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Abstract
Several parametric mortality models have been proposed to describe the age pattern 
of mortality since Gompertz introduced his “law of mortality” almost two centu-
ries ago. However, very few attempts have been made to reconcile most of these 
models within a single framework. In this article, we show that many mortality 
models used in the demographic and actuarial literature can be re-parameterized in 
terms of a general and flexible family of models, the family of location–scale (LS) 
models. These models are characterized by two parameters that have a direct demo-
graphic interpretation: the location and scale parameters, which capture the shifting 
and compression dynamics of mortality changes, respectively. Re-parameterizing a 
model in terms of the LS family has several advantages over its classic formulation. 
In addition to aiding parameter interpretability and comparability, the statistical esti-
mation of the LS parameters is facilitated due to their significantly lower correlation. 
The latter, in turn, further improves parameter interpretability and reduces estima-
tion bias. We show the advantages of the LS family over the typical parameteriza-
tion of mortality models with two illustrations using the Human Mortality Database.

Keywords Mortality modelling · Law of mortality · Shifting · Compression · 
Gamma–Gompertz · Extreme–Value

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1068 
0-018-9497-x) contains supplementary material, which is available to authorized users.

 * Ugofilippo Basellini 
 ugofilippo.basellini@ined.fr

1 Institut national d’études démographiques (INED), 133 Boulevard Davout, 75020 Paris, France
2 Center on Population Dynamics (CPop) and Department of Public Health, University 

of Southern Denmark, Odense, Denmark
3 School of Demography, Australian National University, Canberra, Australia

http://orcid.org/0000-0003-0292-1404
http://orcid.org/0000-0001-6532-0089
http://orcid.org/0000-0001-9288-9510
http://crossmark.crossref.org/dialog/?doi=10.1007/s10680-018-9497-x&domain=pdf
https://doi.org/10.1007/s10680-018-9497-x
https://doi.org/10.1007/s10680-018-9497-x


646 U. Basellini et al.

1 3

1 Introduction

1.1  Parametric Mortality Models

The search for a model of human mortality has a fairly long history: mortality mod-
elling has indeed developed into an established research topic since the first half 
of the eighteenth century (Tabeau 2001). In particular, several efforts have been 
directed towards parametric models, which assume a parametric distribution to 
describe the age pattern of mortality.

Parametric models have long been used by actuaries, demographers and medical 
scientists for smoothing data, eliminating and/or reducing errors, constructing life 
tables, aiding inferences from incomplete data, facilitating comparisons of mortality 
and forecasting (Keyfitz 1982). The popularity of these models can be attributed to 
at least six advantages of representing mortality schedules with a single curve gov-
erning all data points (Congdon 1993):

(a) Smoothness there are no uneven age variations in mortality rates due to random 
statistical fluctuations. This is particularly advantageous when looking at very 
old-age mortality, where the number of deaths and exposure to risk are much 
smaller than at other ages.

(b) Parsimony mortality schedules of several points corresponding to many different 
ages can be represented only by a few parameters.

(c) Interpolation mortality rates for any specific age can be analytically derived. In 
practice, this is very important when only 5-year age group rates are known, or 
when the mortality schedule is incomplete.

(d) Comparison mortality data always refer to a specific population, which could 
be as broad as the national population of a country, or as narrow as the poli-
cyholders of an insurance company. Populations differ by their composition of 
gender, age, marital and social status, lifestyle, health and regional geography 
(e.g. postcode). The comparison of several mortality patterns can be readily and 
more easily performed by estimating the model’s parameters for each population 
studied.

(e) Trends and forecasting the assessment of trends over time and forecasting into 
the future are facilitated.

(f) Analytic manipulation the properties of the model employed are generally 
known, and these can be used in more complex demographic settings. For exam-
ple, one common procedure is to specify the uncertainty associated with the 
model projections.

More recently, parametric models have been used to study the shifting and com-
pression dynamics of mortality changes. The remarkable mortality reductions 
that occurred in most developed countries during the twentieth century are gener-
ally divided into two different stages. In the first half of the century, fast mortal-
ity declines at younger ages produced a compression of the age-at-death distribu-
tion, with the majority of deaths concentrated in a smaller age interval (Fries 1980; 
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Myers and Manton 1984; Rothenberg et  al. 1991; Kannisto 2000; Cheung et  al. 
2009). Then, as rates of mortality improvements slowed down at younger ages and 
accelerated at older ages (Kannisto et  al. 1994; Vaupel et  al. 1998; Wilmoth and 
Horiuchi 1999), the distribution of deaths started to shift to older ages, with a shape 
remaining practically constant (Bongaarts 2005; Cheung et  al. 2005; Cheung and 
Robine 2007; Canudas-Romo 2008).

Bergeron-Boucher et al. (2015) introduced a decomposition method based on a 
re-parameterization of mortality models that allows to differentiate between the two 
dynamics and estimate their contribution to increases in life expectancy. In particu-
lar, the authors find that the shifting dynamic was responsible for more than 70% of 
the increase in average lifespan for Swedish females since the mid-1960s. Further-
more, de Beer and Janssen (2016) presented a new parametric model that formally 
captures the two dynamics, and they show that two-thirds of the increases in life 
expectancy for Japanese, French, American and Danish females and males between 
1950 and 2010 were due to shifting mortality.

1.2  Short History of Parametric Mortality Models

The research of a “law of mortality” has been an interesting topic since the develop-
ment of the first life tables by Graunt (1662) and Halley (1693). One of the very first 
attempts to model mortality with a parametric distribution goes back to de Moivre 
(1725). A century later, Gompertz (1825) made one of the most well-known early 
contributions to the field, as he theorized an increasing exponential effect of age on 
the force of mortality.

