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As an essential post-transcriptional modification, N”-methyl-
guanosine (m7G) regulates nearly every step of the life cycle
of mRNA. Accurate identification of the m7G site in the tran-
scriptome will provide insights into its biological functions and
mechanisms. Although the m7G-methylated RNA immuno-
precipitation sequencing (MeRIP-seq) method has been pro-
posed in this regard, it is still cost-ineffective for detecting
the m7G site. Therefore, it is urgent to develop new methods
to identify the m7G site. In this work, we developed the first
computational predictor called iRNA-m7G to identify m7G
sites in the human transcriptome. The feature fusion strategy
was used to integrate both sequence- and structure-based fea-
tures. In the jackknife test, iRNA-m7G obtained an accuracy
of 89.88%. The superiority of iRNA-m7G for identifying
m7G sites was also demonstrated by comparing with other
methods. We hope that iRNA-m7G can become a useful tool
to identify m7G sites. A user-friendly web server for iRNA-
m7G is freely accessible at http://lin-group.cn/server/iRNA-
m7G/.

INTRODUCTION

Besides Nl—methyladenosine (m'A), N7—methylguanosine (m7G) is
another kind of positively charged RNA modification.' m7G is
added to the 5 end co-transcriptionally during transcription,
and it is essential for efficient gene expression and cell viability.”
It has been found that m7G is required for nearly all phages of
the mRNA cycles, such as RNA splicing,” polyadenylation,® nu-
clear export of mRNA,’ translation,’ and so on. Although studies
on m7G have been carried out for a long time, the knowledge
about its function is still limited. The key step of revealing the
functions of m7G is to determine its accurate position in the
transcriptome.

By using the mass spectrometry quantification and m7G-methylated
RNA immunoprecipitation sequencing (MeRIP-seq) method,”
Zhang et al. not only detected the m7G sites in Homo sapiens
and Mus. Musculus but also provided the base resolution m7G
sites in human HeLa and HepG2 cells. However, the MeRIP-seq
method still has its own limitations,” and it is cost-ineffective
for performing transcriptome-wide detections. Therefore, it is

necessary to develop computational methods for identifying
m7G sites.

To the best of our knowledge, there are no computational methods
available for this aim. Inspired by the wide application of machine-
learning methods for identifying RNA modification sites,*” in this
study, we developed a support vector machine (SVM)-based
method, called iRNA-m7G, to identify m7G sites. To extract infor-
mative features to encode the RNA sequence, the feature fusion
strategy was used to integrate three kinds of features, including
nucleotide property and frequency, pseudo nucleotide composi-
tion, and secondary structure component. Experiments exhibited
that the feature fusion strategy is superior to the single kind of fea-
tures for identifying m7G sites. Moreover, a user-friendly web
server for iRNA-m7G has been provided at http://lin-group.cn/
server/iRNA-m7G/. We expect that the proposed predictor will
speed up the detection of the m7G site.

RESULTS AND DISCUSSION

Performance of Each Kind of Feature

We built three models based on the three kinds of features (nucleotide
property and frequency [NPF], pseudo nucleotide composition
[PseDNC], and secondary structure component [SSC]), and we
compared their performances for identifying m7G sites. As indicated
in Equations 4 and 5, the Pse DNC model is dependent on two param-
eters, w and A. Hence, we first optimized the parameters of PseDNC.
In general, the greater the A value is, the more global sequence-order
information the model contains. However, a larger A would reduce
the cluster-tolerant capacity so as to lower the cross-validation accu-
racy due to an overfitting problem. Therefore, the search ranges for
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wand A were set in [0, 1] and [1, 10] with a step of 0.1 and 1, respec-
tively. As shown in Figure 1, the PseDNC-based model yielded the
best results when w = 0.8 and A = 8.

The k-fold cross-validation test method was often used to examine
the quality of various predictors.'® For saving computational time,
in the current study, the 10-fold cross-validation test was used to
evaluate the performance of these models. Their predictive results
were reported in Table 1. Among the three models, the NPF-
based model obtained the highest accuracy of 89.14%, which is
approximately 5% and 14% higher than that of the PseDNC-
and SSC-based models, respectively, for identifying m7G sites in
the dataset.

