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Abstract

Purpose Contact endoscopy (CE) is a minimally invasive procedure providing real-time information about the cellular
and vascular structure of the superficial layer of laryngeal mucosa. This method can be combined with optical enhancement
methods such as narrow band imaging (NBI). However, these techniques have some problems like subjective interpretation
of vascular patterns and difficulty in differentiation between benign and malignant lesions. We propose a novel automated
approach for vessel pattern characterization of larynx CE + NBI images in order to solve these problems.

Methods In this approach, five indicators were computed to characterize the level of vessel’s disorder based on evaluation
of consistency of gradient and two-dimensional curvature analysis and then 24 features were extracted from these indicators.
The method evaluated the ability of the extracted features to classify CE + NBI images based on the vascular pattern and based
on the laryngeal lesions. Four datasets were generated from 32 patients involving 1485 images. The classification scenarios
were implemented using four supervised classifiers.

Results For classification of CE + NBI images based on the vascular pattern, polykernel support vector machine (SVM),
SVM with radial basis function (RBF), k-nearest neighbor (kNN), and random forest (RF) show an accuracy of 97%, 96%,
96%, and 96%, respectively. For the classification based on the histopathology, Polykernel SVM showed an accuracy of 84%,
86% and 84%, RBF SVM showed an accuracy of 81%, 87% and 83%, kNN showed an accuracy of 89%, 87%, 91%, RF showed
an accuracy of 90%, 88% and 91% for classification between benign histopathologies, between malignant histopathologies
and between benign and malignant lesions, respectively.

Conclusion These promising results show that the proposed method could solve the problem of subjectivity in interpretation
of vascular patterns and also support the clinicians in the early detection of benign, pre-malignant and malignant lesions.
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Introduction as laryngeal dysplasia precede the development of laryngeal

cancer. 85-95% of laryngeal cancers are squamous cell carci-

The larynx (voice box) is part of the head and neck region, and
laryngeal cancer belongs to the most common cancer types
with high incidence and mortality. Precancerous lesions such
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nomas (SCC) [1]. Early detection and diagnosis of suspicious
mucosal lesions could provide an important opportunity to
preserve the larynx and vocal fold function. Histopathologi-
cal examination of suspicious laryngeal tissue using surgical
biopsy is currently the gold standard for diagnosis, which is
an invasive procedure and can cause serious problems for the
patient [2].

The development of larynx endoscopy techniques provide
a minimally invasive examination along with the possibil-
ity of early detection of vocal fold disorders. Barbalata and
Mattos [3] proposed a method for laryngeal tumor detection
and classification in narrow band imaging (NBI) endoscopic
images. They reported an accuracy of 84.3% in recognizing
malignant laryngeal tumors based on vascular characteriza-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-019-02034-9&domain=pdf
http://orcid.org/0000-0001-9741-9788

1752 International Journal of Computer Assisted Radiology and Surgery (2019) 14:1751-1761

tion of the tumor. Turkmen et al. [4] proposed an approach
to classify vocal fold disorders based on visible blood ves-
sels and shape of vocal fold edges, with a sensitivity of 86%,
94%, 80%, 73%, and 76% for healthy, polyp, nodule, laryngi-
tis, and sulcus vocalis classes, respectively. Moccia et al. [5]
applied texture-based and first-order statistical features on
100 x 100 px patches in NBI endoscopic images to classify
laryngeal tissue into four classes: tissue with intraepithe-
lial papillary capillary loop (IPCL)-like vessels, leukoplakia,
tissue with hypertrophic vessels and healthy tissue. They
used support vector machine (SVM) classifier and reported
achieved median classification recall of 93% with the best
performing feature. In a recent study by Nanni et al. [6],
an ensemble of convolutional neural networks (CNNs) and
handcrafted features for bioimage classification was pro-
posed. This ensemble obtained promising performance on
the NBI endoscopic images dataset [5] with 97.33% accu-
racy to differentiate between four laryngeal tissue classes.
Despite all the advantages, standalone application of nor-
mal white light video laryngoscopy or NBI cannot provide
highly magnified visualization of color, contour, texture, and
extent of mucosal lesions. For this reason, there is a need
to have a technique that provides more precise evaluation of
histopathology of laryngeal tissue for differential diagnosis
of laryngeal cancerous lesions.