A few years later, Makeham (1860) suggested a modification of the Gompertz 
model to overcome the underestimation of mortality at young adult ages by adding 
a constant non-ageing-related risk term. Shortly afterwards, Thiele (1871) proposed 
a model to capture the non-monotonic shape of human mortality along the full age 
range. In particular, he suggested to decompose human mortality into three differ-
ent groups that operate principally, or almost exclusively, upon childhood, middle 
and old ages, respectively. This assumption has been extensively used since then for 
modelling purposes (Siler 1979; Heligman and Pollard 1980).

The Logistic model, first discovered by Perks (1932), is a general model which 
includes the Makeham law as a special case. Recently, this model has been used to 
describe the force of mortality at very high ages, for example, above age 80 (Wil-
moth et  al. 2000): the logistic function implies that death rates approach a fixed 
upper limit, as suggested both empirically and theoretically (Vaupel et  al. 1998; 
Gampe 2010).

Subsequently, the Gamma–Makeham model was introduced by Beard (1971), 
who showed that a logistic function could arise in a simple model of a heteroge-
neous population. Indeed, the aggregation of several individual Makeham hazards 
with different levels of initial mortality can result in a logistic curve (Thatcher et al. 
1998). Afterwards, this finding was developed extensively as the frailty model (Vau-
pel et al. 1979).
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Along with the Gompertz, the Weibull model is widely used as a parametric form 
of the hazard function to adequately capture the ageing process (Missov and Vaupel 
2015). Weibull (1951) introduced this model to represent the durability and failure 
due to wear and tear of technical systems, such as ball bearings, automobile compo-
nents and electrical insulation. An analogy to mortality can be made by considering 
death as the result of the failure of bodily organs or damage to cells (Thatcher et al. 
1998). The model has been used extensively in biological and medical research, for 
example, in studies on the time of occurrence of tumours in human populations or 
laboratory animals (Lawless 2011).

One limitation of all the models for adult mortality mentioned above is that their 
hazard function, be it increasing, decreasing or constant, must be monotonic, what-
ever the values of the parameters. This may be inappropriate in some settings, for 
example, when the course of a disease is such that mortality reaches a peak after 
some finite period and then slowly declines. Among others, two models have been 
proposed to overcome this issue: the Log–Logistic and the Log–Normal models. 
Indeed, these models have non-monotonic hazard functions, which make them suit-
able in several situations, such as the modelling of some sets of cancer survival data 
(Bennett 1983).

Finally, in recent years, it has been claimed that the Extreme–Value model could 
provide great future prospects for mortality analysis and forecasting (Willekens 
2001). This model is generally used to describe the failure times or lifetimes of sys-
tems that cease to function whenever the weakest component fails.

1.3  Aims

In this paper, we aim to show that several well-known mortality models can be re-
parameterized in terms of two parameters that describe the shifting and compression 
dynamics of mortality changes. These models belong to a rather general family of 
parametric models, the family of location–scale (LS) models. The parameters of the 
LS family have a direct demographic interpretation, and as such, they are easier to 
understand than those of the classic formulation of mortality models.

In addition, re-parameterizing mortality models in terms of the LS family has 
an important statistical advantage: the estimation of the LS parameters is greatly 
facilitated, as the rather high correlation between estimators of the classic models is 
significantly reduced. The lower correlation, in turn, improves parameter interpret-
ability and reduces estimation bias.

This article is organized as follows. In Sect. 2, we provide an overview of the math-
ematical methods that we use throughout this article. In particular, we first present the 
family of LS models, and we show that several parametric models belong to the fam-
ily. In addition, we describe the data that we employ in this article and the estimation 
procedure for the models’ parameters. In Sect. 3, we present two illustrations that dem-
onstrate the advantages of the LS family over the classic parameterization of mortality 
models. First, we assess the shifting and compression dynamics of mortality changes 
directly from the estimation of the LS parameters in four high-longevity countries dur-
ing the years 1960–2016 by gender. Second, we show that the estimated parameters of 



649

1 3

Location–Scale Models in Demography: A Useful…

the LS family have a significantly lower between- and within-country correlation than 
classic models for females and males in 33 countries from 1960 until the most recent 
available year. In Sect. 4, we discuss the results and we conclude.

2  Methods

2.1  Life Table Functions

Let l(x) be the life table probability of surviving from birth to age x and �(x) be the 
force of mortality at age x. Then, we have that l(x) = l(0)e− ∫ x

0
�(a)da , where l(0) is the 

radix of the population. Moreover, let f(x) be the probability density function describing 
the distribution of deaths in the life table population at age x. Then, ∫ �

0
f (a)da = l(0) , 

where ω  is the highest age attained in the population. For simplicity, we let l(0) be 
equal to one. The relationship that exists between the distribution of deaths, the force 
of mortality and the survival function for a given age x is f (x) = �(x)l(x) (Preston et al. 
2001).

2.2  The Location–Scale Family of Mortality Models

Location–scale distributions are well known in reliability theory and lifetime data anal-
ysis. As such, we define the location–scale (LS) family of mortality models according 
to the literature. Specifically, let X be a continuous random variable. We say that X 
belongs to the LS family if we can express the probability density function f(x) as:

where u ∈ ℝ and c > 0 are the location and scale parameters, respectively, and fLS(⋅) 
is a continuous function that does not depend on any unknown parameters. In par-
ticular, fLS(⋅) represents the standard form of the distribution, i.e. when u = 0 and 
c = 1.

Similarly, we say that X belongs to the log–location–scale (LLS) family of models if 
we can express the probability density function f(x) as:

where the parameters u, c and fLLS(⋅) are defined as in Eq. (1) (Mukhopadhyay 2000; 
Lawless 2011; Meeker and Escobar 2014).