To objectively compare their performances, the area under the
receiver operating characteristic curve (auROC) of these methods
was also calculated. The NPF-based model obtained an auROC of
0.899, higher than the 0.841 and 0.776 obtained by the PseDNC-
and SSC-based models, respectively.

Performance of Fusing Multiple Features

To investigate whether the feature fusion strategy could improve the
performance, we built another model by fusing the NPF, PseDNC,
and SSC features. The framework of how to build the model is shown
in Figure 2. The model thus obtained was then evaluated by using the
10-fold cross-validation test. The detailed results are provided in the
last row of Table 1. As indicated in Table 1, the sensitivity (Sn), spec-
ificity (Sp), accuracy (Acc), and Mathew’s correlation coefficient
(MCC) were all improved compared with those obtained by the
NPE-, PseDNC-, and SSC-based models.

To intuitively compare the performance of the models based on
different features, their ROC curves from the 10-fold cross-validation
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Figure 1. Determining the Optimal Values for the
Two Parameters w and A of PseDNC
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test were plotted in Figure 3. The fusion strat-
egy-based model obtained an auROC of 0.946,
which is higher than those of the NPF-,
PseDNC-, and SSC-based models.

Moreover, to further demonstrate its stability
for identifying m7G sites, the fusion strategy-
based model was also evaluated by the jackknife
test, in which each sample in the training dataset
is in turn singled out as an independent test
sample, and all the properties are calculated
without including the one being identified. In
the jackknife test, the fusion strategy-based
model obtained an accuracy of 89.88% with
the sensitivity of 89.07%, specificity of 90.69%,
and MCC of 0.80, which is comparable to those
from the 10-fold cross-validation test. These results indicate that the
feature fusion strategy is effective and the model is robust for identi-
fying m7G sites.

Comparison of SVM and Other Classifiers

Since there is no computational method that has been proposed for
identifying m7G sites, to demonstrate its effectiveness, we
compared the performance of the current SVM-based model
with those of the Naive Bayes-, Random Forest-, LogitBoost-,
and BayesNet-based models. The Naive Bayes, Random Forest,
LogitBoost, and BayesNet were implemented by using WEKA."'
For a fair comparison, all the models were built by using the the
feature fusion strategy and tested on the same dataset. The 10-
fold cross-validation test results of these models are reported in
Table 2. As shown in Table 2, the SVM-based model obtained
the best results in terms of the four metrics defined in Equation 9.
The predictive accuracy of the SVM-based model is 9.7%, 3.3%,
6.1%, and 7.7% higher than those of the Naive Bayes-, Random
Forest-, LogitBoost-, and BayesNet-based models, respectively.
This result demonstrates that the SVM is more effective than other
classification algorithms for identifying m7G sites.

Conclusions

In this study, we proposed iRNA-m7G, the first computational
method to identify m7G sites. In this predictor, the feature fusion
strategy was used to represent RNA sequences. Comparative results
demonstrated that the feature fusion strategy is much more effective
for identifying m7G sites than a single kind of feature.

Moreover, we also compared iRNA-m7G with the other four ma-
chine-learning algorithm-based methods, and we found that the
SVM-based model achieves the best performance for identifying
m7G sites.
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Table 1. Predictive Results for Identifying m7G Sites by Using Different
Features

Features Sn (%) Sp (%) Acc (%) MCC auROC
NPF 88.12 90.15 89.14 0.78 0.899
PseDNC 81.92 87.99 84.95 0.70 0.841
SSC 73.11 78.71 7591 0.52 0.776
Fusion 88.66 90.96 89.81 0.80 0.946

Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew’s correlation coefficient;
auROC, area under the receiver operating characteristic curve; NPF, nucleotide property
and frequency; PseDNC, pseudo nucleotide composition; SSC, secondary structure
component.

