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SUMMARY

The human microbiota composition is associated with a number of diseases including obesity, inflamma-
tory bowel disease, and bacterial vaginosis. Thus, microbiome research has the potential to reshape clinical
and therapeutic approaches. However, raw microbiome count data require careful pre-processing steps
that take into account both the sparsity of counts and the large number of taxa that are being measured.
Filtering is defined as removing taxa that are present in a small number of samples and have small counts in
the samples where they are observed. Despite progress in the number and quality of filtering approaches,
there is no consensus on filtering standards and quality assessment. This can adversely affect downstream
analyses and reproducibility of results across platforms and software. We introduce PERFect, a novel per-
mutation filtering approach designed to address two unsolved problems in microbiome data processing:
(i) define and quantify loss due to filtering by implementing thresholds and (ii) introduce and evaluate
a permutation test for filtering loss to provide a measure of excessive filtering. Methods are assessed on
three “mock experiment” data sets, where the true taxa compositions are known, and are applied to two
publicly available real microbiome data sets. The method correctly removes contaminant taxa in “mock”
data sets, quantifies and visualizes the corresponding filtering loss, providing a uniform data-driven filter-
ing criteria for real microbiome data sets. In real data analyses PERFect tends to remove more taxa than
existing approaches; this likely happens because the method is based on an explicit loss function, uses
statistically principled testing, and takes into account correlation between taxa. The PERFect software is
freely available at https://github.com/katiasmirn/PERFect.
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1. INTRODUCTION

Microbiome studies yield data as counts of microbes from the 16S rRNA marker gene using next generation
sequencing (NGS) technology. Specifically, a sample gives counts of DNA fragments which are then
grouped into species level operational taxonomic units (OTUs), also referred to as taxa; in statistical
terminology, these are random variables. The resulting data, usually referred to as the “OTU table” is
typically high dimensional; for example, human gut samples provide counts on 1000 to 1500 taxa, while
vaginal samples yield 200 to 400 taxa. In contrast to gene expression data, microbial data are sparse as
many taxa are rare and often have zero counts in most samples.

The role of the microbiome in human health and disease has received increased attention over the last
decade (Human Microbiome Project Consortium, 2012) with the gut and vaginal body sites being among
the best-studied. Studies on the gut microbiome have explored the role of microbiota in the immune
system, inflammatory bowel disease, and development of the infant gut (Greenblum and others, 2012;
Lozupone and others, 2012; Maynard and others, 2012). Vaginal microbiome studies are important for
understanding conditions such as bacterial vaginosis (BV), a disruption of the microbiome that is associated
with increased risk of sexually transmitted infections and preterm births (Ma and others, 2012; Romero
and others, 2014). Given the clinical and translational implications of microbiome research, it is crucial
to identify and agree on high data quality standards and statistical methodology.

Stulberg and others (2016) assessed the current state of microbiome research in the USA, identifying
standardized protocols for data processing as the highest priority technical need. Every aspect of the process
from sample collection to DNA extraction to data analysis can contribute different sources of errors and
variability. Herein, we concentrate on filtering or removing spurious taxa from the 16S data set, which
are observed mainly because of contamination and/or sequencing errors. Contamination occurs during
the sample preparation, DNA extraction and polymerase chain reaction (PCR) amplification. Potential
sources of contamination are bacteria that are frequently handled in the lab, those that reside on the skin of
lab workers, or in the extraction kits (Salter and others, 2014). Several studies have been conducted using
“mock” samples curated so that they consist of known microbial species in prescribed proportions and,
after cultivation, the samples are sequenced using NGS technology to identify the taxa and evaluate the
effects of such contamination on the observed taxa counts (Brooks and others, 2015). Errors, especially
due to misclassification, arise as the sequencing technology employs a combination of statistical and
computational algorithms that make assumptions about identifying nucleotide bases (Cacho and others,
2016) and for assembling the DNA fragments during the alignment process (Li and Homer, 2010). Overall,
contamination and sequencing errors lead to either falsely identifying taxa that were not in the sample or
misclassifying the taxa of DNA fragment reads.

In practice, filtering is a variation of an ad hoc, albeit simple, procedure. One of the most widely used
techniques for filtering in microbiome studies selects taxa that have a number of counts above m = 0
in at least k samples. This approach is borrowed from the RNA-seq gene expression literature and is
implemented in the R package genefilter (Gentleman and others, 2016) and in QIIME bioinformat-
ics pipeline function filter_otus_from_otu_table.py (Caporaso and others, 2010). Another
popular approach is to remove taxa that are observed in fewer than k% of the samples. The advantage of
these methods is that they are simple, intuitive, and easy to communicate with collaborators. However,
they do not have an explicit loss function and objective criteria for choosing the tuning parameters m
and k .

Recently, several techniques have been proposed to detect contaminant taxa. One approach, developed
by Knights and others (2011) and implemented in R package sourcetracker, relies on microbial
source tracking to identify the proportion of contaminant taxa in each sample by matching the taxa
table against the database of known contaminants. However, this method does not detect individual
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contaminant taxa that should be removed from the data set. Davis and others (2017) addressed this
problem by introducing decontam R package that identifies contaminants by: (i) inversely correlating
taxa frequencies with sample DNA concentration; and (ii) using the prevalence of sequenced negative
controls (Salter and others, 2014). A major practical limitation of this method is that the auxiliary data
from DNA quantitation that is in most cases intrinsic to sample preparation or negative controls data that
is intrinsic to sequencing protocol might not be available.

