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ABSTRACT: Predicting the ability of chemical species to cross the blood−brain barrier (BBB) is an
active field of research for development and mechanistic understanding in the pharmaceutical industry.
Here, we report the BBB permeability of a large data set of compounds by incorporating molecular
solvation energy descriptors computed by the 3D-RISM-KH molecular solvation theory. We have been
able to show, for the first time, that the computed excess chemical potential in different solvents can be
successfully used to predict permeability of compounds in a binary manner (yes/no) via a minimum-descriptor-based model.
Our findings successfully combine the molecular solvation theory with the machine learning approach to address one of the
most daunting challenges in predictive structure−activity relationship modeling. The workflow presented in this work is simple
enough to be used by nonexperts with ease.

■ INTRODUCTION

The tight junction blood−brain barrier (BBB) is a complex
structure regulating the flow of chemicals into the brain.1,2 The
function of BBB is to separate systemic blood flow from the
central nervous system. This in turn controls diffusion and
transport of chemicals between the two. The modes of
entrance of a chemical into the central nervous system are
either via diffusion across the BBB or via a transport system
containing (non-)specific transporter enzymes/proteins. De-
velopment of (new) drug candidates that target different parts
of the human central nervous system depends extensively on
the capability of the target molecule to pass the enigmatic BBB.
The most common quantitative index of such a capability of a
molecule is reported by the log BB,3 a logarithmic ratio of
concentrations of drug in the brain and in blood. The
experiments to measure log BB are cumbersome, time-
consuming, and low yield. This promoted development of a
plethora of methods involving artificial membranes for in vitro
prediction/measurements. The most common of these
methods is the PAMPA assay, which uses an artificial
membrane to measure, help mimic, and get a crude estimate
of passive permeability.4,5 The simplicity of this method is that
it produces reliable predictions based on the lipid membrane,
whereas the chief drawback comes from the absence of any
active transporter. Such complexities in generating log BB data
from experiments have promoted in silico methods in
predicting BBB permeability of compounds using multitudes
of molecular descriptors.6−10

The application of various computer-aided statistical
methods in predicting BBB permeability is abundant in the
literature.11−15 These reports differ in the number and types of
compounds incorporated in the predictions and the number of
descriptors used in the predictive modeling. This often leads to
overfitting and resulting models that fail to predict log BB

values for molecules beyond the class for which the model is
trained. Hence, the size of the database used in training plays a
prominent role in all these modeling methods. We have
recently reported a minimum-descriptor-based model contain-
ing solvation energy parameters for predicting log BB with
reasonable accuracy and broad applicability.16 The very limited
availability of reliable log BB data handicaps the development
of log BB prediction methods. There are efforts to supplement
the “black-box”-like predictive models in ADMET properties
based on a data set of ∼200 compounds.17,18 These reports
suggest a continuing need of predictive models for the blood−
brain permeability prediction with broader applicability.
The binary prediction method, on the other hand, unlike the