For the convenience of the scientific community, a publicly acces-
sible web server called iRNA-m7G that allows the prediction of
m7G sites in RNA was established at http://lin-group.cn/server/
iRNA-m7G/. We anticipate that iRNA-m7G will become a useful
tool for identifying m7G sites. In future works, we will collect
more m7G data and use powerful methods such as deep
learning'*"” to improve the performance of computationally iden-
tifying m7G sites.

MATERIALS AND METHODS

Benchmark Datasets

By using the MeRIP-seq method, Zhang et al.” detected 801 base-res-
olution m7G sites that appeared in human HeLa and HepG2 cells. By
mapping these sites to the human genome (hg19), 801 m7G sites con-
taining sequences were obtained. Preliminary tests indicated that the
best predictive result was achieved when the sequence length is 41 bp
with the m7G site in the center. To build a high-quality dataset, the
CD-HIT software with the threshold of 80% was used to remove

16,

redundant sequences.'®'” Accordingly, we obtained 741 m7G site-

containing sequences.

The non-m7G site-containing sequences were obtained by choosing
41-bp-long sequences with the intermediate guanosine not detected
as m7G by the MeRIP-seq method. By doing so, a huge number of
negative samples is obtained. Since imbalanced datasets affect the
performance evaluation of computational methods, to balance out
the numbers between positive and negative samples in model
training, we randomly picked out 741 non-m7G site sequences
with the sequence similarity less than 80% to form the negative
samples.

Sequence Representation

NPF

The NPF is an effective sequence-encoding scheme for computation-
ally identifying nucleotide modification sites."**' According to NPF,
the i-th nucleotide n; in RNA sequence can be represented by a four-
dimensional vector (x;, ¥;, 2, d;), in which the elements are defined as
follows:

0 otherwise

_:{1 if me {A, G}

[ 1ifne{a,U}
YT\ 0 otherwise

2z 1 if n;e {147 C}
! 0 otherwise

(Equation 1)

Figure 2. Framework of Developing iRNA-m7G

Dataset Heatures Feature Fusion MBIy ezl For an RNA sequence, it is converted into a feature vector
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Figure 3. The Receiver Operating Characteristic Curves of the Models
Based on Different Features Identifying m7G sites

SSC is the abbreviation for secondary structure component, NPF is for nucle-
otide property and frequency, PseDNC is for pseudo nucleotide composition,
and fusion is the combination of the abovementioned three kinds of features.
The auROC values were provided in brackets.

where the x, y, and z coordinates stand for the ring structure,
hydrogen bond, and chemical functionality, respectively; d; is the
accumulated frequency and is defined as

1 < T
ST > f(m), f(m)= { (1) Fom=m (Equation 2)
il
where [ is the sequence length, and |N;] is the length of the i-th prefix
string {ny, n, ..., n;} in the sequence.

According to NPF, an RNA sequence with a length of I bp will be
encoded by the following vector:

R= [xl nad o xyizidic xiyz d;}T. (Equation 3)

PseDNC
Besides the local sequence order information, the global sequence
order effect is also important for computationally identifying

Table 2. Performance Comparison of Different Classifiers for Identifying
m7G Sites by the 10-Fold Cross-Validation Test

Classifiers Sn (%) Sp (%) Acc (%) MCC
Naive Bayes 7247 87.85 80.16 0.61
Random Forest 83.27 89.88 86.57 0.73
LogitBoost 81.38 86.23 83.81 0.68
BayesNet 77.19 87.04 82.12 0.65
SVM 88.66 90.96 89.81 0.80

Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew’s correlation coefficient;
SVM, support vector machine.
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RNA modification sites. Accordingly, in the current study, the
PseDNC was also used to encode the RNA sequences,22 which
can be calculated by using PseKNC>* and PseKNC-General.”* Based
on PseDNC, the RNA sequence is converted into a discrete vector
defined as follows:

R=[d, dy---dis d16+1"'d16+ﬂT7 (Equation 4)

where
Ju - (1<u<16)