We propose a filtering loss measure and a principled filtering test, PERFect, for deciding which taxa to
remove. In contrast to the standard procedures, which assume that taxa in a biological network are isolated,
PERFect filters out taxa with insignificant contribution to the total covariance. Our proposal relies on
ranking taxa importance, measuring their contribution to the total covariance, and quantifying the chance
that the loss increase for a set of filtered taxa is due to randomness. We choose the contribution to covariance
as the measure of filtering loss because it provides a measure of taxa contribution to the biological
network. We introduce two principled filtering methods: simultaneous and permutation PERFect, that
rely on estimating the null distribution for the increase in filtering loss due to each taxon. We compare our
proposal to traditional filtering on two data sets acquired from mock community experiments carried out
at Virginia Commonwealth University (VCU) (Fettweis and others, 2012; Brooks and others, 2015) and
a reagent and laboratory contamination data set (Salter and others, 2014). We also illustrate our methods
using a publicly available vaginal microbiome data set published in Ravel and others (2011) and Bacterial
Diversity in Neonatal Intensive Care Units data (Knights and others, 2011). Methods are described for
relative OTU abundance (proportions data), but can be used on other OTU table representations including
raw OTU counts or presence-absence.

The main goal of PERFect is to extend traditional filtering approaches to find the best subset of taxa
to retain for further analysis by implementing statistical data-driven significance cut-off thresholds. This
method is remotely related to the sparse covariance and precision matrix estimation techniques which are
pairwise methods and, in the context of microbiome data, identify pairs of marginally or conditionally
uncorrelated taxa, respectively. In contrast, PERFect removes columns of low-signal taxa as opposed to
individual covariance pairs. The goals of PERFect are closely related to the idea of sure screening method
introduced by Fan and Lv (2008), however PERFect is an unsupervised method, in which the response
information, such as health outcomes, is not used in identifying signal taxa.

Results show that in the high signal-to-noise ratio scenarios, PERFect is consistent with standard
filtering and outperforms it on one of the mock data sets. In low signal-to-noise ratio scenario, PERFect
permutation approach significantly outperforms other microbiome filtering methods. Most taxa in these
samples are uncorrelated, and 6 out of 99, 7 out 46, and 3 out of 635 are signal taxa respectively. In the real
correlated data scenario with low to moderate signal, PERFect removes the same taxa as the traditional
approaches, but removes many additional taxa that are found not to contribute to the overall signal. Taxa
removed by PERFect are consistent with expectations based on biological knowledge of these organisms.
In summary, PERFect has several practical and theoretical advantages over standard approaches. First,
PERFect allows dimension reduction consistent with minimal total covariance loss. It retains a smaller
subset of taxa that provide highest contribution to the total covariance. Second, in contrast to recently
developed decontammethod, PERFect can be used in any data set, where additional information required
by decontam might not be available. Third, PERFect is implemented in R and provides an easy-to-use,
data-driven approach for choosing a filtering cut-off combined with the visualization of the relationship
between taxa P-values and filtering loss.

We introduce criteria for measuring filtering loss and develop the PERFect methodology in Section 2.
In Section 3, we evaluate traditional filtering approaches, simultaneous and permutation PERFect on three
mock community data sets, a data set with known taxa biology. We test our method in Section 4 and one
vaginal microbiome data set. In Section 5, we present the concluding remarks and the directions for future
work. PERFect software features follow in Section 6.
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2. METHODS

The microbiome studies data structure is an n × p matrix of OTU counts X = (x1, . . . , xp), where each
column xj ∈ R

n contains the jth taxon counts observed across n samples. Filtering is the process of
identifying and removing a subset of taxa XJ = {xj}j∈J , where J ⊂ {1, . . . , p}, according to a particular
criterion. Let |A| denote the cardinality of the set of indices A. The original data matrix X can be written
(after re-arranging some columns) as X = (XJ , X−J ), where XJ is the n×|J | dimensional matrix containing
the taxa that are removed and X−J is the n × (p − |J |) dimensional matrix containing the taxa that are
retained for further analysis.

2.1. Filtering loss

We base the filtering loss on the Frobenius norm since it measures the total covariance of the data.
Specifically, we define the loss due to filtering out the jth taxon as,

FLu(j) = 1 − ‖X T
−jX−j‖2

F

‖X T X ‖2
F

, (2.1)

where X−j is the n × (p − 1) dimensional matrix obtained by removing the jth column from the data
matrix X . Here, ‖Z‖2

F := tr(ZT Z) = ∑p
j=1 zT

j zj is the square of the Frobenius norm of matrix Z . The
covariance matrix of column-wise centered data X is estimated as S = 1

n X T X , so that the filtering
loss can be viewed as the ratio of filtered and full covariance matrix magnitudes. Thus, the quantity
‖X T X ‖2

F = ∑p
j=1(x

T
j xj)

2 + 2
∑

i �=j(x
T
i xj)

2 measures total covariance of the data, and the filtering loss
criterion accounts both for the contribution of the jth taxon and its co-occurrence with other taxa. Similarly,
we define the filtering loss due to removing a group of taxa, J , as

FL(J ) = 1 − ‖X T
−J X−J ‖2

F

‖X T X ‖2
F

, (2.2)

where X−J is the n × (p − |J |) dimensional matrix obtained by removing the columns indexed by the set
J from the data matrix X .

The filtering loss FL(J ) is a number between 0 and 1, with values close to 0 if the set of taxa J has
small contribution to the total covariance and 1 otherwise. The methods presented here are based on
the Frobenius norm, but other filtering losses can be considered without changes in the methodology.
An small subset of mock data example presented in Section 1 in the supplementary material available
at Biostatistics online and PERFect software vignette (https://github.com/katiasmirn/PERFect) illustrates
how these measures detect the differences between signal and noise taxa.

We start by re-arranging the columns of the matrix X with respect to the number of occurrences of the
taxa in the n samples. More precisely, we define

NP( j) :=
n∑

i=1

I (xij > 0), (2.3)

where xij is the ith element in xj = (x1j, x2j, . . . , xnj)
T , the jth column of X , and I (·) is the indicator function.