Contactendoscopy (CE) is an optical technique that allows
detailed examination of the superficial layers of laryngeal
mucosa providing a visualization of cells and vascular struc-
tures. This procedure is regularly performed using white light
imaging, but it can also be combined with optical enhance-
ment technologies like NBI. NBI is able to increase tissue
contrast and to enhance the superficial vascular pattern at the
site of examination [7]. The first application of CE in the lar-
ynx was reported in [8] and its efficiency was subsequently
confirmed as a diagnostic tool in the evaluation of various
pathologies in the larynx [9].

In the early application of larynx CE, the main focus was
on finding histopathological information by evaluating the
cellular architecture of the tissue. An example of that is
the study [10], where a computer-assisted image analysis
for diagnosis of precancerous and cancerous lesions based
on the characterization of the cellular architecture in CE
images was used. Recent studies showed that the evalua-
tion of vascular patterns of the larynx superficial network
can provide the surgeons more information than the cellu-
lar field. This is because the structure and the organization
of blood vessels in the vocal fold is dynamic and undergoes
significant changes in non-cancerous and cancerous stages
[11,12]. Puxeddu et al. [13] visually classified vascular pat-
terns in enhanced contact endoscopy (ECE) images into five
categories for differential diagnosis between normal tissue
and hyperplasia versus mild dysplasia and carcinoma. But,
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there is no study on automatic classification of the CE vas-
cular patterns.

It is recognized that the limiting factors of CE prevented
it to gain acceptable place in routine clinical practice despite
its potential advantages. Interpretation and evaluation of CE
require extensive learning from the clinicians [14,15]. Stud-
ies showed that at the beginning of the training, there is a risk
of subjective interpretation of vascular patterns [13,16]. This
problem may cause an increased number of false positives
which results in unnecessary biopsies [17]. Also, difficulty
in differentiation between hyperplasia and mild-to-moderate
dysplasia as well as an inability in differentiation of carci-
noma in situ from carcinoma was reported [2,13,15].

The main objective of this work is to automatically char-
acterize and assess vascular patterns in CE + NBI images to
classify images based on the vascular pattern and laryngeal
histopathology. For this, a new algorithm is proposed to eval-
uate the level of disorder in vessels based on the consistency
of gradient direction and the vessels’ curvature. Five indi-
cators were computed after image preprocessing and vessel
segmentation and then 24 features were extracted based on
the qualitative properties of the indicators. The extracted fea-
tures were fed into four different classifiers to classify images
based on the vascular pattern and on larynx histopathology.

Material and methods
Data acquisition

Video scenes of 32 patients presenting different primary
diagnosis were acquired during the examination of vocal
folds with a frame rate equal to 30 frame per seconds (fps)
in the department of Otorhinolaryngology at the University
Hospital Magdeburg. A contact endoscope (KARL STORZ,
Tuttlingen, Germany) in combination with an endoscopic
imaging system (VISERA 4K UHD, Olympus, Japan) was
used to capture the video scenes in Audio Video Interleave
(AV]) format. In all procedures, the magnification of the con-
tact endoscope was fixed at 60x in order to have a fixed
camera-tissue distance. For each patient, video segments
where contact endoscope was used were manually extracted.
Inside the video segments, we manually selected the inter-
vals where the video quality was acceptable to see the vessels
(good resolution without blur and artifacts). Then, one frame
every three frames were extracted from the selected intervals
in JPEG format images (1008 x 1280 px) and stored in the
patient datasets to use them for the further processing.
Patients’ data were pseudonymized, and only biopsy
results were used as the final diagnosis for each patient, based
on the classification of laryngeal histopathologies used by
the medical doctors at the Magdeburg University Hospital
(Fig. 1). In this classification, laryngeal histopathologies are
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Fig.1 A classification for laryngeal histopathology used at the University Hospital Magdeburg. The severity increases from left to right