16

Z itw 9]

i=1 j=1
d,= ) (Equation 5)

wl,_
e (16 <u<16+1)
16

fu (u=1,2,---,16) is the occurrence frequency of the u-th non-over-
lapping dinucleotide in the RNA sequence, and

L—j—1

1
0i=—— E Ci,i+j (]’:1,27"',7\;7\<L)7
i=1

= Equation 6
L= j—1 (Eq )
where 0; is the j-tier correlation factor that reflects the sequence order
correlation between all the j-th most contiguous dinucleotide, and
Cijiyjis defined as

1 M
Cii+j :; Z [Pg(D,-) — P, (DH]-)]Z, (Equation 7)

g=1
where 1 is the number of RNA physicochemical properties consid-
ered, P,(D;) is the normalized numerical value of the g-th (g = 1, 2,
3, ... ) RNA local structural property for the dinucleotide R;R;,; at
position i, and Pg(D;. ;) is the corresponding value for the dinucleo-
tide R, R4, at position i + j.

In the current work, the enthalpy, entropy, and free energy were
used to define PseDNC, which have been used to identify other
kinds of RNA modifications. The values for the three physico-
chemical properties of the 16 different RNA dinucleotides were
obtained from previous works.”>* Thus, p in Equation 7 is equal
to 3.

SSC

The formation of RNA modification is affected by RNA structures.
Hence, the RNAfold tool in the ViennaRNA package27 was used to
predict the secondary structure of the RNA sequences in the dataset.
For each position in the RNA, the paired nucleotide was represented
by a parenthesis (“(” or “)”), while the unpaired one was represented
by a dot (“.”). In the current study, we do not distinguish “(” and “)”
and use “(” for both statuses. For a given tri-nucleotide, there are eight
2% possible structure statuses (i.e., “((G” “((,” “(.” “(.6” “(G” “(
“.(,” and “...”). Together with the first nucleotide of the tri-nucleotide,
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there will be 32 (4 x 8) possible sequence-structure modes denoted as
“A-((C” “A-((.,” “A-(..,” ..., and “U-..”.*® Therefore, by using the
sequence-structure mode, an RNA sequence can be represented as
follows:

T
R= fg*((,ﬁ;,f({*,...,f{%,ﬁf(,...,ff{] . (Equation 8)

Svm

In the current study, the LibSVM package 3.18, which is available
at https://www.csie.ntu.edu.tw/~cjlin/libsvm/, was used to per-
form the classification task. The basic idea of SVM is to transform
the input data into a high-dimensional feature space and then
determine the optimal separating hyperplane. Because of its better
performance, the radial basis kernel function (RBF) was used to
obtain the separating hyperplane. The regularization parameter
C and kernel parameter y of the SVM operation engine were
optimized in the ranges of [27°, 2'%] and [27'°, 27°] with the
steps of 2 and 27", respectively. The final prediction was made
according to the probability obtained by SVM.**~* If its probabil-
ity is >0.5, a guanine will be predicted as an m7G site.

Evaluation Metrics

In this study, the four metrics,>* ™0 namely, Sn, Sp, Acc, and MCC,
were used to measure the performance of the proposed methods,
which are defined as follows:

N+
Sn=1- 1= 0 <Sn<1
Sp=1——+ 0<Sp<1
p N p
Nf+N;
Acc= 7N7+ +N1 0<Acc<1 |
N* N
1= (N1+N7t)
MCC= —1<MCC<1

(Equation 9)

where N* represents the m7G site-containing sequence, while N* is
the number of m7G site-containing sequences incorrectly predicted
to be of false m7G site-containing sequences; N~ is the total number
of false m7G site-containing sequences, while N is the number of the
false m7G site-containing sequences incorrectly predicted to be of
m7G site-containing sequences.

Moreover, by plotting the sensitivity against (1-specificity) with the
varying of the threshold, the ROC curve""** was generated to evaluate
the performance of the proposed method. The auROC is an indicator
of the performance of the method. An auROC value of 0.5 is equiva-
lent to random prediction while an auROC of 1 represents a perfect
one.
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