Taxa with smaller values of NP are more likely candidates to be filtered and the columns of X are re-
ordered to ensure that NP(1) ≤ NP(2) ≤ · · · ≤ NP(p). This ordering will be shown to have a very good
performance in applications, though alternative or more refined orderings could also be considered; we

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://github.com/katiasmirn/PERFect
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Fig. 1. Filtering loss plots for Fettweis and others (2012) data. For each plot, taxa on the x-axis are arranged in the
order of increasing values of NP and dashed vertical lines indicate taxa for which FL have faster increase rates. Left
panel: cumulative filtering loss FL. Right panel: values of DFL that approximate filtering loss slope at each taxon.

provide and discuss some alternatives and their effect on the choice of filtering cut-off in Section 2 in
supplementary material available at Biostatistics online.

Once taxa are ordered, we propose calculating the filtering loss sequentially by removing the taxa in
increasing order of NP( j). If Jj = {1, . . . , j}, then we define the filtering loss for removing the first j taxa
as FL(Jj) and the difference in filtering loss as

DFL( j + 1) = FL(Jj+1) − FL(Jj). (2.4)

To better understand the two measures in Figure 1, we display the results for a mock community data
set (Fettweis and others, 2012), where only six taxa to the right of the vertical dashed line correspond to
the true signal. The left panel displays the filtering loss (relative to the total covariance), while the right
panel displays the difference in filtering loss (relative to the sample variance after removing j taxa). Both
panels provide the intuition that many taxa can be removed from the OTU matrix based on our chosen
loss function. However, around j = 93, the filtering loss starts to increase dramatically. In the following
section, we provide a principled approach on deciding which increases in filtering loss can be attributed
to randomness and which increases correspond to true signal in the data.

2.2. PERFect

Our main goal is to decide whether the set of first j taxa, Jj, is needed to explain the microbiome structure
observed in the OTU table, or if a smaller set of (p − |Jj|) taxa suffices. We define

FJ = 1 − ||PT
−J P−J ||2F

||PT P||2F
,

where P = {pij}n×p is a matrix of the true relative abundance of microbe j in sample i. The theoretical
quantity FJ = 0 if the jth taxon is included erroneously. Then dFj+1 = FJj+1 − FJj is the theoretical

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
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Fig. 2. Left panel: histogram of log-transformed DFL values for the Fettweis and others (2012) data. The blue line
indicates SN(ξ̂ = −29.43, ω̂2 = 5.672, α̂ = 35.02) density fitted to the log-transformed data using quantile matching
method. Note that the Skew-Normal fits well the left part of the distribution (the null P-values), while the right tail
of the distribution is assumed to be generated by an unspecified alternative distribution. Right panel: histogram of
log-transformed DFL values for the Fettweis and others (2012) data obtained by permuting the labels for j = 10 and
j = 94 taxa. The red and green lines indicate Skew-Normal density fitted to the log-transformed data to taxon 10 and
94 respectively using quantile matching method.

improvement to the signal from adding the taxon j + 1. We propose estimating FJ and dFj+1 using
the filtering loss FL(J ) (2.2) and corresponding differences in filtering loss DFL( j + 1) (2.4) statistics.
Therefore, we test

H0 : dFj+1 = 0 vs HA : dFj+1 > 0.

To test this hypothesis we need to estimate a filtering cut-off threshold. To achieve this, we introduce two
approaches: (i) fitting a distribution to the differences in filtering loss for p taxa simultaneously; and (ii)
fitting a null distribution for each set Jj of first j taxa by permuting the order of taxa. Both methods depend
on the assumption that a substantial percentage of the taxa have dFj+1 = 0. In our case, we assume that
at least half the taxa will need to be removed, but other probabilities can be used. Although the theoretical
underlying hypothesis is stated in terms of relative abundances, counts can be used interchangeably in
calculations because of the definition of the loss function.

2.2.1. Simultaneous filtering. The simultaneous filtering approach is very fast and requires only fitting
a distribution to the filtering loss differences DFL( j + 1) shown in Figure 1 (right panel). Figure 2 (left
panel) provides the histogram of the log-transformed DFL values for the Fettweis and others (2012) data.
Under the assumption that at least 50% of the taxa are not informative, the left part of the distribution can
be approximated by a Skew-Normal distribution (Azzalini, 2005) using quantile matching. We suggest
using 10%, 25%, and 50% quantiles for matching, though these quantiles can be adjusted in specific
scenarios when one expects a larger or smaller percentage of taxa that are not informative. This part
of the approach does not depend on the choice of filtering loss. A random variable X is said to have a
Skew-Normal distribution with location parameter ξ , scale parameter ω2 , and shape parameter α denoted
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by SN(ξ , ω2, α) if its probability density function (pdf) is

f (x|ξ , ω2, α) = 2

ω
φ
(x − ξ

ω

)
�

(
α

x − ξ

ω

)
, x ∈ R (ξ , α ∈ R, ω ∈ R

+),

where φ and � denote the probability density and the cumulative distribution function of the standard
normal distribution, respectively. Because there are three parameters, we used three quantiles for matching
the distributions. The estimated distribution for the Fettweis and others (2012) data is shown in Figure 2
(left panel) as a blue line superimposed over the histogram of the log-transformed DFL( j +1) values. The
estimated distribution approximates the empirical distribution of sequential losses. The Skew-Normal fits
the left part of the distribution reasonably well, while the right tail of the distribution is assumed to be
generated from an unspecified alternative distribution and is not expected to fit the same distribution as the
left part. It is important to understand that our Skew-Normal distribution is designed to capture the null
distribution of log(DFL) values, whereas the alternative distribution remains unspecified. This is crucial
for making decisions about which taxa do not contribute to the signal (provide DFL values corresponding
to the null component) and which taxa contribute to the signal (provide DFL values that correspond to
the alternative component). The log Skew-Normal was necessary in our case because of the nature of the
DFL measures. Once we have an estimate of the null distribution, we define the significance of the set of
first j taxa Jj as the P-value

pj := P[X > log{DFL( j + 1)}], (2.5)

where the random variable X ∼ SN(̂ξ , ω̂2, α̂) and log{DFL( j+1)} is the log-transformed value of filtering
loss difference due to removing the Jj taxa. Here ξ̂ , ω̂2, and α̂ are the estimated parameters of the Skew-
Normal distribution on the log-transformed losses. We further suggest using smoothed P-values, obtained
by averaging three (or more) subsequent P-values (2.5). This practice allows the PERFect procedure to
be robust to the choice of quantiles used to fit the reference distribution in rare cases when a marginally
significant taxon has a low ordering rank and thus appears very early in the data. Finally, we filter out
the set Jj of taxa whose P-values are larger than a given significance level α. The simultaneous filtering
procedure method is outlined in Algorithm 1.