Equivalently, the two families can be defined in terms of the force of mortality �(x) . 
Specifically, for the LS family the force of mortality satisfies:

(1)f (x) =
1

c
fLS

(
x − u

c

)
, x ∈ ℝ,

(2)f (x) =
1

c x
fLLS

(
ln(x) − u

c

)
, x > 0 ,

(3)�(x) =
1

c
�LS

(
x − u

c

)
, x ∈ ℝ,
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while for the LLS family �(x) satisfies:

where u and c are defined as above and �LS(⋅) and �LLS(⋅) represent the standard 
form of the force of mortality (i.e. when u = 0 and c = 1 ) for the two families, 
respectively.

The role of the location and scale parameters can be easily understood with an 
illustration. Figure 1 shows the effects of changes in the two parameters on the den-
sity function of the LS family of mortality models.

The location parameter u shifts the density function f(x) along the x-axis without 
altering its shape. In the left panel of Fig. 1, an increase (decrease) in u shifts the 
initial density to the right (left): this effect can be interpreted as a postponement 
(anticipation) of mortality. As such, changes in the parameter u correspond to a pure 
shifting effect that is a shift of the density to older (younger) ages, without any shape 
changes.

The scale parameter c affects the variability of the density function. In the right 
panel of Fig. 1, a decrease (increase) in c results in a compression (expansion) of 
the initial density around the old-age modal age at death M (the adult age at which 
most of the deaths occur). As such, changes in the parameter c correspond to a pure 
compression effect.

Figure 2 shows the corresponding effects of these changes on the force of mor-
tality �(x) . In the left panel, location changes correspond to shifts of the mortality 
pattern (which are parallel for the Gompertz case shown in the figure); increases in 
u move �(x) to the right (or down), while decreases in u result in left (or upwards) 

(4)𝜇(x) =
1

c x
𝜇LLS

(
ln(x) − u

c

)
, x > 0 ,
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Fig. 1  Illustration of changes in the location u (left) and scale c (right) parameters on the density func-
tion f(x) of the location–scale family of mortality models. The density corresponds to the Gompertz 
model, and changes for u are from 80 to 60 ( u− ) and 100 ( u+ ) and for c from 10 to 7.7 ( c− ) and 15 ( c+ ). M 
denotes the old-age modal age at death. Source: (Figs. 1 and 2) authors’ own elaborations
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shifts. In the right panel, changes in the scale parameter modify the slope of the 
mortality pattern. This effect can be interpreted as a change in the “speed” of mor-
tality: a decrease (increase) in c accelerates (slows down) the ageing process, so that 
mortality increases at a faster (lower) rate.

The location and scale parameters thus capture and disentangle the shifting and 
compression dynamics of mortality. While we have shown the two effects in isola-
tion for illustrative purposes, mortality changes typically occur simultaneously, and 
the two parameters can vary at the same time.

We can now proceed to show that several mortality models used in the demo-
graphic and actuarial literature belong to the LS family of mortality models. We first 
show this with a detailed derivation for the Gompertz model in the next section (and 
for the Weibull model in Appendix A). Then, we present a summary table of the 
mortality models that can be reconciled with the LS family in Sect. 2.4.

2.3  Gompertz and the Location–Scale Family

A model that is often used in demographic and actuarial analysis is the Gompertz 
model. This is one of the earliest attempts to find a “law of mortality”: at the begin-
ning of the nineteenth century, Gompertz (1825) discovered that for a large part of 
the age range (though not including infancy and youth or very old ages) the force of 
mortality increases with age at a steady exponential rate. The Gompertz model is 
generally expressed in the form:

where a > 0 denotes the level of the force of mortality at the starting age of the 
analysis and b corresponds to the rate of ageing (Thatcher et al. 1998). From the life 

(5)�(x) = aebx, x ≥ 0 ,
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Fig. 2  Illustration of changes in the location u (left panel) and scale c (right panel) parameters on the 
force of mortality �(x) of the location–scale family of mortality models. The force of mortality corre-
sponds to the Gompertz model, and changes for u and c are the same as shown in Fig. 1
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table functions introduced in Sect. 2.1, we can derive the density function f(x) of the 
Gompertz model:

It is possible to show that the Gompertz model is closely related to the loca-
tion–scale (LS) family of mortality models. In particular, the LS-like parameteriza-
tion of the Gompertz model for the force of mortality is

where u ∈ ℝ and c > 0 are the location and scale parameters, respectively. The cor-
responding LS-like density function of the Gompertz model can be expressed as:

Indeed, if we let the location and scale parameters be u =
1

b
ln
(

b

a

)
 and c = 1

b
 , and 

we substitute them in Eqs. (7) and (8), we obtain the classic Gompertz formulas in 
Eqs. (5) and (6).

The Gompertz model does not strictly belong to the LS family of mortality 
models: its force of mortality is only defined for x ≥ 0 , while the location–scale 
�(x) can vary on the entire set ℝ (see Eq. (3)). The truncation of the x-axis can be 
also observed in the functional form of f(x) in Eq.  (8), which depends on the 
parameters u and c via the exp

(
e
−

u

c

)
 term. Nevertheless, the Gompertz model is 

closely related to a location–scale distribution, the Gumbel (or type 1 
extreme–value distribution, Johnson et al. 1995): “the Gompertz distribution is a 
special case of the Gumbel distribution for the minima, i.e. when x ∶= −x and 
truncated at x = 0 ” (Lenart and Missov 2016, p. 2923). As such, the Gompertz 
model can be considered a truncated location–scale distribution.

The location and scale parameters of the Gompertz model are reported in 
Table 1 of the following section, together with the formulas of the classic and LS-
like �(x) ; the classic and LS-like functional forms of f(x) are reported in Table 3 
of Appendix B.

Finally, it is interesting to observe that, if we let the location parameter be 
equal to the old-age modal age at death M, that is u = M , and we keep c = 1

b
 , then 

Eq. (7) becomes:

which is the parameterization of the Gompertz model in terms of the modal age at 
death (Horiuchi et al. 2013; Missov et al. 2015).