Fig.2 Examples of CE + NBI images of six different cases: a healthy, b polyp, ¢ reinke’s edema, d dysplasia mild, e carcinoma in situ, f carcinoma

divided into two main groups: benign and malignant, which
each of them subdivided in different histopathologies.

Image preprocessing and indicators extraction

Figure 2 shows examples of vocal fold images extracted from
videos belonging to 6 different histopathologies. One of the
main characteristics that clinicians observe in these images is
the level of disorder in vessels. In conversation with our clini-
cians and based on recent publications, where vessel patterns
were manually analyzed and classified [12-14], 5 indica-
tors were proposed for characterizing vessel patterns. These
indicators intended to take into account geometrical charac-
teristics to assess the level of disorder of vascular patterns.
The main idea was to extract features from the indicators
and use them for classifying images according to the ves-
sel’s level of disorder and laryngeal histopathology. Figure 3
shows the main steps for the automatic feature extraction and
classification procedures which are subsequently described
in more details.

Image preprocessing and vessel segmentation

In order to remove the very low frequency trend in the image,
aDaubechies level 7 discrete wavelet transformation was first
applied to detrend each row and column of the image matrix
[18]. Then a Frangi filter was used for vessel enhancement
[19]. Frangi filter is a multiscale method using second order
local structure of an image (Hessian) to find tubular structures
as well as first-order transaction (gradient vector) to estimate
the direction of these structures. In the image, vessels appear
in different sizes. So it is important to have a measurement
scale (Sigma) which varies within certain range in order to
cover all different width and detect all vessels. The empiri-
cal tests performed in [19] showed that the range of Sigma
between 1 to 8 can cover all the possible vascular structures.
In this study, we have set the Sigma to the already tested
values in order to extract the vessels in CE + NBI images.
The resulting image was converted to a binary image fol-
lowed by a skeletonization procedure using iterative thinning
to reduce vessels to one-pixel-wide lines. This step resulted in
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Fig.3 Block diagram with the
main steps of the proposed
approach

Vessel Pattern

Image
Preprocessing

l

Vessel
Segmentation

(b)

three processed images: enhanced, filtered, and binary skele-
tonized referred as Iy, I and I, respectively (see examples
in Fig. 4).

Image indicator extraction

As previously explained, five different indicators were com-
puted to distinguish among the different vascular patterns
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Fig. 4 Image preprocessing for three different vascular patterns in CE + NBI images: a original image, b homogenization, ¢ Frangi filter,
d skeletonization

based on direction-based and curvature-based characteris-
tics.

Direction-based indicators Two indicators were based on
the consistency of the vessel direction, corresponding to his-
togram of gradient direction (HGD) and rotational image
averaging (RIA). HGD was computed over the image /g
and RIA was computed over the image If.
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The gradient of an image is a directional change in inten-
sity. The image gradients are useful because the direction of
gradients are more consistent (similar directions) in straight
objects than in curved objects. For the HGD computation an
algorithm was designed to compute magnitude and direction
of the image gradients based on the method explained in [20].
The magnitude is computed to localize regions of significant
gradient and the direction is used to compute an histogram
of distribution of angles. The gradient direction was normal-
ized based on the gradient magnitude values. In summary,
the HGD indicator correspond to the normalized histogram
of significant gradient directions.