Algorithm 1 PERFect: simultaneous filtering
Input: OTU table X, test critical value α

Output: Filtered OTU table X, p-value for each taxon
1: Order columns of X such that NP(1) ≤ NP(2) ≤ NP(p)

2: for taxon j = 1, …, p-1 do
Calculate DFL( j + 1) using (2.4) for Jj = {1, . . . , j}

end
3: Using quantile matching fit the Skew-Normal distribution to the logarithm of the sample

DFL( j + 1), j = 1, . . . , p − 1 to obtain
the null distribution X ∼ SN(̂ξ , ω̂2, α̂)

4: Calculate the p-value pj+1 for DFL( j + 1), j = 1, . . . , p − 1 as
pj+1 := P[X > log{DFL( j + 1)}]

5: Average 3 subsequent P-values
6: Filter out the set of taxa Jj with the first P-value such that pj+1 ≤ α



622 E. SMIRNOVA AND OTHERS

2.2.2. Permutation filtering. In the previous section, we assumed that all sequential increments in fil-
tering loss can be attributed to the same distribution. This assumption allows us to quickly calculate the
mixture of the null and alternative distributions. However, there is no a priori reason to assume that all
distributions for each step j + 1 are identical and equal to the distribution of simultaneous filtering. To
address this issue, we propose a simple alternative we call permutation filtering. More precisely, we ran-
domly permute the labels of the taxa and calculate DFL∗( j + 1) − DFL∗( j) for every permutation. Once
we draw this sample to evaluate ( j + 1)th taxon significance, the permutation distribution for each set of
taxa is a mixture distribution between the null distribution corresponding to noise and signal taxa. In some
cases that taxon will have weak signal, the DFL∗( j+1) loss will be small and contribute to the null part of
the distribution. In other cases that taxon will have strong signal and will have a larger contribution, which
will become a component of the alternative distribution. The underlying assumption is that if the ( j +1)th
taxon is unimportant (weak signal) then it will contribute very little above and beyond any combination of
other J ∗

j taxa and will provide a small value, corresponding to the null distribution. Assuming that at least
50% of taxa are not informative, we suggest fitting the log Skew-Normal distribution by matching the
10%, 25%, and 50% percentiles of the log-transformed samples to the Skew-Normal distribution. Thus,
we estimate the location ξj+1 = ξ̂j+1, scale ωj+1 = ω̂j+1, and shape αj+1 = α̂j=1 of the ( j + 1)th taxon null
distribution. If the ( j + 1)th taxon is not important then the difference is drawn from the null distribution,
otherwise it is drawn from the alternative.

The difference between simultaneous and permutation filtering is as follows. In permutation filtering
the assumption is that a taxon with weak signal remains unimportant to any combination of other j taxa. In
simultaneous filtering the assumption is that the weak signal taxon is unimportant in the particular ordering
imposed by Step 1 of Algorithm 1. In validation studies, we have found that in most cases the methods
perform similarly, though the permutation filtering is more robust to the choice of tuning parameters.

Figure 2 (right panel) illustrates the histogram of log-transformed DFL( j + 1) values for j = 10 (red)
and j = 94 (green) filtered taxa for the Fettweis and others (2012) data set, where only 6 out of 99 taxa
correspond to the true signal. Both PERFect approaches correctly identify the true signal, though the null
distributions are quite different, especially in the left tail of the distribution. We chose these examples
because they are quite extreme. Indeed, in practice, we propose stopping much earlier with removing taxa.
While most null distributions agree quite closely for |J | up to around 90, differences start to increase for
|J | > 90.

The method then proceeds just as simultaneous filtering and the significance of the (j + 1)th taxon is
the P-value pj+1 := P[Xj+1 > log{DFL( j + 1)}], where the random variable Xj+1 ∼ SN(̂ξj+1, ω̂2

j+1, α̂j+1)

and log{DFL( j +1)} is the log-transformed value of filtering loss difference due to removing the ( j +1)th
taxon. Similar to the simultaneous testing approach, we filter out taxa sequentially based on large smoothed
P-values. The permutation filtering is outlined in Algorithm 2.

In contrast to simultaneous filtering, permutation filtering does not require a particular ordering of
taxa, and the ( j + 1)th taxa significance can be evaluated using any ordering of the taxa, not necessarily
the number of occurrences in n samples given by (2.3). While the distribution of ( j + 1)th taxa does
not depend on ordering, the value of DFL( j + 1) used in Algorithm 2 to evaluate the significance of the
( j+1)th taxon depends on the choice of taxa in the cutoff set Jj. Therefore, we suggest using taxa ordering
according to (2.3) in simultaneous PERFect approach as a preliminary measure of taxa importance. Thus,
we propose using the decreasing order of simultaneous PERFect p-values (2.5) in permutation PERFect.
The permutation PERFect is computationally more expensive than the simultaneous PERFect. It requires
k(p − 1) permutations, where the number of permutations for each taxon k is large (we use k = 10,000)
leading to longer computational time when the number of observed taxa is large.