(6)f (x) = �(x)l(x) = �(x)e− ∫ x

0
�(a)da = a exp

[
bx −

a

b
(ebx − 1)

]
.

(7)�(x) =
1

c
e

x−u

c , x ≥ 0 ,

(8)f (x) =
1

c
exp

[
x − u

c
− exp

(
x − u

c

)
+ exp

(
−
u

c

)]
.

(9)�(x) = beb(x−M),
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2.4  Other Parametric Mortality Models

Several models have been proposed to describe the age pattern of the force of mor-
tality during the last two centuries (for a comprehensive review, see Tabeau 2001), 
and many of them can be unified under the overarching family of location–scale 
models. Table 1 presents twelve well-known models of mortality that either belong 
to the location–scale (LS) and log–location–scale (LLS) families or that are closely 

Table 1  Mortality models belonging to the location–scale (LS) and log–location–scale (LLS) families 
and models closely related to them, together with their parameterization in terms of the classic, LS and 
LLS force of mortality �(x) , �

LS
(x) , �

LLS
(x) , location u and scale c parameters

�(z) =
1√
2�
exp

�
−

z
2

2

�
 and Φ(z) = ∫ z

−∞
�(w)dw denote the probability density function and the cumula-

tive distribution function of the standardized normal distribution, respectively

Models belonging to the LS family �(x) 1

c
�
LS

(
x−u

c

)
u c

Logistic bexp(a+bx)
1+exp(a+bx)

1

c

exp( x−u
c
)

1+exp( x−u
c
)

−
a

b

1

b

Normal
1

�

�
(

x−�

�

)

1−Φ
(

x−�

�

) 1

c

�
(

x−u

c

)

1−Φ
(

x−u

c

)
� �

Smallest Extreme–Value 1

�
exp(

x−�

�
)

1

c
exp(

x−u

c
) � �

Largest Extreme–Value 1

�

exp(− x−�

�
)

exp
[
exp

(
−

x−�

�

)]
−1

1

c

exp(− x−u

c
)

exp
[
exp

(
−

x−u

c

)]
−1

� �

Models belonging to the LLS family �(x) 1

c x
�
LLS

(
ln(x)−u

c

)
u c

Weibull ab(ax)b−1 1

c x
exp

(
ln(x)−u

c

)
− ln(a) 1

b

Log–Logistic b

x

exp(a+b ln(x))
1+exp(a+b ln(x)) 1

c x

exp
(

ln(x)−u

c

)

1+exp
(

ln(x)−u

c

)
−

a

b

1

b

Log–Normal
1

�x

�
(

ln(x)−�

�

)

1−Φ
(

ln(x)−�

�

) 1

c x

�
(

ln(x)−u

c

)

1−Φ
(

ln(x)−u

c

)
� �

Models related to the LS family �(x) LS-like �(x) u c

Gompertz a exp(bx) 1

c
exp

(
x−u

c

)
1

b
ln
(

b

a

)
1

b

Gamma–Gomp aexp(bx)
1+

a

b
�[exp(bx)−1] 1

c

exp
(

x−u

c

)

1+�
[
exp

(
x−u

c

)
−exp

(
−

u

c

)]
1

b
ln
(

b

a

)
1

b

Kannisto exp(a+bx)
1+exp(a+bx)

exp( x−u
c
)

1+exp( x−u
c
)

−
a

b

1

b

Minimal Generalized Extreme–Value
1

�

[
1 + �

(
−

x−�

�

)]− 1

�
−1 �(x) � �

Maximal Generalized Extreme–Value
1

�

exp
(
−s

−
1
�

)
s
−
1
�
−1

1−exp
(
−s

−
1
�

)

�(x) � �

where s = 1 + �
(

x−�

�

)
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related to them. The table reports each model’s parameterization in terms of the 
classic and LS force of mortality �(x) , �LS(x) or �LLS(x) , location u and scale c 
parameters. The classic and LS functional form f(x) fLS(x) or fLLS(x) is reported in 
Table 3 in Appendix B.

A first interesting observation is that the Smallest Extreme–Value (Gumbel distri-
bution for the minima) and the Gompertz model are characterized by the same haz-
ard function. However, as already discussed in the previous section, only the former 
strictly belongs to the LS family due to the truncation of the x-axis in the latter.

The Kannisto, Gamma–Gompertz, Minimal and Maximal Generalized 
Extreme–Value models do not strictly belong, but are closely related to the LS fam-
ily. First, the Kannisto model is specified by an unscaled logistic hazard function 
(which is equal to the Logistic model except for the 1

c
 term, see Table  1), and it 

has been extensively employed to smooth mortality at older ages (for example, Wil-
moth et al. 2007; Ševčíková et al. 2016). Second, the Gamma–Gompertz is a three-
parameter model that includes the Kannisto as a special case: its hazard function 
has a logistic shape whose asymptote can be different than one. Also this model has 
gained relevant prominence during the last decades (Vaupel et al. 1979; Missov and 
Lenart 2013; Colchero et al. 2016). Finally, the Minimal and Maximal Generalized 
Extreme–Value models are characterized by three parameters, and for a fixed value 
of the third parameter (i.e. � ), their force of mortality satisfies Eq. (3).

The three models belonging to the LLS family (Weibull, Log–Logistic and 
Log–Normal) are generally used in the analysis of survival data rather than por-
traying the human mortality pattern. Nevertheless, they are characterized by two 
important demographic properties related to the longevity and lifespan inequality of 
the population under their mortality pattern assumption (for additional details, see 
Gigliarano et al. 2017).

Finally, it is interesting to note that the three models of the LLS family have the 
property that the transformation Y = log(X) belongs to the location–scale class. 
Indeed, the Weibull, Log–Logistic and Log–Normal models for X correspond to the 
Smallest Extreme–Value, Logistic and Normal models for Y (Lawless 2011).