log BB experiments depends on qualitative results. Such
databases contain very simple results pertaining to the success
of a molecule in crossing the BBB (Active = yes) or failure to
do so (Active = no). Such databases for blood−brain
permeability were reported by various authors and are easy
to assemble. The key feature of these databases is that they
classify compounds into three classes, namely, active(yes),
inactive(no), and borderline(yes/no). Despite sounding
simple, this particular type of data set is not so, as it depends
on the choice of scale or more commonly the threshold of
classification. For example, Cruciani et al.19 denoted
compounds as (i) BBB+ (permeable) if log BB ≥ −0.3 and
(ii) BBB− (non-permeable) if log BB < −0.3; Li et al.20 on the
other hand used ≥ −0.1 or < −0.1 as a reference point for
dividing their data set; finally, Adenot and Lahana21 classified
their data set based on the CNS activity. Several studies
reported predictive models for the so-called BBB± prediction
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with variable accuracy. These models contain more than 60
molecular descriptors, at least. The first attempt to reduce the
number of descriptors was reported by Zhao et al.22 by using
19 molecular descriptors and several fragmentation schemes
yielding an overall accuracy of 90%. The most useful
descriptors for predicting BBB permeability, as proposed by
these reports, were polar surface area, number of hydrogen
bond donor and acceptor atoms, molecular weight, log P, log
D, number of rotatable bonds, and molar volume. The only
descriptors related to solvation used in these models were log P
and accessible surface area. The process of a permeation of a
drug from plasma into the brain involves several solvation−
desolvation processes. We have thus decided to incorporate
solvation parameters as a descriptor in predicting BBB± via the
3D-RISM-KH molecular solvation theory. The other aim of
this work is to build on to a minimum-descriptor-based model
for predicting BBB± with high accuracy. The present work
differs from our previous work in two major points. First, the
present work aims in correct classification of blood−brain
permeability and is not of interest in calculating/predicting
blood−brain permeability coefficients as described in the
previous work. Second, the predictive scheme used here strives
to remove the universal correction scheme from the modeling
scheme, as the need of corrected solvation energy is replaced
with the excess chemical potential and partial molar volume of
solutes in a specific solvent as direct descriptors for prediction.
The three-dimensional reference interaction site model with

the Kovalenko−Hirata closure (3D-RISM-KH) molecular
solvation theory is based on first-principles statistical
mechanics. The essence of this theory is based on the 3D
distribution functions of solvent interaction sites around the
solute molecule of arbitrary shape.23−26 A detailed description

of the theory is presented elsewhere.27−29 The 3D-RISM-KH
theory describes a molecule using a six-dimensional vector
composed of three positional {r} and three orientational {Θ}
degrees of freedom in the molecular Ornstein−Zernike
equation, developing to the pair correlation functions (PCF)
of r and Θ of liquids. The 3D distribution functions of solvent
interaction sites around a solute molecule of arbitrary shape are
obtained from the 3D-RISM integral equation. The 3D-RISM
integral equation has an exact differential of the solvation free
energy for the KH closure, which provides an analytical
expression of Kirkwood’s thermodynamic integration even-
tually providing the chemical potential (both excess and total)
associated with the solvation process. The solvation free energy
of the solute macromolecule is obtained by summation of these
3D-solvation free energy density partial contributions over all
solvent sites in the whole space. Other thermodynamic
quantities can be derived from the solvation free energy by
differentiation, thus providing an option to decompose the
contributions from the entropy and enthalpy terms. Two
significant advantages of the 3D-RISM-KH theory are (i) the
capability of providing distribution of solvent molecules
around a solute of arbitrary shapes with reasonable accuracy
and (ii) calculation of partial molar volume of a solute. The
latter property calculation is a leap forward from the traditional
way of calculating them as a sum of small molecular fragments
of regular geometry only. The major drawback of this theory is
overestimation of the solvation energy, and an efficient
“universal correction” scheme was developed and used for
calculating correct solvation energy.16,30,31

Figure 1. Summary of statistical analysis: (a) Important variables selected via random forest (green circle, eight descriptors) and gradient boost
machine (blue circle, five descriptors) algorithms; (b) variable importance as calculated by the random forest algorithm; (c) relative importance of
variables predicted by the gradient boost machine method. The overlapping zone of the two circles contains descriptors common to both of the
machine learning approaches. MeanDecreaseGini is the mean of a variable’s total decrease in node impurity weighted by the proportion of samples
reaching that specific node in each individual decision tree in a random-forest-based classification. The larger is this value, the larger is the
contribution of the corresponding descriptor.
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■ RESULTS AND DISCUSSION

