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SUMMARY

Digital pathology imaging of tumor tissues, which captures histological details in high resolution, is
fast becoming a routine clinical procedure. Recent developments in deep-learning methods have enabled
the identification, characterization, and classification of individual cells from pathology images anal-
ysis at a large scale. This creates new opportunities to study the spatial patterns of and interactions
among different types of cells. Reliable statistical approaches to modeling such spatial patterns and
interactions can provide insight into tumor progression and shed light on the biological mechanisms of
cancer. In this article, we consider the problem of modeling a pathology image with irregular locations
of three different types of cells: lymphocyte, stromal, and tumor cells. We propose a novel Bayesian
hierarchical model, which incorporates a hidden Potts model to project the irregularly distributed cells
to a square lattice and a Markov random field prior model to identify regions in a heterogeneous
pathology image. The model allows us to quantify the interactions between different types of cells,
some of which are clinically meaningful. We use Markov chain Monte Carlo sampling techniques,
combined with a double Metropolis–Hastings algorithm, in order to simulate samples approximately
from a distribution with an intractable normalizing constant. The proposed model was applied to the
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pathology images of 205 lung cancer patients from the National Lung Screening trial, and the results show
that the interaction strength between tumor and stromal cells predicts patient prognosis (P = 0.005). This
statistical methodology provides a new perspective for understanding the role of cell–cell interactions in
cancer progression.

Keywords: Double Metropolis–Hastings; Hidden Potts model; Lung cancer; Markov random field; Mixture model;
Pathology image; Potts model; Spatial point pattern.

1. INTRODUCTION

Cancer is a group of diseases characterized by the uncontrolled growth of tumor cells that can occur any-
where in the body. Current guidelines for diagnosing and treating cancer are largely based on pathological
examination of hematoxylin and eosin (H&E)-stained formalin-fixed paraffin-embedded tissue section
slides. A tumor pathology image harbors a large amount of information, such as growth patterns and inter-
actions between tumor cells and the surrounding micro-environment. Cell growth pattern is associated
with the survival outcome of cancer patients (Amin and others, 2002; Gleason and others, 2002; Borczuk
and others, 2009; Barletta and others, 2010). Furthermore, a recent study shows that the cell growth pat-
tern in tumor tissues predicts treatment response in lung cancer patients (Tsao and others, 2015). Different
cell types, including lymphocyte (a type of immune cell), stromal, and tumor cells, are commonly seen in
tumor tissue images. The interactions among these cells play vital roles in the progression and metastasis
of cancer (Mantovani and others, 2002; Orimo and others, 2005; Merlo and others, 2006; Polyak and
others, 2009; Hanahan and Weinberg, 2011; Gillies and others, 2012; Junttila and de Sauvage, 2013).
Spatial variations among cell types and their association with patient prognosis have been previously
reported in breast cancer (Mattfeldt and others, 2009). However, there is a lack of rigorous statistical
methods to quantify the cell interactions due to the high complexity and heterogeneity of the disease.

With the advance of imaging technology, H&E-stained pathology imaging is becoming a routine clin-
ical procedure. This process produces massive digital pathology images that capture histological details
in a high resolution. Therefore, developing statistical methods for tumor pathology images has become
essential to utilize the high-resolution images for patient prognosis and treatment planning. Recent stud-
ies have demonstrated the feasibility of using digital pathology image analysis to assist pathologists in
clinical diagnosis and prognosis (Beck and others, 2011; Yuan and others, 2012; Luo and others, 2016;
Yu and others, 2016). Furthermore, the application of computer vision and machine learning techniques
allows for the identification and classification of individual cells in digital pathology image analysis (Yuan
and others, 2012). Recent developments in deep-learning methods have greatly facilitated this process.
We have developed a ConvPath pipeline (Figure S1 of supplementary material available at Biostatistics
online, manuscript under review), which uses a convolutional neural network (CNN) to identify individ-
ual cells and predict the cell types (https://qbrc.swmed.edu/projects/cnn/). The CNN was trained using a
large cohort of lung cancer pathology images manually labeled by pathologists. This pipeline can pro-
cess tumor tissue images and determine the cell type and location for each individual cell. It creates
new opportunities to study the spatial patterns of and interactions among different types of cells, which
may reveal important information about tumor cell growth and its micro-environment. Spatial models,
such as the Ising model and Potts model, have been used to extract spatial information for imaging
data (Green and Richardson, 2002; Li, 2009; Ayasso and Mohammad-Djafari, 2010). Recently, Li and
others (2017) proposed a variant of the Potts model to study pathology images, assuming that cell–cell
interactions are homogeneous across the whole image. However, tumor cell growth patterns and their
surrounding micro-environments are heterogeneous and vary across different spatial locations (see, e.g.
Schnipper, 1986; Kirk, 2012; Longo, 2012; Shibata, 2012; Marte, 2013; McGranahan and Swanton,
2017).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://qbrc.swmed.edu/projects/cnn/
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Fig. 1. (a and d) The observed cell distribution maps for two sample images from different patients, where lymphocyte,
stromal, and tumor cells are marked in black, red, and green, respectively. (b and e) The estimated hidden spins P̂MP

in the 40-by-40 lattice. (c and f) The estimated AOI indicators �̂ by choosing c = 0.5 (median model), where the
blue indicates δ̂lw = 1. For the first example, of which �̂ as shown in (c), θ̂lym,str = −1.036, θ̂lym,tum = 0.245,
θ̂str,tum = 0.666, θ̂0,lym,str = −2.039, θ̂0,lym,tum = −1.039, θ̂0,str,tum = −1.146; for the second example, of which �̂

as shown in (f), θ̂lym,str = −2.052, θ̂lym,tum = 0.408, θ̂str,tum = −0.641, θ̂0,lym,str = −3.292, θ̂0,lym,tum = −0.791,
θ̂0,str,tum = −0.762. Note that in the bottom-left of (d), (e), and (f), the empty region is the alveolus.