PERFect 623

Algorithm 2 PERFect: permutation filtering
Input: OTU table X, test critical value α

Output: Filtered OTU table X, p-value for each taxon
1: Run simultaneous PERFect algorithm to obtain

taxa p-values pj, ∼ j = 1, . . . , p
2: Order columns of X such that p1 ≥ p2 ≥ pp

3: for taxon j = 1, …, p-1 do
Let Jj = {1, . . . , j}
Calculate DFL( j + 1) using (2.4)

4: for permutation 1, …, k do
Randomly select J ∗

j+1 ⊂ {1, . . . , p} with |J ∗
j+1| = j + 1

Calculate DFL∗( j + 1) using (2.4)

end
5: Using quantile matching fit the normal distribution to the

logarithm of the sample DFL∗( j + 1), j = 1, . . . , p − 1 to obtain
the null distribution Xj+1 ∼ SN(̂ξj+1, ω̂2

j+1, α̂j+1)

6: Calculate the p-value pj+1 for DFL( j + 1), j = 1, . . . , p − 1 as
pj+1 := P[Xj+1 > log{DFL( j + 1)}]

end
7: Average 3 subsequent P-values
8: Filter the set of taxa Jj with the first P-value such that pj+1 ≤ α

3. METHODS VALIDATION

We apply traditional, decontamination (Davis and others, 2017) (where appropriate) and PERFect filtering
methods to:

1. Mock community data 1: positive controls data. These data (Fettweis and others, 2012) were gen-
erated as a part of a sequencing protocol where two control samples (one positive and one negative) were
placed on a sequencing plate at each run. The positive control samples consisted of six species combined
in prescribed proportions where the proportions of each microbial community was held the same in all
samples. Negative controls samples were comprised of distilled water; ideally, no bacteria should be
detected in these samples as a result of sequencing. In this article, we consider the positive controls data,
where 99 taxa were observed as a result of sequencing. The negative controls samples were used to test
the decontam package performance.

2. Mock community data 2: bias experiment data. These publicly available data (Brooks and others,
2015) were generated as a part of a study designed to evaluate the bias at each step of the VCU sequencing
protocol, namely, DNA extraction, PCR amplification, sequencing, and taxonomic classification. Mock
community samples were created out of seven vaginally relevant bacteria by mixing prescribed quantities
of cells, with quantities varying across samples according to an experimental design described in Brooks
and others (2015). As opposed to the positive controls data, bacteria appear in different proportions across
samples. The number of taxa identified by the sequencing and bioinformatics pipeline was 46.

3. Mock community data 3: reagent and laboratory contamination data. These 16S Amplicon Data
(Salter and others, 2014) was generated as part of the effect of contaminants present in DNA extraction
kits and other laboratory reagents on sequencing results study. Mock samples of a pure Salmonella bongori
culture had undergone five rounds of serial ten-fold dilutions to generate a series of high to low biomass
samples. The taxa counts table was not reported in the study. We use samples for the Salmonella bongori
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culture 16S rRNA gene profiling deposited as FASTQ files deposited under ENA project accession EMBL:
ERP006808 and processed using the dada2 R package. We follow data processing steps described in
Davis and others (2017). The final data set contained 45 samples and 635 taxa, out of which three taxa
corresponded to Salmonella bongori culture.

4. Bacterial diversity in neonatal intensive care units (NICUs) data. These data (Knights and others,
2011), were collected to investigate the sources of bacteria found on surfaces and equipment in NICU. The
data contains 30 samples and 1097 taxa and was previously analyzed using thesourcetracker software
to identify the proportion of bacteria from each environment using published data sets from environments
likely to be sources of indoor contaminants, namely human skin, oral cavities, feces (Costello and others,
2009), and soils (Lauber and others, 2009).

We now evaluate and compare seven different approaches: (i) simultaneous PERFect with abundance
ordering; (ii) permutation PERFect with abundance ordering; (iii) permutation PERFect P-values ordering
from simultaneous PERFect; (iv) traditional filtering; (v) decontam prevalence method in which the
proportions of features in signal samples are compared with their occurrence proportions in negative control
samples; (vi) decontam frequency pooled, where batches of samples that were processed separately are
pooled together; and (vii) decontam frequency batched method, which accounts for batches of samples
that were processed separately. For each approach, we validate several settings. Namely, we evaluate the
robustness of PERFect methods 1–3 to the choice of taxa ordering and quantiles used to fit the Skew-
Normal for the null distribution using the following combination of quantiles: (i) 5%, 10%, 25%; (ii) 10%,
25%, 40%; (iii) 10%, 25%, 50%; and (iv) 20%, 30%, 60% quantiles. We also investigate the effect of the
size of the test by varying α = 0.05, 0.1, 0.15. We consider two rules for traditional filtering methods:
(i) Rule 1: Remove all taxa present in fewer than five samples and (ii) Rule 2: Adopted from Milici and
others (2016) that first selects taxa with abundance levels > 0.001%, and then further selects taxa that
satisfy at least one of the following conditions: (i) Present in at least one sample at a relative abundance
> 1% of the reads of that sample, (ii) Present in at least 2% of samples at a relative abundance > 0.1%
for a given sample, and (iii) Present in at least 5% of samples at any abundance level. We compare the
performance of PERFect to traditional filtering and decontam with four significance levels settings
α = 0.05, 0.1, 0.2, and 0.3. (in data sets where decontam can be used) in terms of the total number of
taxa preserved after filtering, percent of filtered taxa, and percent of preserved contaminants in the mock
data sets.