2.5  Data and Estimation Procedure

For the illustrations shown in this article, we use available data from the Human 
Mortality Database (HMD  2018). In particular, we employ death counts Dx and 
exposure to risk Ex in single years of age x for all the HMD countries that have 
available data starting from the year 1960 to keep the time range of the analysis suf-
ficiently long.

This results in a subset of 33 countries (and 39 populations): Australia, Austria, 
Belarus, Belgium, Bulgaria, Canada, Czech Republic, Denmark, Estonia, Finland, 
France, East and West Germany, Hungary, Iceland, Ireland, Italy, Japan, Latvia, 
Lithuania, Luxembourg, Netherlands, New Zealand (total, Maori and non-Maori 
population), Norway, Poland, Portugal, Russia, Slovakia, Spain, Sweden, Switzer-
land, UK (total population, England and Wales, Scotland and Northern Ireland), 
Ukraine and the USA. The remaining countries of the HMD (Chile, Germany total 
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population, Greece, Israel, Slovenia and Taiwan) are not considered due to shorter 
mortality series. In the illustration in Sect. 3.1, we focus only on a subset of four 
high-longevity countries, namely Denmark, Japan, Sweden and the USA.

It should be further noted that the data employed here are the unsmoothed deaths 
and person-years from the HMD. As such, model fitting occurs on actual rather than 
adjusted data, and goodness of fit depends uniquely on the ability of the model to 
capture observed unadjusted mortality trends.

To estimate the parameters of a model, be it expressed in the classic or in the 
location–scale (LS) parameterization, we assume that death counts Dx at a given age 
x follow a Poisson distribution (Brillinger 1986):

where �x(�) is the parametric hazard function of interest, � is the vector of the mod-
el’s parameters (classic or LS) and Ex is the exposure to risk. Under this assump-
tion, the parameters can be estimated by maximizing the following log-likelihood 
function:

where � and � denote the lowest and highest age groups in the analysis, respectively. 
The estimation of the model’s parameters is carried out by maximizing Eq. (11) in R 
(R Development Core Team 2017) either with the standard general-purpose numeri-
cal optimizer optim or with the package DEoptim (Mullen et al. 2011). Routines 
for fitting the models of the LS family are available in the Supplementary material.

3  Illustrations

3.1  Parameter Interpretation: Shifting and Compression

An important demographic question that can be directly studied with the loca-
tion–scale (LS) family is the assessment of the shifting and compression dynam-
ics of mortality changes. The estimation of the LS parameters over a specified time 
interval indeed allows to visually inspect the level and trend of each dynamic within 
the overall mortality development.

Here, we illustrate this property of the LS family by assessing the evolution of 
the two dynamics in four high-longevity countries, namely Denmark, Japan, Sweden 
and the USA. For each country, we fitted all the models of the LS family for adult 
females and males aged 30–110+ during 1960–2016, and we selected the best fitting 
model using the Bayesian Information Criterion (BIC, Schwarz 1978, see Appen-
dix C for additional details and computational procedure). The Minimal Generalized 
Extreme–Value (MinGEV) model is the best specification for both genders in the 
four countries (see Table 4 in Appendix D for the BIC and rankings of the different 

(10)Dx ∼ (Ex �x(�)),

(11)ln (� |Dx,Ex

)
∝

�∑

x=�

{
Dx ln

(
�x(�)

)
− Ex �x(�)

}
,
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models). Figure 3 shows the estimated location u and scale c parameters, while the 
shape estimates are reported in Fig. 9 in Appendix D.

From the top panels of Fig.  3, it is possible to determine the beginning of the 
shifting dynamic in the different countries by gender. For females, mortality started 
to shift before the 1960: indeed, the location parameter has been linearly increasing 
during all years in each country, albeit at different rates. Japanese females experi-
enced the fastest rate of mortality postponement, which shows some signs of decel-
eration in most recent years; in addition, a lack of shifting mortality for Danish 
females clearly emerges during 1980–1995, a period coinciding with their stagna-
tion of life expectancy (Christensen et al. 2010; Lindahl-Jacobsen et al. 2016a, b). 
For males, the postponement of mortality started at different points in time in the 
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Fig. 3  Estimated location u and scale c parameters of the Minimal Generalized Extreme–Value model for 
female (left) and male (right) adults aged 30–110+ in four high-longevity countries during 1960–2016. 
Source (Figs.  3–11): authors’ calculations based on data from the Human Mortality Database (2018). 
(Color figure online)
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four countries: while Japan was already experiencing this dynamic during the 1960s, 
the postponement started in the early 1970s in the USA, in the early 1980s in Swe-
den and in the early 1990s in Denmark.

From the bottom panels of Fig. 3, the compression dynamic of mortality can be 
assessed (decreasing values of c correspond to compression). For females, a lin-
ear decreasing trend can be observed in Sweden and the USA, starting around the 
1970s; in Japan, the decrease is very rapid until the 1990s, after which a period of 
stagnation occurred; and in Denmark, mortality first expanded for about 20 years 
at the beginning of the period (1965–1985), and then, it started to compress again. 
For males, very different trends of compression, stagnation and expansion can be 
observed at different points in time.

On top of assessing changes in the two dynamics, the LS parameters readily 
allow a cross-country comparison on the level of the two dynamics. A first interest-
ing observation is that both females and males in the USA are lagging behind other 
countries in terms of both dynamics. The higher scale parameters in the USA cor-
respond to a greater variability of the age-at-death distribution, which translates into 
a higher number of “premature” deaths (i.e. deaths occurring at young adult ages). 
Figure 10 in Appendix D reports the estimated MinGEV age-at-death distributions 
in 2016 for the four countries: the share of premature deaths for the USA females 
and males is indeed higher than for the other three countries.