In this article, we develop a novel Bayesian hidden Potts mixture model for the cell distribution
maps, such as Figure 1(a) and (d), generated by our ConvPath pipeline. The proposed model has several
advantages. First, it incorporates a hidden Potts model that projects irregularly distributed cells into a
square lattice, which significantly reduces the complexity of the unstructured spatial data. Second, it
integrates a Markov random field (MRF) prior model that accounts for the heterogeneity across the image,
while partitioning the image into multiple regions with homogeneous cell–cell interactions. The interaction
parameters of the Potts model, also called interaction energies, can be used to characterize the strengths of
the spatial interactions among different types of cells. The double Metropolis–Hastings (DMH) algorithm
(Liang, 2010) is used to sample from the posterior distribution with an intractable normalizing constant
in the Potts model. The model performed well in simulated studies.

The proposed model was applied to the 1585 pathology images of 205 lung cancer patients from the
National Lung Screening Trial (NLST), and the results show that the interaction strength between tumor
and stromal cells is significantly associated with patient prognosis (P = 0.005). This statistical methodology
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provides a new perspective for understanding the role of cell–cell interactions in cancer progression. Last
but not least, although this article is motivated by the analysis of tumor pathology images, the proposed
model is generally applicable for other types of data from heterogeneous marked point processes. This
article, to our best knowledge, is the first attempt to develop a rigorous statistical framework to model the
heterogeneous spatial interactions among different types of cells in tumor pathology images.

The remainder of the article is organized as follows. Section 2 introduces the proposed modeling
framework and discusses the MRF prior formulation. Section 3 describes the Markov chain Monte Carlo
(MCMC) algorithm and discusses the resulting posterior inference. Section 4 assesses performance of the
proposed model on simulated data and the results of a lung cancer case study. Section 5 concludes the
article with some remarks on future research directions.

2. MODELS

We first review the Potts model and its interaction energy measurement in Section 2.1, and then we
introduce the hidden Potts model in Section 2.2 and the hidden Potts mixture (HPM) model in Section 2.3.
The graphical formulation of the HPM model is presented in Figure S2 of supplementary material available
at Biostatistics online.

2.1. The Potts model

Let G = (V , E) denote a graph G composed of a finite set V of vertices and a set E of edges joining pairs of
vertices. In statistics, the Potts model can be considered as an undirected graph such that each vertex v ∈ V
is geometrically regular assigned on a lattice (e.g. square, triangular, or honeycomb lattice) and each edge
e ∈ E is at the same distance. Particularly, for an L-by-W square lattice graph in a Cartesian coordinate
system, let (l, w), 1 ≤ l ≤ L, 1 ≤ w ≤ W denote the coordinate of each vertex. Then, edges are connected
between the vertex at location (l, w) and its four neighbors at locations (l + 1, w), (l − 1, w), (l, w + 1),
and (l, w − 1), if applicable. Every vertex will be assigned a spin, which is defined as an assignment of
Q (Q ≥ 2) different classes. When Q = 2, the Potts model is known as the Ising model. Let an L-by-W
matrix P denote the collection of all spins, where each element plw ∈ {1, . . . , Q}. Since the vertices are
assigned different spins and react with their neighbors’ spins, there will be some measurement of overall
energy, named Hamiltonian,

H (P|θ) = −
L∑

l=1

W∑
w=1

∑
(l′ ,w′)∈Nei(l,w)

Q∑
q=1

Q∑
q′=1

θqq′ I (plw �= pl′w′ , plw = q, pl′w′ = q′), (2.1)

where Nei(l,w) denotes the coordinate set of neighbors of vertex (l, w), θqq′ denotes the interaction energy
between adjacent vertices, and I denotes the indicator function. Note that θqq′ = θq′q. According to
Equation (2.1), only those edges between vertices that have different spins are counted. The negative
value of H (P|θ) can be also considered as the weighted average of those edges connecting two different
spins among the graph.

The Potts model probability mass function calculates the probability of observing the lattice in a
particular state P, where a state is a choice of spin at each vertex,

Pr(P|θ) = exp(−H (P|θ))∑
P′∈P exp(−H (P ′|θ))

= 1

C(θ)
exp

⎛
⎝

L∑
l=1

W∑
w=1

∑
(l′ ,w′)∈Nei(l,w)

Q∑
q=1

Q∑
q′=1

θqq′ I (plw �= pl′w′ , plw = q, pl′w′ = q′)

⎞
⎠ .