The objectives of this manuscript are (i) to use the 3D-RISM-
KH molecular solvation theory calculated uncorrected
solvation parameter, the excess chemical potential in solvent,
as descriptors in successful prediction on the BBB± database
as a proof of concept and (ii) to develop a minimal-descriptor-
based model for such prediction. To this purpose, we have
calculated molecular descriptors out of which 27 descriptors
were selected via statistical importance analysis. Other 10
descriptors generated via the 3D-RISM-KH calculations are
excess chemical potential and partial molar volumes in five
different solvents. These 37 descriptors (variables in the QSAR
equation) were subjected to further analysis in predicting
permeability for BBB±. The summary of these descriptors is
provided in the Supporting Information. Further analysis of the
importance of these 27 variables in predicting permeability
through the gradient boosting machine (GBM) and random
forest (RF) method filtered out five and eight most important
descriptors, respectively. These descriptors, as shown in Figure
1, are topological polar surface area (TPSA), highest occupied
molecular orbital (HOMO), dipole moment, Lipinski H-bond
acceptor count, Lipinski H-bond donor count, excess chemical
potential in the n-octanol solvent, partial molar volume of a
solute in the n-octanol solvent, and excess chemical potential in
the cyclohexane solvent.
For all statistical analysis methods for predicting the

importance of variables, we have found that the TPSA32 was
the most important descriptor followed by Lipinski’s hydrogen
bond donor/acceptor descriptors.33 The important electronic
descriptors are HOMO computed at the AM1 level, as well as
dipole moment. It is interesting to note that none of the
classification methods picked excess chemical potential in
water as an important descriptor. The most important
solvation-energy-based descriptors are excess chemical poten-
tials in n-octanol and cyclohexane media, the former being the
major contributor. This observation can be rationalized, as the
nonpolar environment provided by a membrane is better
represented by n-octanol and/or cyclohexane solvents, whereas
the effect of water is taken care of by the other 2D-descriptors
pertaining to the polarity of the molecule.
In order to find out the optimal number of descriptors for

correct classification of the test set of compounds, we have
tested a range in minimum % relative importance of variables
(6−12%) in the gradient boost methods on a preliminary set of
37 descriptors. This led us to different choices, further
validated by the random forest method, with different numbers
of descriptors, for example, (i) model A with 37 descriptors,
(ii) model B with 11 descriptors combed using the random
forest method, (iii) model C with 11 descriptors obtained from
the GBM method, (iv) model D with eight descriptors
obtained via random forest analysis on models B and C, and
(v) model E with five descriptors obtained via GBM analysis
on models B and C. A detailed list of all the descriptors
generated for predictive modeling is presented in the
Supporting Information. All these models were first calibrated
on the training set before accessing their accuracy in classifying
compounds in the test set correctly.
The performances of different models vary significantly

based on the method of classification adopted. For all the
models, the SVM (Support Vector Machine) predicted results
are the best providing an accuracy range of 94−99.0% based
on the number of variables chosen. The excellent prediction on

the test set by SVM with Model A can be attributed to fitting
with a large number of descriptors. However, the performance
of this method remains excellent for other models, too. The
GBM and weighted k-nearest neighbor (weighted kNN)
techniques work with comparable and consistent accuracy
ranging 87−90% for different models. The generalized linear
model (GLM) method performed modestly among the four
methods providing the best accuracy of ∼84% but with the
minimum descriptor model. The accuracy of predictions of
different models in classifying the test set compounds as BB-
permeable (yes/1) or BB-impermeable (no/0) is summarized
in Table 1.

It is necessary to compare the performance of the current
generation continuum solvation models, that is, CPCM and
SMD, in predicting the permeability. As mentioned in the
Database Preparation and Computational Methods section, we
have employed the semiempirical AM1 method to calculate
solvation energy for the gas-phase optimized structures in the
continuum solvation models. The primary importance analysis
of the solvation energy parameters calculated via the CPCM
and SMD models in predicting permeability showed
insignificant dependence of calculated solvation energies in
different solvents. However, we performed a modeling exercise
with solvation energy descriptors from CPCM and SMD

Table 1. Performance Indicesa of Different Classification
Schemes Based on Five Prediction Models with 3D-RISM-
KH Calculated Excess Chemical Potentials for the Test Set
of Compounds

model accuracy precision sensitivity specificity F1-score

GBM method
model A 0.89 0.90 0.96 0.65 0.93
model B 0.90 0.91 0.96 0.69 0.93
model C 0.88 0.90 0.94 0.66 0.92
model D 0.90 0.91 0.97 0.67 0.93
model E 0.88 0.89 0.96 0.62 0.92