Validation results presented in Tables 1 and 2 indicate that our approach is highly robust to the choice of
quantiles, especially in higher signal-to-noise ratio scenarios. While the PERFect simultaneous performs
well in higher signal-to-noise ratio scenarios, this procedure is sensitive to the choice of quantiles used
to fit the null distribution in low signal-to-noise ratio in mock data set 3. This highlights a rare, but yet
possible case when a marginally significant taxon has a low ordering rank and appears very early in the
data, which can lead to large differences in the number of preserved taxa. However, this issue is alleviated
by PERFect permutation procedure. PERFect permutation consistently outperforms the other approaches
and can be used in situations when decontam cannot. All filtering procedures correctly select the true
taxa present in the three mock data sets. Moreover, the permutation PERFect with P-values ordering
provides major improvement over existing procedures and other PERFect methods in low signal-to-noise
ratio mock data set 3.

We further validate PERFect methods on Knights and others (2011) data set, which contains microbial
samples from NICU surface and equipment (4 buttons, 12 handles, 4 keyboards, 4 counters, 2 screens,
2 incubators, and 2 plastics), and could be used indirectly to validate the PERFect approach to filtration.
Indeed, one would expect for the oral- and gut-related microbes to not truly be present in the samples
but for some of the skin-related taxa to be preserved. The reason is that these NICU samples come from
samples potentially touched by lab employees. Therefore, for these data, we used the known contami-
nants reference data sets available at sourcetracker github webpage (Knights and others, 2011) to
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Table 1. Comparison of traditional, decontam and PERFect filtering results for: Mock data set 1
(Fettweis and others, 2012) and Mock data set 2 (Brooks and others, 2015)

Significance Mock data set 1: 6 true, 99 total Mock data set 2: 7 true, 46 total

level # Taxa % Contaminants # Taxa % Contaminants
Method α Setting (%) preserved % Filtered preserved preserved % Filtered preserved

1. Simultaneous
PERFect
abundance
ordering

0.15

5, 10, 25 61 38.38 59.14 26 43.48 48.72
10, 25, 40 22 77.78 17.20 11 76.09 10.26
10, 25, 50 26 73.74 21.51 11 76.09 10.26
20, 30, 60 29 70.71 24.73 10 78.26 7.69

0.10

5, 10, 25 60 39.39 58.06 22 52.17 38.46
10, 25, 40 21 78.79 16.13 10 78.26 7.69
10, 25, 50 22 77.78 17.20 10 78.26 7.69
20, 30, 60 23 76.77 18.28 9 80.43 5.13

0.05

5, 10, 25 46 53.54 43.01 22 52.17 38.46
10, 25, 40 12 87.88 6.45 8 82.61 2.56
10, 25, 50 13 86.87 7.53 8 82.61 2.56
20, 30, 60 22 77.78 17.20 8 82.61 2.56

2. Permutation
PERFect
abundance
ordering

0.15

5, 10, 25 17 82.83 11.83 12 73.91 12.82
10, 25, 40 18 81.82 12.90 9 80.43 5.13
10, 25, 50 31 68.69 26.88 9 80.43 5.13
20, 30, 60 31 68.69 26.88 15 67.39 20.51

0.10

5, 10, 25 17 82.83 11.83 11 76.09 10.26
10, 25, 40 17 82.83 11.83 8 82.61 2.56
10, 25, 50 17 82.83 11.83 8 82.61 2.56
20, 30, 60 27 72.73 22.58 8 82.61 2.56

0.05

5, 10, 25 17 82.83 11.83 10 78.26 7.69
10, 25, 40 17 82.83 11.83 8 82.61 2.56
10, 25, 50 11 88.89 5.38 8 82.61 2.56
20, 30, 60 17 82.83 11.83 7 84.78 0.00

3. Permutation
PERFect
P-values ordering

0.15

5, 10, 25 17 82.83 11.83 12 73.91 12.82
10, 25, 40 17 82.83 11.83 9 80.43 5.13
10, 25, 50 17 82.83 11.83 9 80.43 5.13
20, 30, 60 30 69.70 25.81 15 67.39 20.51

0.10

5, 10, 25 17 82.83 11.83 12 73.91 12.82
10, 25, 40 17 82.83 11.83 8 82.61 2.56
10, 25, 50 17 82.83 11.83 8 82.61 2.56
20, 30, 60 28 71.72 23.66 8 82.61 2.56

0.05

5, 10, 25 17 82.83 11.83 10 78.26 7.69
10, 25, 40 12 87.88 6.45 8 82.61 2.56
10, 25, 50 11 88.89 5.38 8 82.61 2.56
20, 30, 60 17 82.83 11.83 7 84.78 0

4. Traditional
Rule 1 34 65.66 30.11 19 58.70 30.77
Rule 2 22 77.78 17.20 8 82.61 2.56

5. decontam
prevalence

0.05 78 21.21 77.42 NA NA NA
0.10 72 27.27 70.97 NA NA NA
0.20 57 42.42 54.84 NA NA NA
0.30 54 45.45 51.61 NA NA NA

NA: Not available.
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Table 2. Comparison of traditional, decontam and PERFect filtering results for: (i) reagent and lab-
oratory contamination data (Salter and others, 2014) and (ii) bacterial diversity in NICU (Knights and
others, 2011) data sets

Significance Mock data set 3: 3 true, 635 total NICU bacterial diversity

level # Taxa % Contaminants # Taxa
Method α Setting (%) preserved % Filtered preserved preserved % Filtered

1. Simultaneous
PERFect abundance
ordering

0.15

5, 10, 25 634 0.16 99.84 230 79.03
10, 25, 40 634 0.16 99.84 134 87.78
10, 25, 50 634 0.16 99.84 230 79.03
20, 30, 60 634 0.16 99.84 230 79.03

0.10

5, 10, 25 469 26.14 73.73 134 87.78
10, 25, 40 469 26.14 73.73 114 89.61
10, 25, 50 469 26.14 73.73 134 87.78
20, 30, 60 469 26.14 73.73 114 89.61

0.05

5, 10, 25 18 97.17 2.37 88 91.98
10, 25, 40 469 26.14 73.73 88 91.98
10, 25, 50 18 97.17 2.37 88 91.98
20, 30, 60 469 26.14 73.73 88 91.98