(2.2)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
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Here, θ denotes the collection of interaction energy parameters between different classes, where each
element θqq′ ∈ R, q = 1, . . . , Q, q′ = 1 . . . , Q, q �= q′ and P denotes the set of all possible states of
the lattice. An exact evaluation of the normalizing constant C(θ) needs to sum over the entire space of
P, which consists of QLW states. Thus, C(θ) is intractable even for a small size model. Take Q = 2,
L = W = 10 for example, it needs to sum over 2100 ≈ 1.268 × 1030 elements. To address this issue,
we will employ the DMH algorithm (Liang, 2010) to estimate θ without calculating C(θ), which will be
illustrated in Section 3. Equation (2.2) serves as the full likelihood of the Potts model, which satisfies the
Markov property. Therefore, we can write the probability of observing plw = q conditional on its neighbor
spins, which is

Pr(plw = q|θ , P−l,−w) =
exp

(∑
(l′ ,w′)∈Nei(l,w)

∑Q
q′=1 θqq′ I (plw �= pl′w′ , plw = q, pl′w′ = q′)

)

∑Q
q′=1 exp

(∑
(l′ ,w′)∈Nei(l,w)

∑Q
q′=1 θqq′ I (plw �= pl′w′ , plw = q, pl′w′ = q′)

) . (2.3)

Here, we use P−l,−w to denote all the spins excluding plw. According to Equation (2.3), the conditional
probability that we observe the vertex (l, w) belonging to class q depends on the interaction energy
parameters θqq′ , q′ = 1, . . . , Q, q′ �= q and the number of edges connecting two different spins. The larger
the value of θqq′ , the more likely that plw is discordant with the majority of its four neighboring spins.

2.2. The hidden Potts model

Potts models have a wide range of applications in many areas since they provide an appealing representation
of images and other types of spatial data. However, for images with irregularly distributed dots, it is
impossible to apply a Potts model based on a lattice that forms a regular tiling. To overcome this limitation,
Li and others (2017) proposed a hidden Potts model by introducing an auxiliary lattice to the image and
defining a pre-specified projection parameter to control the similarity between the imputed lattice image
and the original image. We develop a more flexible hidden Potts model by formulating a prior on the
projection parameter. More importantly, our model takes into account the heterogeneity of the imaging
data.

We consider a preprocessed pathology image, as shown in Figure 1(a) and (d), with n observed cells,
where (xi, yi) represents the location and zi indicates the type of cell i. We denote x, y, and z as the collection
of xi, yi, and zi, i = 1, . . . , n, respectively. Let an L-by-W matrix P denote the hidden spins at the auxiliary
lattice, which partitions the image into (L − 1)(W − 1) squares. The ratio L/W should approximate the
ratio of (xupp − xlwr)/(yupp − ylwr), where xlwr and xupp denote the lower and upper bounds of the horizontal
axis, and ylwr and yupp denote the lower and upper bounds of the vertical axis of the image. The bounds
are usually known; if not, they can be estimated from the data itself by: (1) roughly setting xlwr = min{x},
xupp = max{x}, ylwr = min{y}, and yupp = max{y} or (2) computing the Ripley–Rasson estimator (Ripley
and Rasson, 1977) of a rectangle window given (x, y). To fit the imaging data into the square-lattice system,
we normalize each coordinate (xi, yi) by performing a linear transformation x′

i = 1 + xi−xlwr
xupp−xlwr

(L − 1) and

y′
i = 1 + yi−ylwr

yupp−ylwr
(W − 1). Then we assume that the probability of assigning cell i to type q conditional

on its adjacent spins at the hidden lattice is

Pr(x′
i, y′

i, zi = q|P, d) =
exp

(
d

∑
{(l,w):l≤x′

i<l+1,w≤y′
i<w+1} I (plw = q)

)

∑Q
q′=1 exp

(
d

∑
{(l,w):l≤x′

i<l+1,w≤y′
i<w+1} I (plw = q′)

) , (2.4)

where d is the projection parameter. The larger the value of d, the more likely a cell type is the same as
the majority of its adjacent spins. If d = 0, then Pr(x′

i, y′
i, zi = q|P, d) = 1/Q, which means the spatial
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(a) (b) (c)

Fig. 2. Illustration of a 3-by-3 auxiliary lattice and the point emission process by different choices of d. The empty
points represent the observed cells and the filled points represent the hidden spins in the lattice. The square, circle,
and triangle shapes stand for class q = 1, 2, and 3, respectively.

distribution of the random cells is independent from the hidden spins. Figure 2 illustrates an example of
the point emission process from a given 3-by-3 Potts model under different choices of d. In addition, we
also demonstrate how d yields varying spin assignments of the hidden lattice conditional on the observed
cells from a larger dataset in our simulation study (see Figure S5 of supplementary material available
at Biostatistics online). Note that the cell types are independent and identically distributed within each
lattice unit, conditional on the four nearby spins. Although this assumption is suitable for most cases, we
discuss a location-dependent hidden Potts model in Section S1 of supplementary material available at
Biostatistics online.

To summarize, the joint likelihood function of the hidden Potts model can be written as

f (x, y, z|P, d, θ) = f (x, y, z|P, d)f (P|θ) =
n∏

i=1

Pr(x′
i, y′

i, zi = q|P, d)Pr(P|θ), (2.5)

where Pr(x′
i, y′

i, zi = q|P, d) and Pr(P|θ) are given in Equations (2.4) and (2.2), respectively. The inference
of spin plw depends on: (1) the nearby observed cells within the square area included by coordinates
(l + 1, w + 1), (l + 1, w − 1), (l − 1, w + 1), and (l − 1, w − 1); (2) the nearby spins at locations (l, w + 1),
(l, w − 1), (l + 1, w), (l − 1, w); and (3) the underlying interaction parameters θ . We specify the prior
distribution for d as d ∼ Ga(ad , bd). One standard way of setting a weakly informative gamma prior is
to choose small values for the two parameters, such as ad = bd = 0.001 (Gelman, 2006). We conclude
this subsection by discussing how to choose the tunable parameters L and W , which determine the size
of the auxiliary lattice. Larger values of L and W make the inference computationally expensive, while
small values make a rough approximation to the interaction energy. We suggest choosing the values that
correspond to n ≈ gLW , where g can be any integer between 4 and 10. This constraint generally requires
observing g cells in each square.