RIA consists of computing the average over the rows of
Ir for different rotation angles of the image. This average
should be peaky when vessels are more or less parallel at a
given angle and should show flatter behavior when the vessels
are more curved. For that, the image was rotated from O to
360 degree in steps of 45 degrees, and at each rotation the
average over the image was calculated as:

N
1
6
Srow (X) = N X ZIF(X, y) (1)
y=1
where 57, is the resulting average row vector for the rotation

angle 0, Ir (x, y) represents the intensity value of the pixel at
the location (x, y) and N is the number of rows of the image.
The final RIA indicator correspond to the concatenation of
each s¥ .
Curvature-based indicators For these indicators, vessel seg-
ments greater than 20 px in the image Is were taken into
account.

The first two indicators, angle (ANG) and distance (DIS),
were computed from the distance and the angle between a
defined reference point (A in Fig. 5) and each pixel belong-
ing to the vessel’s skeleton (C(x, y) in Fig. 5). The distance
is simply calculated as the Euclidean distance between the
reference and the skeleton point. For the angle computation
a second reference point (B in Fig. 5) was defined and then
the angle was computed between the vectors formed by the
two reference and by the original reference with the skeleton
point:

d(A, €) = J(xa —x¢) + (va — ) @)
—  —
IAB x AC|
0(A, C) = arctan <ﬁ> 3
AB-AC

ANG and DIS correspond to vectors containing the result-
ing d and 6 respectively for each pixel of a vessel segment.
For each image an ANG and DIS vector per vessel segment
is stored into a cell format.

A(0, 0)

B(x, 0)
o X

d, C)

Cix, )

Y

Fig.5 Computation of indicators ANG and DIS

The third curvature-based indicator, curvature (CUR), was
extracted directly from the level of curvature of the vessels.
For each identified segment, the curvature at each pixel point
is estimated using the method presented in [21], where a
global approximation of tangents using a two linear digital
straight segment is applied. The CUR indicator corresponded
to the concatenation of the resulting curvatures of each iden-
tified vessel segment.

Results
Dataset generation

Four different datasets were generated in order to evaluate
the performance of the proposed approach. The approach
was first validated in terms of classifying CE + NBI images
based on the vascular patterns. The reason of performing
this test was to evaluate the ability of the algorithm to solve
the problem of subjective interpretation of vascular patterns.
Then the approach was validated in terms of its suitability to
classify images based on the histopathologies of the larynx,
with respect to level of disorder of vessels. These tests were
performed to evaluate the ability of the algorithm to solve
the problems related to difficulty in differentiation between
benign and malignant lesions.

Dataset based on the degree of disorder of vascular
patterns

Dataset I was generated to evaluate the performance of the
proposed approach to differentiate between different degrees
of disorder of vascular patterns. It included 1485 CE + NBI
images from 32 patients and two medical experts came to a
consensus to label them into three groups based on the vascu-
lar patterns: “order”, “disorder” and “very disorder”. “Order”
vascular patterns relate to thin and parallel vessels. “Disor-
der” vascular patterns refer to longitudinal vascular changes.
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Table 1 Histopathologies used

for the generation of the three Type of cancer Histopathology Patients Images Total
datasets Benign Cyst 3 150 20 patients 890 images
Polyp 4 130
Reinke’s edema 5 250
Papilloma 5 230
Dysplasia mild 3 130
Malignant Dysplasia severe 4 130 11 patients 465 images
Carcinoma in situ 4 155
Carcinoma 3 180
Total 31 1355 -

“Very disorder” vascular patterns involve perpendicular vas-
cular pattern representing dilated IPCLs [12].

Dataset based on the histopathologies of the larynx

Three datasets were generated following the classification of
laryngeal histopathologies (Fig. 1). Table 1 shows the dif-
ferent histopathologies including the number of patients and
images per patient that were used to generate these datasets
and to evaluate the performance of the proposed approach to
differentiate between different laryngeal histopathologies:

— Dataset Il CE + NBI images of the benign histopatholo-
gies. 20 patients with 890 images labeled into four
groups: cyst, polyp & reinke’s edema, papilloma, and
dysplasia mild.