2. Permutation PERFect
abundance ordering

0.15

5, 10, 25 634 0.16 99.84 426 61.17
10, 25, 40 634 0.16 99.84 314 71.38
10, 25, 50 634 0.16 99.84 314 71.38
20, 30, 60 634 0.16 99.84 387 64.72

0.10

5, 10, 25 469 26.14 73.73 332 69.74
10, 25, 40 469 26.14 73.73 240 78.12
10, 25, 50 469 26.14 73.73 230 79.03
20, 30, 60 469 26.14 73.73 230 79.03

0.05

5, 10, 25 173 72.76 26.90 239 78.21
10, 25, 40 469 26.14 73.73 230 79.03
10, 25, 50 469 26.14 73.73 166 84.87
20, 30, 60 469 26.14 73.73 134 87.78

3. Permutation PERFect
p-values ordering

0.15

5, 10, 25 295 53.54 46.20 417 61.99
10, 25, 40 205 67.72 31.96 299 72.74
10, 25, 50 201 68.35 31.33 366 66.64
20, 30, 60 177 72.13 27.53 360 67.18

0.10

5, 10, 25 154 75.75 23.89 361 67.09
10, 25, 40 157 75.28 23.37 298 72.84
10, 25, 50 159 74.96 24.69 243 77.85
20, 30, 60 157 75.28 24.37 269 76.12

0.05

5, 10, 25 120 81.10 18.51 274 75.02
10, 25, 40 124 80.47 19.15 159 85.51
10, 25, 50 120 81.10 18.51 169 84.59
20, 30, 60 124 80.47 19.15 146 86.69

4. Traditional
Rule 1 224 64.72 34.97 331 69.83
Rule 2 443 30.24 69.62 630 42.57

6. decontam
frequency pooled

0.05 606 4.57 95.41 NA NA
0.10 591 6.93 93.04 NA NA
0.20 551 13.22 86.71 NA NA
0.30 506 20.31 79.59 NA NA

7. decontam
frequency batched

0.05 589 7.24 92.72 NA NA
0.10 574 9.61 90.35 NA NA
0.20 519 18.27 81.65 NA NA
0.30 489 22.99 76.90 NA NA

NA: Not available.
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Table 3. Percent of taxa preserved in each environment by PERFect results for the bacterial diversity in
NICU data (Knights and others, 2011) and taxa preserved in Ravel and others (2011) vaginal microbiome
data. To determine taxa to retain in the data set, we use α = 0.10 significance level.

NICU data Vaginal microbiome data

skin soil oral gut unknown # Taxa % Filtered
Total number of taxa 186 121 7 41 503 preserved

PERFect
Simultaneous abundance 31 9 0 0 30 42 83.00
Permutation abundance 54 16 0 1 66 71 71.26
Permutation P-values 58 16 0 1 71 63 74.49

match taxa found in skin, soil, oral, and gut environments. We focus here only on skin, soil, oral, gut, and
unknown taxa and do not consider taxa mapped to more than two environments (e.g. skin and soil). We
apply PERFect with a significance level α = 0.1 and present results in Table 3. Since these NICU samples
come from the equipment touched by the lab employees, we expect that most signal taxa originate from
the skin and possibly soil environments. Table 3 reveals that the data set filtered by PERFect using either
method, preserves no gut (except for 1 gut taxon preserved by permutation method with abundance order-
ing) and no oral taxa, which are almost surely not in the data. Moreover, a large proportion of preserved
taxa are associated with the known skin environment: with 31, 54, and 58 out of 186 preserved by simul-
taneous abundance ordering, permutation abundance ordering and ordering by the P-value, respectively.
We conclude that PERFect performed as expected by filtering out the taxa that almost surely could not
have been in the samples (oral and gut) and preserving some of the taxa that have a reasonable likelihood
of being in the sample (skin, soil, and unknown). Interestingly, PERFect also removes some of these taxa
indicating that some of the skin- and soil-related taxa may truly not be in the sample. Many preserved
taxa did not match any of the four environments and were labeled “unknown” in Table 3. Results indicate
that PERFect also removes a large number of taxa with unknown environmental provenance. We consider
that this is another very encouraging characteristic of PERFect. We would like to note that decontam
package could not be applied to these data because these data release does not contain the concentration
of amplified DNA in each sample prior to sequencing or negative controls samples. A major advantage
of PERFect over decontam is that it does not require this information. We conclude that in this data
PERFect provides reasonable results using the available information.

4. VAGINAL MICROBIOME DATA FILTERING

We apply traditional and PERFect filtering methods to a vaginal microbiome study of a cohort of 396
reproductive age women previously published in Ravel and others (2011), where data and details on
data collection and pre-processing are also available. The goal of the study was to understand the role
and ultimate function of vaginal microbiota in reducing risk of infectious diseases and to identify factors
leading to disease susceptibility. Microbiome data were obtained by pyrosequencing of barcoded 16S
rRNA genes; in this data set 247 taxa were identified.

We applied PERFect simultaneous with abundance ordering and permutation with abundance and
P-values ordering to the two traditional filtering methods outlined in Section 3 using the Ravel and oth-
ers (2011) data set; results are summarized in Table 3 and comparison with traditional filtering methods
is available in Table 5 in the supplementary material available at Biostatistics online. Table 5 in the
supplementary material available at Biostatistics online reflects that traditional filtering approaches pre-
serve a large proportion of taxa (135 and 126, respectively), while the PERFect rules are more aggressive

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
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in eliminating taxa (preserving 42, 71, and 63 taxa, respectively). The taxa preserved by PERFect form
a subset of taxa preserved by the two traditional filtering rules, and the five methods agree on 42 taxa
retained in the filtered data set. These taxa are listed in Table 4 of supplementary material available at
Biostatistics online. Because we do not have a gold standard, it is impossible to say that having fewer
preserved taxa is better. However, PERFect provides an objective way of saying that given the preserved
taxa the other taxa do not add much to the overall covariance. Thus, objectively, adding any of the taxa
that traditional methods retain and PERFect rejects does not add much or anything to the overall observed
variability.