2.3. A proposal of the hidden Potts mixture model

Tumor tissues are heterogeneous. Spatial patterns of cell distributions may vary across different spatial
regions. Applying a homogenous model described in Section 2.2 may obscure the recovery of the true
values of interaction energy by averaging out the real signal from the “areas of interest” with other

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
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background areas. In this study, we propose a hidden Potts mixture model in order to take into account
the heterogeneity of spatial point patterns observed in the pathology images. We first discuss the general
case when the number of mixture components K ≥ 2 and then focus on the model when K = 2. From
a biological point of view, these two regions can be referred to respectively: (1) The areas of interests
(AOIs) with high interaction strengths among different types of cells. In AOIs, the different types of
cells are highly mixed, which may reveal important information about cancer progression and (2) The
background areas, in which the same type cells are aggregated into clusters.

In the same auxiliary lattice described in Section 2.2, we envision that there are K homogeneous regions
with different interaction parameter settings, θ 1, . . . , θK . With this assumption, an L-by-W latent matrix
� is introduced to indicate the K distinct regions, with δlw = k − 1 if the spin at location (l, w) belongs
to group k . According to Equation (2.2), the probability mass function of the mixture model given the
partition � can be written as,

Pr(P|�, θ 1, . . . , θK)

=
K∏

k=1

1

Ck(θ k)
exp

⎛
⎝ ∑

{(l,w):δlw=k−1}

∑
(l′ ,w′)∈Nei(l,w)

Q∑
q=1

Q∑
q′=1

θkqq′I (plw �= pl′w′ , plw = q, pl′w′ = q′)

⎞
⎠ ,

(2.6)

where Ck(θ k) is the normalizing constants for region k . To encourage two neighbor spins to be more likely
in the same region (i.e. have the same δ value), we incorporate the spatial dependency structure into the
prior on � via a Potts model that satisfies a spatial Markov property. This prior model is a type of MRF,
where the distribution of a set of random variables follows Markov properties that can be presented by
an undirected graph. In our model, this graph is defined by the L-by-W auxiliary lattice. The prior can be
written as

Pr(δlw = k − 1|�−l,−w) =
exp

(
f

∑
(l′ ,w′)∈Nei(l,w)

I (δl′ ,w′ = k − 1)
)

∑K
k ′=1 exp

(
f

∑
(l′ ,w′)∈Nei(l,w)

I (δl′ ,w′ = k ′ − 1)
) , (2.7)

where f is a non-negative parameter that controls the spatial interaction and �−l,−w denotes the set of
δl′w′ ’s excluding δl,w. A large value of f makes largely clustered configurations of �, while a small value
corresponds to patterns that do not display any sort of spatial organization. Although the choice of f is
very tricky, François and others (2006) suggests that the value f = 1 can be considered a high level of
spatial interaction for 3 ≤ K ≤ 6.

When K = 2, � becomes a binary latent matrix that indicates the two distinct regions, with δlw = 0
if the spin at location (l, w) belongs to the background area, and δlw = 1 if the spin at location (l, w)

belongs to the AOI. Let θ 0 and θ denote the interaction parameters in the background and AOI regions,
respectively. According to Equation (2.6), the probability mass function of the two-component mixture
model is written as,

Pr(P|�, θ 0, θ)

= 1

C0(θ 0)
exp

⎛
⎝ ∑

{(l,w):δlw=0}

∑
(l′ ,w′)∈Nei(l,w)

Q∑
q=1

Q∑
q′=1

θ0qq′I (plw �= pl′w′ , plw = q, pl′w′ = q′)

⎞
⎠

× 1

C(θ)
exp

⎛
⎝ ∑

{(l,w):δlw=1}

∑
(l′ ,w′)∈Nei(l,w)

Q∑
q=1

Q∑
q′=1

θqq′ I (plw �= pl′w′ , plw = q, pl′w′ = q′)

⎞
⎠ ,

(2.8)
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where C0(θ 0) and C(θ) are the normalizing constants for the two regions. The prior model reduces to an
Ising model, characterized by the following probability,

Pr(δlw|�−l,−w) =
exp

(
δlw

(
e + f

∑
(l′ ,w′)∈Nei(l,w)

δl′ ,w′
))

1 + exp
(
δlw

(
e + f

∑
(l′ ,w′)∈Nei(l,w)

δl′ ,w′
)) , (2.9)

where e and f are hyperparameters to be chosen. Compared with Equation (2.7), the extra parameter
e controls the number of 1’s in � (i.e. the number of spins belonging to the AOI), while f affects the
probability of assigning a value according to its neighbor spins. Note that if a vertex does not have
any neighbor in the AOI, its prior probability reduces to an independent Bernoulli prior with parameter
exp(e)/(1 + exp(e)), which is a logistic transformation of e. Although the parameterization is somewhat
arbitrary, some care is needed in deciding the value of f . In particular, a large value of f may lead to
a phase transition problem; that is, the expected number of ones in � can increase massively for small
increments of f . This problem can happen because Equation (2.9) can only increase as a function of the
number of δlw’s equal to 1. An empirical estimate of the phase transition value can be obtained using the
algorithm proposed by Propp and Wilson (1996) and the values of e and f can then be chosen accordingly.
In this article, we treat e and f as fixed hyperparameters, following the articles by Li and Zhang (2010)
and Stingo and others (2013). Table S1 of supplementary material available at Biostatistics online lists
our recommendation for e and f based on the size of the AOI a priori. As for f , any value between 0 and
fmax, as shown in Table S1 of supplementary material available at Biostatistics online, can be considered,
with larger values closer to the phase transition point, leading to higher prior probabilities of selection for
those nodes whose neighbors are already selected. In Section 4.1, we use simulated data to investigate
the sensitivity to the specification of parameters e and f . For θ and θ 0, we consider normal priors, and we
set θqq′ ∼ N(μ, σ 2) and θ0qq′ ∼ N(μ0, σ 2