GLM method
model A 0.70 0.82 0.79 0.41 0.81
model B 0.80 0.80 0.93 0.36 0.88
model C 0.84 0.85 0.96 0.42 0.90
model D 0.80 0.82 0.94 0.33 0.88
model E 0.84 0.84 0.99 0.34 0.91

SVM method
model A 0.99 0.99 0.99 0.95 0.99
model B 0.97 0.97 0.99 0.90 0.98
model C 0.95 0.96 0.98 0.86 0.97
model D 0.94 0.95 0.98 0.82 0.96
model E 0.92 0.93 0.98 0.75 0.95

weighted kNN method
model A 0.90 0.93 0.93 0.77 0.93
model B 0.89 0.90 0.96 0.63 0.98
model C 0.88 0.90 0.95 0.63 0.92
model D 0.88 0.89 0.96 0.62 0.92
model E 0.88 0.89 0.96 0.61 0.92

aFor a measure of percentage of accuracy indices, individual values are
multiplied by 100. The performance indices are calculated as follows:
Accuracy = (TP + TN)/(TP + TN + FP + FN). Precision = TP/(TP
+ FP). Sensitivity = TP/(TP + FN). Specificity = TN/(TN + FP).
F1-score = 2 × (precision × sensitivity)/(precision + sensitivity). TP
= true positive, TN = true negative, FP = false positive, FN = false
negative.
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solvation models with other descriptors from model A. The
performance of this model is excellent as that of the RISM-KH
predictions in model A obtained via the SVM method. The
performance parameters of this model are summarized in
Table 2.

Further, to answer the question that we do need the 3D-
RISM-KH based parameters for a successful classification
model for BB permeability, we re-evaluated the permeability by
removing 3D-RISM-KH based descriptors and keeping only
the major 2D-molecular descriptor obtained from the previous
statistical analysis. These variables are (i) HOMO, (ii) dipole
moment, (iii) accessible surface area, (iv) Lipinski H-bond
donor count, (v) Lipinski H-bond acceptor count, (vi) log S,
(vii) ring count, and (viii) TPSA. This resultant model has a
very decent performance, too, although with reduced perform-
ance indices, as provided in Table 3. The information provided

by log S and x4 descriptors can be related to the log
P(octanol−water) of the solutes, and it is tempting to build
models with empirical log P as one of the descriptors. We have
built models with log P as one of the descriptors within the
minimal descriptor approach although without much success
(see the Supporting Information for the detailed description).
We have analyzed over 1800 molecules with reported BBB±

properties using different statistical methods to assess the
importance of over 100 different molecular descriptors in
correctly classifying the permeability. We have found that the

2D-descriptors like TPSA and H-bond donor/acceptors are
the most significant ones in the prediction schemes. The excess
chemical potentials of the solutes computed in n-octanol and
cyclohexane solvents were found to have an important
contribution in the classification scheme. This is the first
report providing a proof of concept that 3D-RISM-KH
solvation theory based predictors can be used successfully to
predict the blood−brain barrier permeability of drug (like)
molecules in a binary fashion. The accuracy of the predictive
models has shown a logical dependence on the number of
descriptors used in model building. Thus, one can build a
predictive model with perfect classification performance, but
requiring a large number of molecular descriptors. One
important aspect of this study is in assembling a minimal-
descriptor-based model with high accuracy, sensitivity, and
specificity. Among different models tested here, the minimum
descriptor model, with only five descriptors, bares testimony to
this. Few classification studies on blood−brain-barrier
permeability, with a limited number of data, used only the
2D-molecular descriptor without incorporating solvation
effects. Such models should be used with caution as they are
certain to have limitations based on the class/type of chemical
functionality used for calibration. In our hand, the model
without any solvation terms also provided very reasonable
accuracy although the specificity of this model is severely
reduced in comparison to other predictive models (Figure 2).
The performances of different statistical methods in correct
classification vary significantly for different models. The
performance of the SVM method in correct classification is
found to be the best for all the models. The weighted kNN
model also performs well, albeit with reduced specificity. The
GBM method is one of the fastest computing methods, at par
with the weighted kNN method in performance. The GLM
method performed significantly worse than the previous three
methods. Predictions based on this method have lowest
specificity and precision for our entire data set (Figure 2).
It is important to point that it is easy to perform the entire