These differences in results are likely due to in-built differences between the traditional and PERFect
filtering approaches. First, while traditional filtering approaches use rule of thumb criteria, which may
be different across data sets, PERFect assigns a data driven significance value to each subset Jj of j
filtered taxa. Second, traditional filtering rules evaluate a taxon’s importance in isolation, while PERFect
evaluates a significance value for the set of taxa, thus considering each taxon in connection with other taxa.
While treating each taxon in isolation may be valid in the mock samples, in a more realistic biological
environment, bacteria may, in fact, compete for finite resources and the presence of one taxon may affect
the presence of other taxa. Furthermore, PERFect with the taxa ordering according to (2.3) can be viewed
as an extension of the traditional Rule 1 filtering, where instead of choosing a filtering threshold arbitrarily
we: (i) take into account taxa covariance; and (ii) quantify the chance that the set of taxa J is observed due
to noise. Third, since the smaller values of filtering loss criteria (2.2) are consistent with a smaller loss from
the total covariance of the data, taxa retained by PERFect provide a dimension reduction approximation
of taxa covariance. This reduction is crucial for further analysis, such as data visualization via principal
components analysis, and inference approaches that require covariance matrix estimation.

5. DISCUSSION

We introduced two PERFect approaches for microbiome filtering and compared them the to the traditional
filtering procedures and the recently developed R package decontam for identifying contaminants in
microbiome sequencing data. For mock data sets with very strong signal traditional and PERFect filtering
effectively eliminate contaminants, while PERFect permutation with PERFect simultaneous p-values
ordering provides a more effective reduction when the signal-to-noise ratio is low. In NICU surfaces and
equipment microbial samples, our method filters out the taxa that almost surely could not have been in the
samples (oral and gut) and preserving some of the taxa that have a reasonable likelihood of being in the
sample (skin, soil, and unknown). Finally, our results are in agreement with results published indicating
that taxa that are important were not filtered out in the vaginal microbiome data set.

The present work is the first time that a taxa reduction method is motivated by statistical hypothesis
testing. The combination of PERFect taxa P-values and filtering loss information provides a useful insight
into taxa co-relationship and allows identification of related groups of taxa. The proposed method provides
an intuitive and biologically meaningful classification of taxa importance based on their contribution to
the total covariance. This information can be used in subsequent explanatory and inferential analysis.

One limitation of the proposed approach is that it is skewed toward retaining more dominant features.
That is if a first significant taxon is observed in s samples, then any taxon observed in less than s samples
will also be removed by the current procedure under abundance ordering. Moreover, it might occur that
a persistent contaminant feature appears in a large number of samples, has a high contribution towards
covariance and is not removed from the data set. However, this is a general limitation of any filtering
approach that does not take into account additional information about negative controls, or feature DNA
concentrations in the samples. Another limitation is that the Skew Lognormal distribution was chosen
heuristically and while its use is justified empirically on mock data sets, the finite sample, or asymptotic

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy020#supplementary-data


PERFect 629

behavior of the test statistic are not supported theoretically. Thus, the theoretical underpinnings of this
work are not yet understood.

Finally, we would like to emphasize that PERFect can be viewed as an extension of traditional filtering
approaches that provides more insight into the data and achieves better dimension reduction for correlated
taxa. While both traditional and PERFect filtering methods were effective in identifying true species in
mock data, permutation PERFect consistently outperformed alternative filtering rules for the mock data
sets 1 and 3. The accompanying R software implementation and associated visualization tools makes the
method easy-to-use, interpret results, and gain additional insight into taxa co-relationships. However, the
vaginal microbiome data set was used to illustrate PERFect performance on real data, PERFect is designed
for general sparse data, including gut and other body sites microbiome, which have similar properties and
satisfy the PERFect assumptions.

6. SOFTWARE: PERFECT

We have developed the R software package PERFect that incorporates the methods introduced in Algo-
rithms 1 and 2 of this manuscript. The package can be found at https://github.com/katiasmirn/PERFect.
PERFect takes an OTU table X , which can be either counts, proportions, or presence-absence data, as an
input and produces a filtered OTU table X−J at a user-specified significance level α. The software has an
option to center the columns of X , which aids interpretability of filtering loss criterion as taxa covariance.
Users can request any taxa ordering discussed in this paper, or specify an alternative ordering. We discuss
the effect of alternative orderings on the vaginal microbiome data (Ravel and others, 2011) filtering in
Section 2 of supplementary material available at Biostatistics online. However, we recommend fitting a
Skew-Normal distribution to the log differences in filtering loss to estimate the null distribution, other
distributions such as Normal may be used. We provide the list of available distributions in the software
package description. PERFect permutation sampling distribution for each taxon is generated as part of
the output and can be used with default, optional, or user specified taxa ordering and a collection of
distributions to capture the null. Simultaneous and permutation PERFect provide FL and DFL values,
distribution fit details including histograms illustrated in Figure 2, P-values for the set of taxa and P-
values plots illustrated in Section 2 of supplementary material available at Biostatistics online. By default,
software uses smoothed P-values obtained by averaging three subsequent P-values obtained from the ref-
erence distribution, with an option to either use no averaging or average a different number of subsequent
P-values. However, the simultaneous PERFect is faster than permutation PERFect, we recommend to
verify the results using permutation PERFect. Due to the randomness in the permutation component of
PERFect, results might differ across runs; in such situations a larger number of permutations should be
used. Permutation PERFect can finish 10 000 permutations within 3.25 min on an Apple MacBook Pro
for 247 taxa.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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