0 ), where μ can be set to a positive number while μ0 a negative
number. This assumes the AOI has more interaction energy than the background a priori.

3. MODEL FITTING

In this section, we describe the MCMC algorithm for posterior inference. Our inferential strategy allows
us to simultaneously identify the AOI while quantifying the interaction parameters.

3.1. MCMC algorithm

Our primary interest lies in the identification of the AOI, via the matrix �, and the inference of the
interaction parameters within the AOI and the background area, via the vector θ and θ 0. We design a
MCMC algorithm based on the DMH (Liang, 2010) and Metropolis search variable selection algorithms
(George and McCulloch, 1997; Brown and others, 1998) to search the model space that consists of
(P, �, θ , θ 0, d). We briefly describe why and how DMH is used in the model fitting as follows. The full
details of our MCMC algorithm are given in Section S2 of supplementary material available at Biostatistics
online.

Take the update of θqq′ as an example. Within each MCMC iteration, we need to sample θqq′ from its
conditional distribution π(θqq′ |·) ∝ Pr(P|θ)π(θqq′) = 1

C(θ)
exp(−H (P|θ))N (θqq′ ; μ, σ 2). Apparently, the

Metropolis–Hastings (MH) algorithm cannot be directly applied to simulate from this distribution as the
acceptance probability would involve an unknown normalizing constant ratio C(θ)/C(θ∗), where θ∗ = θ

except the proposed element θ∗
qq′ within. To address this issue, Liang (2010) proposed an auxiliary variable

MCMC algorithm, which can make the normalizing constant ratio canceled by augmenting appropriate
auxiliary variables through a short run of the MH algorithm initialized with the original observation. To

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
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do so, an auxiliary variable P∗ is simulated starting from P based on the new θ∗. Then, the proposed value
θ∗

qq′ will be accepted with probability min(1, r), where the Hastings ratio is computed as

r = π(θ∗
qq′ |P, θ−q,−q′)

π(θqq′ |P, θ−q,−q′)

Pr(P∗|θ)

Pr(P∗|θ∗)
=

1
C(θ∗)

exp(−H (P|θ∗))N (θ∗
qq′ ; μ, σ 2)

1
C(θ)

exp(−H (P|θ))N (θqq′ ; μ, σ 2)

1
C(θ)

exp(−H (P∗|θ))

1
C(θ∗)

exp(−H (P∗|θ∗))
.

As we can see, the unknown normalizing constant ratio has been canceled.

3.2. Posterior estimation

We obtain the posterior inference by post-processing of the MCMC samples after burn-in. Suppose that two
sequences of MCMC samples θ

(1)

qq′ , . . . , θ(U )

qq′ and θ
(1)

0qq′ , . . . , θ(U )

0qq′ have been collected, where u, u = 1, . . . , U

indexes the iteration after burn-in. An approximate Bayesian estimator of θ̂qq′ and θ̂0qq′ can be simply
obtained by averaging over the samples,

θ̂qq′ = 1

U

U∑
u=1

θ
(u)

qq′ and θ̂0qq′ = 1

U

U∑
u=1

θ
(u)

0qq′ . (3.1)

For �, we choose an estimate that relies on the marginal probability of inclusion (PPI) of single spins as
the proportion of MCMC iterations in which the corresponding δlw equal to 1. That is

PPIδ(l, w) = 1

U

U∑
u=1

δ
(u)

lw . (3.2)

A point estimate of �̂ is then obtained by identifying those PPI values that exceed a given cut-off c. A
simple way is to choose c = 0.5 to obtain a median model. An alternative approach is based on a decision
theoretic criterion, such as in Newton and others (2004), so that an expected rate of false detection (i.e.
Bayesian FDR) smaller than a fixed threshold can be guaranteed. For the hidden spins P, we construct
the estimate by selecting the most likely q for each position (l, w):

P̂MP = [
p̂lw = q

]
L×W

, (3.3)

if
∑U

u=1 I
(

p(u)

lw = q
)

>
∑U

u=1 I
(

p(u)

lw = q′
)

for any q′ ∈ {1, . . . , Q}, q �= q′. We refer to the estimate

obtained in this manner as the marginal probability (MP) estimate.