modeling exercise with the help of simple computer scripts and
open source software packages. The methodology developed
here has wide practical applicability. The training set (or, for
example, the entire data set) can be used for benchmark
purposes for classifying new compounds. It is reported in
previous studies that the most difficult part in this type of
prediction is to correctly classify compounds with a negative
permeability class (impermeable, no/0). The SVM-based
classification method worked well in this regard, too. The
correct prediction of the BBB− compounds is ∼75% with
model D and model E. These models used the concept of
minimal descriptors in predictive blood−brain barrier perme-
ability. We have tested models with hydration excess chemical
potential as an additional descriptor but without any
improvement in the prediction. The excess chemical potential
in n-octanol is the most important one among all excess
chemical potentials. Our findings have an extensive application
in predicting/classification of BB permeability using Gaussian
fluctuation excess chemical potentials obtained from the 3D-
RISM-KH theory as descriptors, without the need of an
elaborate correction scheme to obtain corrected solvation
energy. The models proposed in the works compare well with
those reported in previous reports of a minimal-descriptor-
based prediction model.21,34 In fact, our models have reduced
the number of misclassifications over those previously reported
despite having a larger number of data points. Our finding that

Table 2. Performance Indicesa of Different Classification
Schemes Based on Model A with CPCM and SMD
Calculated Solvation Energies for the Test Set of
Compounds

model accuracy precision sensitivity specificity F1-score

GBM method
CPCM 0.88 0.90 0.96 0.63 0.92
SMD 0.88 0.90 0.96 0.63 0.91

GLM method
CPCM 0.81 0.83 0.95 0.34 0.89
SMD 0.81 0.82 0.95 0.33 0.89

SVM method
CPCM 0.99 0.99 0.99 0.95 0.99
SMD 0.99 0.99 1.0 0.95 0.99

weighted kNN method
CPCM 0.90 0.90 0.97 0.65 0.93
SMD 0.89 0.90 0.96 0.65 0.93

aFor a measure of percentage of accuracy indices, individual values are
multiplied by 100. See the footnote in Table 1 for the definitions of
performance indices used.

Table 3. Performance Indicesa of Different Classification
Schemes Based on a Model with Only Eight 2D-Molecular
Descriptors

statistical method accuracy precision sensitivity specificity F1-score

GBM 0.87 0.89 0.96 0.60 0.92
GLM 0.81 0.83 0.95 0.33 0.88
SVM 0.96 0.96 0.99 0.87 0.97

weighted kNN 0.87 0.89 0.95 0.59 0.92
aFor a measure of percentage of accuracy indices, individual values are
multiplied by 100. See the footnote in Table 1 for the definitions of
performance indices used.
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the SVM-based machine learning approach works the best for
blood−brain barrier permeability classification supports the
finding by Doniger et al.,34 albeit with a smaller data set used
for calibration. Finally, the best descriptor for classification
schemes is a mixture of 2D-, electronic, and solvation
parameters. It is interesting to point that TPSA was reported
as the most important descriptor for blood−brain permeability
studies for almost all the previous reports, as we report here.
The hydrogen bond donor and acceptor are important, too, as
they empirically relate to the interactions with the polar
medium, like plasma. The excess chemical potentials in n-
octanol and cyclohexane solvents are the best possible
descriptors to represent solvation energetics associated with a
drug actually transferring into a hydrophobic region. A
combination of these descriptors provides a balanced model
toward correct classification of the blood−brain permeability
in the present study.