— Dataset III 465 CE + NBlimages belonging to 11 patients
diagnosed with malignant histopathologies labeled into
three groups: dysplasia severe, carcinoma in situ and car-
cinoma.

— Dataset IV CE + NBI images belonging to 31 patients
with benign and malignant histopathologies that included
a total of 1355 images labeled into two groups: benign
and malignant.

Qualitative analysis

Figure 6 shows the five indicators for three different vascular
patterns. The indicators have qualitative characteristics that
can be used to differentiate between different vascular pat-
terns. A visual analysis of the indicators allows the following
observation:

— The HGD indicator shows changes in the energy concen-
tration with respect to the angle of the gradient vectors.
Parallel vessel patterns show energy concentration of the
gradient vector in two angles, while more chaotic ves-
sel structures show a leakage in the energy distribution
and even an equal distribution of energies (flat indicator)
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in the presence of spiral vessel patterns. It is possible to
assume that the energy and energy-related characteristics
of the HGD indicator can differentiate between different
vascular patterns.

— The matrix of row averages for each rotation angle of
the RIA indicator displays highly concentrated energies
in two rotational angles when vessel patterns are paral-
lel. This produces a final RIA containing a few number
of main peaks of high amplitude. The more the ves-
sel patterns become chaotic, the quantity of peaks and
the energy leakage increase in the RIA. Energy-related
features can therefore be used for characterizing vessel
patterns.

— The displayed signal for both ANG and DIS indicators
(Fig. 6) are a concatenated version for several vessel seg-
ments. This is why some signal discontinuities can be
observed in the indicators. Disrespecting these disconti-
nuities, we can observe that a vessel with significant curve
patterns produces ANG and DIS indicators involving
an increased number of changes per distance unit. This
means that the quantity of changes of sign in their deriva-
tives and the polynomial fitting errors will be higher for
disorder patterns than for ordered ones, making it more
suitable for distinguishing between patterns.

— CUR indicator variance increases when the vessel pat-
terns become disorder. This is mainly because disorder
patterns involve a higher number of loops and therefore
more significant curvature’s values. For this indicator the
features are also based on energies and peaks in the signal
and also statistical values as variance.

Following this analysis, 24 features extracted from the
5 indicators are proposed for assessing vessel patterns,
explained in the following.

HGD features Four features are proposed from the HGD
indicator. The first, second, and third features, Fy, F>, and
F3, are simply computed as the total energy and the minimal
value of the HGD indicator, and as the difference between the
maximum and minimum value of the indicator, respectively.



International Journal of Computer Assisted Radiology and Surgery (2019) 14:1751-1761 1757

Fig.6 Five indicators for three
different vascular patterns in
CE + NBI images: a original
image, b HGD indicator, ¢ RIA
indicator, d ANG indicator, e
DIS indicator, f CUR indicator
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Nucp
Fi =) HGD(g) “)
g=1
F> = min[HGD(g)] (5)
8
F3 = max[HGD(g)] — mkin[HGD(g)] (6)
8

where g correspond to the sample index of the indicator and
Nugp correspond to the total number of samples of the HGD
indicator. The fourth HGD indicator F4 intends to assess
localized energy concentration of the indicator’s peaks. For
that, significant peaks in HGD are first identified using a
simple signal peak detector. Let on; and off; being the onset
and offset of the HGD peak waveform i (HGDP;) and n, the
number of significant peaks identified in the HGD indicator.
Then Fy is computed as the ratio between the sum of the
energy of the peaks of HGD and its total energy.

np | off;
> | > HGDP?
1 on;

Fy = (N

F
RIA features Four features are extracted from the RIA indi-
cator. The first two features, F5 and Fg, are computed as the

total energy and as the number of significant peaks in the
RIA indicator, respectively.