3.3. Label switching

In our finite mixture model, the invariance of the likelihood under permutation of the component labels
may result in an identifiability problem, leading to symmetric and multimodal posterior distributions with
up to K ! copies of each “genuine" model. For instance, for the case K = 2, we may obtain a model
where δlw = 1 corresponds to the true background area, while δlw = 0 indicates the true AOI. This will
also complicate inference on the parameters. To solve this problem, we simply impose an identifiability
constraint on the interaction parameters,

∑
q �=q′ θqq′ >

∑
q �=q′ θ0qq′ . For a more robust approach, we can

also use the relabeling algorithm proposed by Stephens (2000).
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(a) (b) (c)

(d) (e) (f)

Fig. 3. (a and d) The true maps of the 50-by-50 binary matrix � for scenarios 1 and 2, respectively. Each vertex in the
lattice is represented by either an empty square if δlw = 0 or a filled square if δlw = 1. (b and e) The true maps of the
50-by-50 hidden spins P from one dataset generated from scenarios 1 and 2, respectively. The black, red, and green
colors stand for class q = 1, 2, and 3, respectively. (c and f) The observed cell distribution maps generated from the
log Gaussian Cox process conditional on the hidden spins, as shown in (b and e), respectively.

4. RESULTS

We conducted simulation studies to assess the performance of the proposed Bayesian hidden Potts mixture
model. The model was then applied to a large cohort of lung cancer pathology images, and it revealed
novel potential imaging biomarkers for lung cancer prognosis.

4.1. Simulation

We used simulated data to investigate the performance of our strategy for posterior inference on the
model parameters. All the generative models were based on a 50-by-50 lattice unless otherwise noted. We
considered two scenarios for the true structure of �, as shown in Figure 3(a) and (d). For the first scenario
the AOI is a single circle in the center of the image; for the second scenario the AOI is composed of four
rectangles.The number of classes was set to Q = 3, and therefore, there were three interaction parameters in
both θ and θ 0. We set θ = (θ12, θ13, θ23) = (0.5, 0.7, 1.0) and θ 0 = (θ012, θ013, θ023) = (−1.0, −0.5, −1.5).
For a given �, we first simulated the hidden spins P using the Gibbs sampler, running 100 000 iterations
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with random starting configurations in both AOI and the background area. Next, we considered generating
the points using two different point processes: (1) a homogeneous Poisson point process with a constant
intensity λ = 4 over the space [1, 50]2; (2) a log Gaussian Cox process (LGCP) with an inhomogeneous
intensity λ(x, y) = exp(1 + |x/50 − 0.5| + |y/50 − 0.5| + GP(x, y)), x ∈ [1, 50], y ∈ [1, 50], where GP
denotes a zero-mean Gaussian process with variance equal to 0.5 and scale equal to 10. Then, we assigned
a class to each point according to its four nearest adjacent spins. Specifically, for point i, its class zi was
drawn from a multinomial distribution Mn(φ1, . . . , φQ). The parameters (φ1, . . . , φQ) were inferred from
a Dirichlet distribution Dir(0.1 + ñi1, . . . , 0.1 + ñiQ), where ñiq denotes the number of adjacent spins that
belong to class q. Mathematically, it can be written as ñiq = ∑

{(l,w):l≤x′
i<l+1,w≤y′

i<w+1} I (plw = q). Note that
this mark formulation scheme is different from the model assumption, which is given in Equation (2.4).
Figure 3(c) and (f) show examples of the observed data generated from LGCP. We repeated the above
steps to generate 30 independent datasets for each setting of � and each point process.

For the priors on θqq′ and θ0qq′ , we used normal distributions N(0.5, 1) and N(−0.5, 1), respectively.
We set the hyperparameters that control the MRF prior model to e = −2.94 and f = 1.4, which means
that if a spin in the lattice does not have any neighbor in the AOI, its prior probability that it belongs to the
AOI is 5% (For the first and second scenarios, the proportions of the AOI over the whole image are 28%
and 36%, respectively). As for the gamma prior on the projection parameter d, we set ad = bd = 0.001,
which leads to a vague prior for d with expectation and variance equal to 1 and 1000, respectively. This
is one of the most commonly used weak gamma priors (Gelman, 2006). Results we report below were
obtained by running the MCMC chain with 50 000 iterations, discarding the first 50% sweeps as burn in.
We started the chain from a model by randomly choosing a 5 × 5 window in � to be 1, drawing θqq′ and
θ0qq′ from their prior distributions, and assigning a random mark to each hidden spin plw. We report the
scalability of our methods in Section S3 of supplementary material available at Biostatistics online.

Figure S4 of supplementary material available at Biostatistics online displays the trace plots of the
interaction parameters θ and the number of spins in the AOI from one simulated dataset generated from
LGCP and scenario 2. It clearly shows that each chain converges and stabilizes around its true value in a
very short run. Figure S5(a) and (b) of supplementary material available at Biostatistics online show the
map of marginal posterior probabilities Pr(δlw = 1|·)’s and the median model by choosing c = 0.5. Figure
S5(c) of supplementary material available at Biostatistics online shows the map of the MP estimate of the
hidden spins. It is evident from the maps that the inspection of the posterior probabilities of Pr(δlw = 1|·)
and Pr(Plw = q|·) allows us to reconstruct the true structure of � and P quite well. Figures S6 and S7 of
supplementary material available at Biostatistics online show the density plots of MCMC samples of the
six interaction parameters, collected from all 30 simulated datasets generated from each point process and
scenario. Most of the true values were within the 95% credible intervals. Next we evaluated the overall
performance of recovery of the true �, in terms of average false positive rate (FPR) and true positive rate
(TPR) achieved for different values of threshold c on the posterior probabilities of inclusion Pr(δlw = 1|·)’s.
Results are reported in Figure 4 by drawing receiver operating characteristic (ROC) curves. The average
areas under the ROC curves (AUC) range from 0.903 to 0.950, indicating a satisfactory performance.
We also reported the average FPRs, TPRs (i.e. recalls), precisions, and F-1 scores of the median model
in Table S2 of supplementary material available at Biostatistics online. Lastly, we assessed the overall
performance of recovery of the true hidden spins P by plotting the ROC curves for different values of
the threshold on the posterior probabilities of inclusion Pr(plw = q|·) for each class q (See Figures S8
and S9 of supplementary material available at Biostatistics online). We compared our method with simply
classifying each spin (w, l) by a k-nearest neighbor (k-NN) algorithm. The training set is the full set of
the observed points in the corresponding dataset. Whichever k was chosen, the k-NN algorithm produced
a (FPR, TPR) point under the ROC curve that our method generated.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
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(a) (b)