Another interesting observation is that location parameters for Denmark are 
below those for Sweden, while the scale parameters are higher. A possible inter-
pretation is that the different smoking behaviour of Danish and Swedish has been a 
major reason for this difference. Denmark is one of the few high-income countries 
that experienced stagnation in life expectancy in recent decades (Lindahl-Jacobsen 
et  al. 2016b), which was paralleled by stagnation in lifespan inequality. Smoking 
has been indicated as the single most important factor in explaining the lower life 
expectancy (Sundhedsministeriet 1994; Jacobsen et al. 2004, 2006; Lindahl-Jacob-
sen et al. 2016a) and the higher lifespan disparity in Denmark compared to Sweden 
(Aburto et al. 2018).

Furthermore, Japanese women experienced the greatest shift of mortality as well 
as more compression compared to the other countries. The very fast improvements 
in mortality since the end of the Second World War have brought them to be the 
“best practice” or most longevous population worldwide since the 1980s (see Oep-
pen and Vaupel 2002, Fig. 2). The Japanese age profile of mortality has been shaped 
from over 35 years of best practice population and is unique even among the closely 
competing countries such as South Korea and Hong Kong (Vallin and Meslé 2016; 
Kontis et al. 2017).

Two important points are worth being mentioned here. First, the assessment of 
the shifting and compression dynamics would be the same if we had employed a 
different model of the LS family. Figure 11 in Appendix D shows the location u and 
scale c rescaled estimates for six models of the LS family fitted on Swedish adult 
females and males. The figure shows that the location and scale estimates are very 
consistent across models: the same patterns of shifting and compression dynamics 
emerge from the different LS models. Second, time trends of the location and scale 
parameters for the USA and Japan are in line with the empirical findings of shift 
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and compression illustrated by Canudas-Romo (2008) and Ouellette and Bourbeau 
(2011): trends of the modal age at death and of the variability around (in the for-
mer) and above (in the latter) the mode closely resemble our results. Moreover, the 
trends of u for Swedish and Danish females are remarkably similar to the trends of 
their temporary life expectancy between ages 50 and 85 (see Lindahl-Jacobsen et al. 
2016a, Fig. 1a).

The analyses above, and in particular the assessment of the shifting dynamic, 
could not be performed based on the classic formulation of parametric models 
shown in the first column of Table 1. Figure 4 shows the Gamma–Gompertz (GG) 
estimates of the parameters u (for the GG LS model) and a (for the classic GG 
model) for males in the same four countries during 1960–2016. The estimates of u 
for the GG LS model are very close to those of the MinGEV model shown in Fig. 3 
(mean absolute percentage difference of 0.3%). In the right panel of Fig. 4, the time 
trend of the parameter a reflects changes in the level of the force of mortality at 
the starting age of the analysis. As such, it does not allow to disentangle mortality 
changes due to the shifting dynamic as captured by the u parameter in the left panel. 
The trends of the two parameters (after reverting u or a) are indeed not comparable: 
in the USA, for example, the trend of a is quite erratic, while the parameter u shows 
an unequivocal beginning of the shifting dynamic from the 1970s.

Finally, we present a decomposition of mortality changes into shift and com-
pression effects for the four countries. Our methodology is based and extends the 
decomposition method introduced by Bergeron-Boucher et  al. (2015) to the LS-
like parameterization of the Gompertz model. Appendix E reports the formulas and 
computational procedures that we have used for this analysis. Figure 5 shows the 
decomposition of changes in life expectancy at age 30 by location (shifting) and 
scale (compression) contributions in the Gompertz model for females in the four 
countries from 1960 until 2015 in 5-year intervals.
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Fig. 4  Estimated Gamma–Gompertz parameters u (LS model, left) and a (classic model, right) for male 
adults aged 30–110+ in four high-longevity countries during 1960–2016. Note: The y-axis of the left 
panel is identical to the one in the upper right panel of Fig.  3  for comparison purposes. (Color figure 
online)
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The figure shows that changes in the location parameter, hence shifting mor-
tality, are the main components driving changes in life expectancy during the 
period 1960–2015. Conversely, the contributions of changes in the scale param-
eter are limited and even negatives in some periods. With respect to our previous 
discussions, the stagnation of the location parameter for Danish females between 
1977 and 1995 is reflected in the small changes in life expectancy during this 
period. Moreover, the fast increase in the location parameter experienced by 
Japanese females has been the main contributor to the remarkable gains in life 
expectancy. These results are in line with those reported by Bergeron-Boucher 
et al. (2015, Fig. 7, Appendix C).
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Fig. 5  Trends over time of the contributions of the location u (green) and scale c (light blue) Gompertz 
parameters to changes in female life expectancy at age 30 for females in Denmark, Japan, Sweden and 
the USA, 1960–2015. (Color figure online)
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3.2  Correlation and Bias of Parameter Estimates

It is well known that a high correlation between the estimators of model param-
eters is an undesirable property, as “it shows a kind of inaccuracy of the estimators” 
(Gupta and Székely 1994, p. 588). Reducing the correlation of the maximum like-
lihood estimators (MLE) of parametric models is therefore a beneficial task, as it 
improves parameter interpretability and reduces estimation bias. In particular, Gupta 
and Székely (1994) have shown that location–scale distributions can generally be 
re-parameterized so that the maximum likelihood estimators are asymptotically 
independent.

Missov et al. (2015) have shown that the MLE of the parameters a and b of the 
classic Gompertz model in Eq.  (5) are highly (negatively) correlated. This is in 
general true for the parametric models in Table 1 that are expressed in their clas-
sic notation �(x) . Figure 6 shows the MLE of the typical a and b parameters of the 
Gamma–Gompertz, Gompertz and Kannisto mortality models for the thirty-three 
Human Mortality Database (HMD) countries listed above from 1960 until the most 
recent year by gender. Each point on the graph corresponds to a set of estimated 
parameters for a single country in a given year.