NRIA

Fs = Z RIAZ(g) (®)
g=1

Fs = Peaks[RIA] 9

where g correspond to the sample index of the indicator,
NRria correspond to the total number of samples of the RIA
indicator and Peaks denote a function for significant signal
peaks detection using a standard peak detector. For the third
RIA feature F7, a similar approach than for the computation
of Fy is proposed but using the average of the peak energies
instead of the summation.

P17 | on;

| np | off; )
2 2. | 2 RIA;

Fr =

10
Fs (10)
The fourth RIA feature Fg is computed as the average of the
ratios between amplitude and width of each peak waveform
of the indicator.

n
1 <& [ Amplitude (RIAP;
Fo= 1 [mplue( ,)} (11
I’lp 1

Width (RIAP;)

where RIAP; correspond to the RIA peak waveform i, n,,
to the number of identified RIA peaks and amplitude and
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width correspond to functions that compute the amplitude
and width of each peak waveform.

ANG features Six features are extracted from the ANG indi-
cator. One of the main characteristic of the ANG and DIS
indicators is the change of sign in the derivative. Therefore,
the first four ANG features, Fo, Fjg, F11 and F};, are com-
puted by exploiting this characteristic. Let M be the number
of vessel segments identified in an image. For each vessel
segment m, the derivative of the ANG indicator is first com-
puted using the derivative filter presented in [22]. Then, the
number of changes of sign s, is computed for each segment
m and is used for computing the features. Fy, Fio, F11 and
F1> are computed as the mean of s,,, the total number of
changes of sign in an image, the maximal and the median of
Sm, respectively.

| M
Fo==23" sm (12)
m=1
M
Fio= Z Sm (13)
m=1
F11 = max [s,,] (14)
m
F1> = median [s,, ] (15)

Additionally, two features are computed based on the error
em of a 3rd degree polynomial fitting for each vessel segment

1 M

Fi3 = i Z em (16)
m=1

Fj4 = median [e,,] (17)

DIS features Six features were extracted from the DIS indi-
cator (Fis to Fpo) using the same equations which were
explained for the ANG indicator.

CUR features Four features are proposed from the CUR
indicator. The first three CUR features, F»1, F»; and F»3 are
simply computed as the total energy, the number of signifi-
cant peaks and the variance of the CUR indicator.

Ncur
Fy =) CUR%(g) (18)
g=1
F> = Variance [CUR] (19)
F>3 = Peaks [CUR] (20)

where g correspond to the sample index of the indicator and
Ncur correspond to the total number of samples of the CUR
indicator. The fourth CUR feature F»4 takes into account
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the observation that more chaotic vessel patterns will result
in a bigger number of curves whose curvature level also is
bigger. This is why we proposed as feature the number of
signal peaks times the amplitude of the peak.

np
Fy =np, x Y Amplitude (CUR) 1)
1

The approach was implemented in MATLAB R2016b and
executed on a PC with a CPU operating at 2.30 GHz resulting
in an execution time of 4.02 seconds per image for image
preprocessing, indicator computation, and feature extraction.

Features classification performances

SVM, k-nearest neighbors (kNN), and random forests (RF)
were used to classify CE + NBI images first based on three
different vascular patterns (database I) and then based on the
different histopathologies of the larynx (database II, III, and
V).

SVM performs classification by finding the hyperplane
that maximizes the margin between the classes. The objective
of the SVM algorithm is to find an optimal hyperplane in an
N-dimensional space that distinctly classifies the data points.
In this study, SVM with polykernel and radial basis function
(RBF) kernel were used in order to classify linear and nonlin-
ear separable data, respectively. The grid search method was
used in order to optimize the SVM parameters using ten-
fold cross-validation and the classification was performed
using a sequential minimal optimization (SMO) algorithm.
In SVM Polykernel, there is one important parameter to opti-
mize which is C, while in SVM with RBF kernel, there are
two main parameters to optimize which are C and y. C is
the regulation parameter that controls the cost of misclassifi-
cation on the training data and y is the kernel parameter that
defines how far the influence of a single training example
reaches. In our study, we decided to make the range of C and
y from 0.01 to 1000 with 10 times increment. The SVM with
Polykernel performed the best with C = 1 and SVM with
RBF kernel showed the best performance with C = 1 and
y = 0.01. Furthermore, for solving the multi-class problem,
a pairwise classifier trained the SVM to assign features into
multi-class [23-25].