(c) (d)

Fig. 4. The ROC curves on the posterior probabilities of inclusion on �, in terms of the boxplots of TPRs under
different FPRs, over 30 datasets generated from each point process and each setting of �. (a) Homogeneous Poisson
process - scenario 1; (b) Homogeneous Poisson process - scenario 2; (c) Log Gaussian Cox process - scenario 1; (d)
Log Gaussian Cox process - scenario 2.

We conducted a sensitivity analysis on the choice of the MRF prior hyperparameters, e and f . In
particular, we considered 20 settings, by varying e corresponding to the expected proportion of the AOI
as 1%, 2%, 5%, 10%, and 15%, and varying f to 0, fmax/4, fmax/2, and fmax. Table S4 of supplementary
material available at Biostatistics online shows the average AUC for each combination. The model is
considerably insensitive to the choice of e if the value of f is equal to its maximum allowed value, as
given in Table S1 of supplementary material available at Biostatistics online. The result suggests that
employing the MRF prior model with a larger f resulted in an increased ability to identify the true
AOI, while the independent Bernoulli prior model (i.e. f = 0) with no spatial information incorporated
performed the worst. For those choices with f = fmax, we also calculated the average recalls, precisions,
and F1-scores based on the PPI estimates of � when choosing c = 0.5. Again, a close look at Table S3 of

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
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supplementary material available at Biostatistics online suggests that the proposed model was robust to
the choice of hyperparameter e.

As the algorithm consists of two tunable parameters L and W , we also conducted a sensitivity analysis
by choosing different values of L and W . We fit one dataset from the homogeneous Poisson process and
scenario 2 into models with different lattice sizes 20 × 20, 30 × 30, 40 × 40, and 50 × 50. Figure S10 of
supplementary material available at Biostatistics online shows the maps of marginal posterior probabilities
Pr(δlw = 1|·)’s and the median models for each setting. Generally speaking, the model was robust to the
choice of L and W .

4.2. Application

Lung cancer is the leading cause of death from cancer in both men and women. Non-small-cell
lung cancer (NSCLC) accounts for about 85% of deaths from lung cancer. In this case study, we
applied the proposed method to the pathology images of 205 NSCLC patients in the NLST project
(https://biometry.nci.nih.gov/cdas/nlst/). Each patient had one or more tissue slide(s) scanned at 40×
magnification. A lung cancer pathologist first determined and labeled the region of interest (ROI) within
tumor region(s) from each tissue slide, and then we randomly chose five square regions per ROI as the
sample images. The total number of sample images that we collected was 1585. For each sample image,
we used the ConvPath pipeline, as shown in Figure S1 of supplementary material available at Biostatistics
online, to generate the corresponding cell distribution map as the input of our model. The number of cells
in each sample image ranged from 2876 to 26 463.

We applied the proposed model with a 40-by-40 lattice to each preprocessed image. We used the same
hyperparameter and algorithm settings as described in Section 4.1. Figure 1(a) and (d) are examples of the
observed cell distribution maps from two patients’ sample images. Figure 1(b) and (e) visualize the MP
estimates of the hidden spins P for the imaging data as shown in Figure 1(a) and (d). We can also consider
them as the imputed images by projecting irregularly distributed cells into a 40-by-40 lattice. Figure 1(c)
and (f) show the two regions, the AOIs (in blue shadow) and the background areas. The indicator matrix
� was estimated by a median model by choosing c = 0.5. As we can see, the imputed images are indeed
good representations of the original cell distribution maps. Our method appears to separate those regions
with intensive cell–cell interaction from a “freeze" background in which the cell–cell interaction energy is
relatively low. This observation can be validated through Figure S13 of supplementary material available
at Biostatistics online, which shows the density plots of θ̂ (red) and θ̂ 0 (green) via the hidden Potts mixture
model and θ̂ (black) via the hidden Potts model. It is clearly shown that the values of interaction energy
of a homogeneous model are the roughly weighted average of the interaction energies of the AOI and the
background regions from a mixture model, while the weight is determined by the �.

