0.842 | 0.873 | 0.923 |
2.ERT | 0.729 | 0.864 | 0.855 | 0.873 | 0.934 |
3. SVM | 0.742 | 0.871 | 0.873 | 0.869 | 0.936 |
4. XGB | 0.721 | 0.860 | 0.891 | 0.828 | 0.939 |
{1, 2} | 0.726 | 0.862 | 0.896 | 0.828 | 0.931 |
{2, 3}a | 0.769 | 0.885 | 0.878 | 0.891 | 0.938 |
{3, 4} | 0.757 | 0.878 | 0.905 | 0.851 | 0.940 |
{1, 3} | 0.743 | 0.871 | 0.891 | 0.851 | 0.935 |
{1, 4} | 0.731 | 0.864 | 0.905 | 0.824 | 0.936 |
{2, 4} | 0.731 | 0.864 | 0.905 | 0.824 | 0.938 |
{1, 2, 3} | 0.751 | 0.876 | 0.887 | 0.864 | 0.936 |
{2, 3, 4} | 0.744 | 0.871 | 0.905 | 0.837 | 0.939 |
{1, 3, 4} | 0.760 | 0.880 | 0.891 | 0.869 | 0.938 |
{1, 2, 4} | 0.735 | 0.867 | 0.905 | 0.828 | 0.936 |
{1, 2, 3, 4} | 0.731 | 0.864 | 0.905 | 0.824 | 0.936 |
The first column represents a single method-based model or an ensemble model, which was built based on combining different single models (see Table 1 legend for more information).
The best performance obtained by the optimal model.