kNN is a nonparametric method and performs classifica-
tion by finding the most similar data points in the training
data and making an educated guess based on their classifica-
tions. The input consists of the &k closest training examples
in the feature space and the output is a class membership. In
this study and in order to classify and assign a new sample
to a new class, the distance of a sample was calculated using
Euclidean distance algorithm. In kNN, k is the main param-
eter to optimize. For that, we used grid search method to find

Table 2 Classification results using Polykernel SVM classifier

Database Accuracy Sensitivity Specificity AUC
Dataset I 0.973 0.980 0.983 0.977
Dataset IT 0.846 0.819 0.942 0917
Dataset I1I 0.864 0.856 0.931 0917
Dataset IV 0.847 0.806 0.868 0.837

the optimized value with a range of k from 1 to 10 with step
size equal to 1 and used tenfold cross-validation to select the
best value. The classifier showed the best performance with
k = 31[26].

RF is an ensemble learning method for classification that
operates by constructing a multitude of decision trees at train-
ing time and outputting the class. In this study, RF was trained
via the bagging method. Bagging consists of randomly sam-
pling subsets of the training data, fitting a model to these
smaller data sets, and aggregating the predictions. Hence,
instead of searching greedily for the best predictors to cre-
ate branches, it randomly samples elements of the predictor
space, thus adding more diversity and reducing the variance
of the trees at the cost of equal or higher bias. There are
many parameters in RF that can be optimized. In this study,
we optimized only two important parameters which were the
depth of the trees and number of estimators. The depth of
the trees specifies the maximum depth of each tree and the
number of estimators specifies the number of trees in the
forest of the model. We made the range for the depth of the
trees from 1 to 10 with step size equal to 1 and for num-
ber of estimators from 10 to 100 with step size equal to 5.
The optimum parameters that were obtained after using grid
search method with tenfold cross-validation were the depth
of 8 with 50 trees [27].

A 24-dimensional space was fed into each classifier. The
selected classifiers were applied by employing WEKA 3.8.1
as a machine learning tool. For all classification scenarios,
a tenfold cross-validation was used for testing as well as for
hyperparameter tuning. In order to measure the performance
of each classifier, a confusion matrix was computed for each
classification scenario and the accuracy, sensitivity, speci-
ficity, and area under the curve (AUC) receiver operating
characteristics (ROC) were obtained from it. Tables 2, 3, 4,
and 5 illustrate the classification results for each classifier.
As we used tenfold cross-validation for all the classification
scenarios, the values presented in these tables are the average
results.

Discussion

To our knowledge, this is the first study on automatic char-
acterization of vascular patterns in CE + NBI images with
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Table 3 Classification results using RBF SVM classifier

Database Accuracy Sensitivity Specificity AUC
Dataset I 0.968 0.976 0.978 0.973
Dataset IT 0.816 0.757 0.926 0.901
Dataset III 0.873 0.864 0.931 0.921
Dataset IV 0.837 0.834 0.839 0.837
Table 4 Classification results using kNN classifier

Database Accuracy Sensitivity Specificity AUC
Dataset I 0.965 0.974 0.978 0.989
Dataset IT 0.892 0.879 0.958 0.969
Dataset I1I 0.877 0.873 0.939 0.956
Dataset IV 0912 0.871 0.933 0.953
Table 5 Classification results using RF classifier

Database Accuracy Sensitivity Specificity AUC
Dataset I 0.966 0.975 0.979 0.996
Dataset IT 0.906 0.900 0.965 0.981
Dataset I1I 0.884 0.879 0.943 0.973
Dataset IV 0911 0.939 0.858 0.979

classification of the images using a set of features describing
the level of disorder of vascular patterns.