With the estimated interaction parameters in both AOI and the background area in each tissue slide, we
conducted a downstream analysis to prove that proposing the hidden Potts mixture model as described in
Section 2.3 is needed in practice, compared with its simpler version, which is the hidden Potts model as
described in Section 2.2. Specifically, a Cox regression model was first fitted to evaluate the association
between those estimated interaction parameters θ̂ and θ̂ 0 and patient survival outcomes, after adjusting for
other clinical information, such as age, gender, tobacco history, and cancer stage. Multiple sample images
from the same patient were modeled as correlated observations in the Cox regression model to compute
a robust variance for each coefficient. The overall P-value for the Cox model is 8 × 10−6 (Wald test), and
the P-value and coefficient for each individual variable are summarized in Table 1 (P-values smaller than
a 5% significance level are in boldface). The results imply that an increased interaction between stromal
and tumor cells in the AOI (θstr, tum) is associated with good prognosis in NSCLC patients (P = 0.005).
Interestingly, Beck and others (2011) also discovered that the morphological features of the stroma in the
tumor region are associated with patient survival in a systematic analysis of breast cancer. Besides, the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://biometry.nci.nih.gov/cdas/nlst/
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy019#supplementary-data
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Table 1. Survival analysis for NLST lung cancer pathology images. The overall P-value corresponding to
a Wald test for the hidden Potts mixture model (heterogeneous) is 8 × 10−6 and for the hidden Potts model
(homogeneous) is 0.006
Models Parameters Coefficient exp (Coef.) SE P-value

θlym,str −0.13 0.88 0.062 0.260
θlym,tum 0.07 1.07 0.077 0.584
θstr,tum −0.34 0.71 0.070 0.005
θ0,lym,str 0.26 1.30 0.077 0.017
θ0,lym,tum 0.16 1.17 0.072 0.229
θ0,str,tum −0.03 0.97 0.077 0.818

Heterogeneous Number of cells 0.00 1.00 0.000 0.378
Age 0.03 1.03 0.009 0.248
Female vs. male −0.14 0.87 0.092 0.626
Smoking vs. non-smoking −0.03 0.98 0.090 0.930
Cancer stage I vs. II 0.45 1.57 0.147 0.359
Cancer stage I vs. III 1.43 4.18 0.105 7 × 10−6

Cancer stage I vs. IV 1.34 3.81 0.145 0.006

θlym,str 0.01 1.01 0.024 0.896
θlym,tum 0.05 1.05 0.065 0.626
θstr,tum −0.13 0.88 0.076 0.295
Number of cells 0.00 1.00 0.000 0.799

Homogeneous Age 0.03 1.03 0.009 0.247
Female vs. male −0.21 0.81 0.091 0.460
Smoking vs. non-smoking −0.04 0.96 0.089 0.887
Cancer stage I vs. II 0.40 1.49 0.146 0.432
Cancer stage I vs. III 1.41 4.09 0.105 1 × 10−5

Cancer stage I vs. IV 1.25 3.49 0.142 0.013

interaction between lymphocyte and stromal cells in the background area (P = 0.017) is also a prognostic
factor, while the underlying biological mechanism is currently unknown. In comparison, we then fitted a
homogeneous hidden Potts model, which is equivalent to our mixture model with all δlw’s fixed to 1. The
estimated interaction parameters θ̂HP as well as other clinical variables were used as the predictors of the
Cox regression model. The results are summarized in Table 1.As we can see, there is no significant predictor
except cancer stage. This indicates that the homogeneous model tends to underestimate the true values of
interaction energy between different types of cells. This example demonstrates the advantage of modeling
the heterogeneous imaging data via a hidden Potts mixture model, rather than a hidden Potts model.

5. CONCLUSION

In this article, we focus on modeling cell distribution maps that arise in a lung cancer pathology image
study. A hierarchical Bayesian framework was proposed in order to achieve three goals: (1) to reduce the
complexity of the imaging data with thousands of irregularly distributed cells; (2) to quantify the interaction
among different types of cells; and (3) to identify regions in the image where the interaction patterns
significantly differ from each other. The proposed model utilizes the spatial information of thousands
of irregularly distributed cells in the image. The introduction of auxiliary lattice helps to reduce the
complexity of imaging data and defines a concise and explicit neighborhood for each spin in the Potts
model. Our model is able to not only quantify the interaction energy between different types of cells, but
also to distinguish clinically meaningful patterns from the background area via a Markov random field
model.
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For the lung cancer pathological imaging data, our study shows the interaction strength between stromal
and tumor cells in the AOI is significantly associated with patient prognosis. This parameter can be
easily measured using the proposed method and used as a potential biomarker for patient prognosis.
This biomarker can be translated into real clinical tools at low cost because it is based only on tumor
pathological slides, which are available in standard clinical care. In addition, this statistical methodology
provides a new perspective to understand the biological mechanisms of cancer.

Several extensions of our model are worth investigating. First, the proposed model can be extended
to more flexible finite mixture models by imposing a prior distribution on the number of components
K . Second, the correlation among interaction parameters could be taken into account by modeling them
as a multivariate normal distribution. Third, we can learn about fixed hyperparameters, such as e and
f in the MRF prior by formulating its hyperpriors (see, e.g. Liang, 2010; Stingo and Vannucci, 2011).
Fourth, although the use of MRF prior models encourages neighboring spins to clump together, there is
no guarantee that the AOI is spatially contiguous, even if choosing f = fmax. How to generate a clinically
useful and smoothAOI based on the MP matrix of inclusion PPIδ could be another future research direction.
Last but not least, the proposed model provides a good opportunity to investigate the performance of other
approximate Bayesian computation methods, such as variational Bayes, or even exact algorithms for
sampling from distributions with intractable normalizing constants, such as Liang and others (2016).
These could be future research directions.

6. SOFTWARE

Software in the form of R/C++ code is available on GitHub https://github.com/liqiwei2000/Bayes
HiddenPottsMixture. All the simulated datasets analyzed in Section 4.1 and two real datasets correspond-
ing to the two sample images shown in Figure 1(a) and (d) of the manuscript are available on figshare
https://figshare.com/projects/Bayesian_hidden_Potts_mixture_models/29659.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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