■ DATABASE PREPARATION AND
COMPUTATIONAL METHODS

The database of BBB± compounds was collected from the
published works by Adenot and Lahana,21 Li et al.,20 and
Doniger et al. and contains 1864 molecules.34 The SMILES
code for all the molecules are provided in the Supporting
Information. The database is divided into a training set (75%
of molecules) and a test set (25% of molecules) by randomly
assigning the molecules.
Geometries of all molecules were optimized at the

semiempirical AM1 level using the Gaussian16 software
package.35,36 The protonation state of the molecules was
retained for a pH of 7.2, and all calculations were done using
ionic forms, wherever applicable. Gas-phase optimized geo-
metries were further subjected to solvation energy calculations
in chloroform, cyclohexane, n-hexadecane, n-octanol, and
water continuum using the conductor-like polarizable con-
tinuum model (CPCM) and SMD continuum model at the
AM1 level, as implemented in the Gaussian16 software

package.37,38 All RISM-KH calculations (1D for solvent
susceptibility functions and 3D for solute excess chemical
potential calculations in solvents) were done using our in-
house code. A working version of this code is implemented in
the AMBERTOOLS suite of programs.39 Five solvents,
namely, chloroform, cyclohexane, n-hexadecane, n-octanol,
and water, were used for 1D-RISM susceptibility calculations.
The parameters for these solvents were validated against
experimental solvation energy data sets, as reported by us.16,31

We have employed UFF40 parameters with AM1 charges for all
solutes. The 3D-RISM-KH calculations were performed using
a uniform cubic 3D grid of 128 × 128 × 128 points in the box
of size 64 × 64 × 64 Å3 to represent a solute with a few
solvation layers with convergence accuracy set to 10−4 of the
modified direct inversion in the iterative subspace (MDIIS)
solver.41 The molecular descriptors of all the molecules were
generated using the MOE2018 software package.42 All
statistical analysis was performed using the Rstudio version
3.4.4.43 Several R packages were used to aid analysis and are
briefly described in the following section.44−50

Support vector machines (SVM): SVM is a supervised
learning technique branch of machine learning and applied to
both classification and regression problems. The superiority of
the SVM model over conventional neural networks is due to
the structure risk management principle adopted by it. There
are several kernel functions available for SVM to transform
data into a dimension with clear division between classes. We
have tested linear kernel, Gaussian type radial basis kernel,
ANOVA radial basis kernel, and polynomial kernel types to
find the best kernel for our classification problem. The best
solution was obtained with the Gaussian type radial basis
kernel.
Weighted k-nearest neighbor (kNN): kNN is a nonlinear

approach initiated with the choice of a set of variables,
randomly, to obtain the best solution. The optimization of
selection is done by leave-one-out cross validation where each
point is removed and predicted as an average of k-nearest
points (i.e., molecules, for QSAR analysis). The weighted

Figure 2. Performance indices of different models used for classification.
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version of the kNN is modified over the original
implementation by adding weights to the Euclidean distance
of the nearest neighbors based on proximity.51

Gradient boost machine (GBM): This technique is similar
to random forest, as an ensemble learner, for performing
supervised machine learning tasks.52 It differs from RF as the
loss function is minimized iteratively to find the best tree
model.
Generalized linear model (GLM): This is an improved

version over ordinary least square regression for non-
continuous data with the assumptions that the residuals are
normally distributed and a linear relationship exists between
target and model parameters using a form of maximum
likelihood estimation.53

The performance of different statistical methods adopted in
this manuscript is calculated via construction of a confusion
matrix comparing the reported permeability (1/0) against
predicted permeability (1/0) for each method and model. The
confusion matrix consists of the most important performance
indicators as true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) counts. This
information is used to calculate accuracy, sensitivity, precision,
and specificity of each model and method using the following
mathematical relations:

= + + + +accuracy (TP TN)/(TP TN FP FN) (1)

= +precision TP/(TP FP) (2)

= +sensitivity TP/(TP FN) (3)

= +specificity TN/(TN FP) (4)

Another performance index, the F1-score is also used for
evaluation purposes in this work.54 The F1-score is a measure
of accuracy of a model that combines the model’s accuracy
with sensitivity. A perfect model has an F1-score of 1, while
that for a failure is 0.
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