Fig. 6  Maximum likelihood estimates and R2 of a linear model for the classic parameters a and b for the 
Gamma–Gompertz, Gompertz and Kannisto model for thirty-three HMD countries from 1960 until the 
most recent year by gender. The a parameter was transformed in a0.1 to linearize the relationship for the 
two Gompertz cases
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The estimated parameter b tends to decrease as a increases for all models, fol-
lowing a power function for the two Gompertz’s specifications and a linear func-
tion for the Kannisto model. The variability around the two estimated parameters is 
very small: indeed, the R2 of a linear model between a and b (after a suitable power 
transformation of the parameter a for the two Gompertz cases) is always very high 
(average R2 of 0.90).

This rather high correlation between the estimators of classic parametric models 
can be reduced by re-parameterizing them in terms of the LS family. Figure 7 shows 
the MLE of the LS parameters u and c for the same models, countries and years by 
gender. From the graphs, it is clear that the relationship between the LS estimates is 
much weaker than for the classic ones. The variability around the LS parameters is 
higher, and the R2 of the linear regression between u and c is significantly reduced 
(average R2 of 0.31). Furthermore, the relationship is not always negative as in the 
previous case: for the Kannisto model, increases in u tend to correspond to increases 
in c.

The weaker relationship of the LS estimates between countries is generated by a 
lower correlation of u and c with respect to a and b within countries. Figure 8 shows the 
within-country absolute correlation of the two set of estimated parameters for the three 

Fig. 7  Maximum likelihood estimates and R2 of a linear model for the LS parameters u and c for the 
Gamma–Gompertz, Gompertz and Kannisto model for thirty-three HMD countries from 1960 until the 
most recent year by gender
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models: each point on the graph corresponds to the absolute correlation of the classic 
and LS parameters within one country during all the years considered in the analysis 
(1960 until the most recent available year) by gender. The great majority of points in 
Fig. 8 fall below the diagonal, confirming that the absolute correlation between estima-
tors of classic models’ parameter can be significantly reduced by using the LS family.

Finally, we perform an experiment that demonstrates the reduction in estimation bias 
when using the LS family versus the classic models’ parameterization. Specifically, we 
consider Swedish adult female mortality in 2000, and we estimate the Weibull, Logis-
tic and Gompertz LS parameters u and c. We consider these estimates to be the “true” 
model parameters, and we derive the corresponding true a and b of the classic models 
via the formulas in Table 1. Then, we produce 100 simulations of age-specific Poisson 
death counts using the true hazard and the observed exposure times. For each simula-
tion, we estimate the LS and classic model’s parameters, and we compute the relative 
absolute bias (AB) for each parameter � using the formula:

(12)AB =
| �̂� − 𝜃 |

𝜃
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where �̂� is the estimated value of the true parameter � (Pletcher 1999). Table  2 
reports the AB averaged over 100 simulations for the classic and LS parameters’ 
estimates of the Weibull, Logistic and Gompertz models.

The table shows that the AB for the LS estimates is always lower than for the 
classic model parameterization: employing the LS formulas improves the precision 
of parameters’ estimates. These results are in line with those of Missov et al., who 
performed a somewhat similar simulation experiment for the Gompertz model and 
showed that “a model misspecification leads to a relatively small bias in estimated 
M [i.e. u in the LS framework] in comparison to the bias in the estimated a” (Missov 
et al. 2015, p. 1039).

4  Discussion and Conclusion

In this article, we have shown that many mortality models used in the demographic 
and actuarial literature can be re-parameterized in terms of a general and flexible 
family of models, the family of location–scale (LS) models. The models belonging 
to this family are characterized by two parameters that have a direct demographic 
interpretation: the location and scale parameters capture the shifting and compres-
sion dynamics of mortality changes.

The study of compression and shifting mortality is an important issue in demo-
graphic research, as both dynamics translate differently into survival function, mor-
tality density and hazard distributions (Bergeron-Boucher et  al. 2015). Mortality 
compression is associated with a rectangularization of the survival curve and with 
decreasing variability in the distribution of ages at death (Wilmoth and Horiuchi 
1999; Cheung et al. 2005). Mortality shifting is associated with a parallel shift of 
the force of mortality to lower ages (Bongaarts 2005) and of the death distribution 
to higher ages (Canudas-Romo 2008), while retaining their original shape. As we 
have shown in Sect. 3.1, the estimation of the parameters of the LS family allows an 
assessment of the level and trend of these two mortality dynamics.

As such, re-parameterizing classic models in their LS formulation is very useful 
in aiding parameter interpretability and comparability across different populations. 
We have shown as illustration in Sect. 3.1 the analysis of the shifting and compres-
sion dynamics of mortality changes in four high-longevity countries by gender dur-
ing 1960–2016: the LS estimated parameters readily allow to examine and compare 
the two dynamics within and between countries.

In addition, the LS parameterization has an important statistical advantage over 
classic models: the rather high correlation between estimators of classic models’ 
parameterization is significantly reduced within the LS framework, and thus, statisti-
cal estimation is facilitated. The lower correlation, in turn, further improves parame-
ter interpretability and reduces estimation bias. As an illustration, we have shown in 
Sect. 3.2 that the correlation of the classic Gamma–Gompertz, Gompertz and Kan-
nisto parameters for females and males aged 30–110+ in thirty-three Human Mor-
tality Database countries is significantly higher than the LS parameterization, both 
within and between countries. Moreover, we performed simulation experiments to 
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demonstrate the reduction in estimation bias for the Weibull, Logistic and Gompertz 
models when using the LS framework instead of the classic models’ formulas.

Another potentially important advantage deriving from the lower correlation is 
that the LS parameters could be forecasted more appropriately. The main advan-
tages of using parameterization functions for forecasting mortality are the smooth-
ness of forecast rates across age and the interpretability of the model’s parameters 
(Bell 1997; Booth and Tickle 2008). Nevertheless, forecasting via well-known laws 
of mortality has been very limited due to the very high correlation between parame-
ter’s estimators (Booth and Tickle 2008). The lower correlation of the LS estimators 
could thus overcome this relevant issue. Parametric forecasts of mortality obtained 
with classic and the LS models are beyond the scope of the current paper and will be 
explored and compared in future work.