Regarding the evaluation of the vascular structure in the
CE images, there is a study [13] which classified the vascular
patterns in ECE images into five groups. This classification
was matched to the final diagnosis, with accuracy in the dif-
ferential diagnosis between normal tissue and hyperplasia
versus mild dysplasia and carcinoma of 97.6%. The result of
this classification was based on the experience of the clin-
icians with a risk of subjective interpretation of vascular
patterns in CE images [13,16]. In contrast to that, we used
an automated algorithm to characterize the level of disorder
of vascular patterns. This method showed the ability to dif-
ferentiate between three different vascular patterns with the
accuracy, sensitivity, specificity, and AUC of over 96%. For
the final diagnosis based on the vascular patterns in the ECE
images of the vocal fold, [13,15] reported the difficulty in
differentiation between hyperplasia and low to moderate dys-
plasia. In comparison with our study, a different classification
was used for laryngeal histopathologies and the RF classi-
fier showed the best results to differentiate between benign
histopathologies with an accuracy of 90%, a sensitivity of
90%, a specificity of 96%, and AUC of 98%.

For the evaluation of the cellular architecture of the most
superficial mucosa in the head and neck area, according to
[28] CE has an accuracy of 72-92%, a sensitivity of 77—
100%, and a specificity of 66—100% to diagnose benign
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and malignant head and neck mucosal lesions. These results
depend on the experience of clinicians and are based on the
evaluation of cellular structures. Our proposed approach can
perform an automatic differentiation between benign and
malignant lesions based on vascular structure. All classi-
fiers resulted in accuracy, sensitivity, specificity, and AUC
of over 83%. The studies that focus on the cellular struc-
ture of the laryngeal tissue in CE reported the difficulty in
diagnostic differentiation of carcinoma in situ from carci-
noma [2], as well as dysplasia severe from carcinoma in situ
and carcinoma [10,29]. Our approach has the potential to
solve these problems by distinguishing between three malig-
nant histopathologies. For that, RF classifier showed the best
results with the accuracy, sensitivity, specificity, and AUC of
88%, 87%, 94% and 97%, respectively.

Conclusion

Based on the results, the presented approach could provide
a confident way for clinicians to interpret vascular patterns
in CE + NBI images with high accuracy. It also confirms
the relevance of the vascular structures to the laryngeal
histopathologies and to the stage of laryngeal cancer. Our
approach has the potential to operate as an assisting sys-
tem to help the clinicians make the final decision about the
histopathology of the laryngeal tissue in the routine and sur-
gical procedures.

As a first work in this field, our main objective was to
propose an approach for characterization of the vascular
patterns. Based on the discussion with clinicians and their
requirements, we planned first to test the ability of the algo-
rithm to differentiate between benign and malignant cases
and then test the performance of the algorithm in each group
(benign and malignant) to differentiate between different
histopathologies. The next step of our work will be a multi-
class classification with other features and considering all
benign and malignant histopathologies. Further work is nec-
essary to improve the results by computing more indicators,
applying other feature extraction methods and implementing
feature selection techniques to evaluate the influence of each
class of features on the final results.

Also, the presented CE problems seem to be an ideal
basis for machine learning approaches such as shown by
[5,6] using texture-based features and CNNs. This is pos-
sible when a high amount of data is available. CE is not
a routine procedure in the clinical settings which caused a
limitation on the number of patients available for our study.
This problem also led to other limitations in the variety of
histopathologies, especially in the benign cases. Therefore,
the classification scenario of the benign cases was conducted
with only available histopathologies. Hence, increasing the
number of images per each dataset, testing the algorithm
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with other available classification of vascular patterns in CE
images, and applying other classification methods are sug-
gested for the future.
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