Although we have shown that several mortality models belong to the LS family, 
it should be noted that the family does not embrace the full spectrum of parametric 
models. Additive hazard models developed for adult mortality (e.g. the Makeham 
and the Gamma–Gompertz–Makeham models) as well as for the entire age range, 
such as the Siler (1979), the Heligman and Pollard (1980) and the CoDe (de Beer 
and Janssen 2016) models, do not belong to the LS family.

Nevertheless, the LS family reconciles several parametric mortality models under 
a unique framework, it readily allows the assessment of the shifting and compres-
sion dynamics of mortality changes, and it aids statistical estimation due to lower 
correlation between estimates of the model parameters. In turn, the latter could be 
further exploited for forecasting purposes. Re-parameterizing classic demographic 
models in terms of the LS family therefore offers great advantages, and the family 
should be considered for parametric mortality analysis.
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Table 2  Relative absolute bias (AB, in percentage terms) averaged over 100 simulations for the Weibull, 
Logistic and Gompertz classic parameters a and b, and the LS parameters u and c estimated on simulated 
Swedish adult female deaths in 2000

Model AB

a b u c

Weibull 0.043 0.294 0.001 0.005
Logistic 0.344 0.352 0.044 0.351
Gompertz 3.048 0.327 0.037 0.326
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Appendix A: Weibull and the Log–Location–Scale Family

Here, we provide a similar derivation of Sect. 2.3 to show that the Weibull model 
belongs to the log–location–scale (LLS) family of mortality models.

Among its various parameterizations, the Weibull model can be expressed in the 
form:

where a > 0 and b > 0 are parameters (Lawless 2011). From the life table functions 
introduced in Sect. 2.1, we can then derive the density function f(x) of the Weibull 
model:

The Weibull model can be re-parameterized in terms of the LLS family. In particu-
lar, the LLS Weibull model for the force of mortality is

where u ∈ ℝ and c > 0 are the location and scale parameters, respectively. The cor-
responding LLS density function of the Weibull model can be expressed as:

Indeed, if we let the location and scale parameters be u = − ln(a) and c = 1

b
 , and we 

substitute them in Eqs. (A.3) and (A.4), we obtain the classic Weibull formulas in 
Eqs. (A.1) and (A.2). As such, the Weibull model belongs to the LLS family of mor-
tality models defined in Eqs. (2) and (4).

Appendix B: Location–Scale Functional form of Twelve Parametric 
Models of Mortality

Table 3 presents the classic, location–scale (LS) and log–location–scale (LLS) func-
tional forms f(x), fLS(⋅) and fLLS(⋅) of the mortality models presented in Sect. 2.4.

(A.1)𝜇(x) = ab (ax)b−1, x > 0 ,

(A.2)f (x) = �(x)l(x) =
b
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]
.

(A.3)�(x) =
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c x
�LLS

(
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c

)
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1

c x
exp

(
ln(x) − u

c

)
,

(A.4)
f (x) =
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c x
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(
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)

=
1

c x
exp

[
ln(x) − u

c
− exp

(
ln(x) − u

c

)]
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Appendix C: Derivation of the Best Fitting Parametric Model

The selection of the best fitting parametric model can generally be made along dif-
ferent metrics and criterion. In this article, the estimation of a model’s parameter 
is achieved by maximum likelihood (Sect.  2.5); within a Poisson framework, the 
Bayesian Information Criterion (BIC, Schwarz 1978) is therefore a natural metric to 
compare different models, as it provides a good trade-off between model parsimony 
and accuracy.

Specifically, within a Poisson framework, the deviance is often used as a measure 
of discrepancy between observed and fitted data, and it is defined as:

Table 3  Mortality models belonging to the location–scale (LS) and log–location–scale (LLS) families 
and models closely related to them, together with their parameterization in terms of the classic, LS and 
LLS functional forms f(x), f

LS
(x) and f

LLS
(x)

�(z) =
1√
2�
exp

�
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z
2

2

�
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where Dx,y and D̂x,y denote the observed and fitted number of deaths at age x and 
year y, respectively. This is a “badness of fit” measure, as higher values correspond 
to worse models in terms of goodness of fit.

In the two-dimensional age and time setting, the BIC can then be computed as:

where m and n are the dimensions (length) of age and time, respectively. ED denotes 
the effective dimension, or total number of parameters, of a model. Lower BIC val-
ues are associated with better models, and the trade-off between accuracy and parsi-
mony is accounted for by the two components of the BIC.

Appendix D: Section 3.1: Additional Results

Here, we present some additional results corresponding to the analyses of Sect. 3.1.
Table 4 shows the BIC and rankings of the different LS models. From the table, it 

emerges that the Minimal Generalized Extreme–Value (MinGEV) model is the best 
specification for both genders in the four countries.

Figure 9 shows the estimated shape � parameters of the MinGEV model for the 
four countries by sex during 1960–2016.

Figure  10 shows the estimated MinGEV age-at-death distributions for the four 
countries by sex in 2016. From the figure, it is possible to observe that the share of 
premature deaths for the USA females and males is higher than for the other three 

(C.1)Dev = 2
∑

y

∑

x

[
Dx,y ln

(
Dx,y

D̂x,y

)
− (Dx,y − D̂x,y)

]
,

(C.2)BIC = Dev + ln(mn)ED

Table 4  BIC values (divided by 100) of nine LS models for adult females and males in Denmark, Japan, 
Sweden and the USA, 1960–2016

The models are listed by ascending order of BIC for Danish females

Model DNK JPN SWE USA

F M F M F M F M

MinGEV 106 81 2172 799 203 105 1738 1331
Ga–Go 128 84 4607 1237 295 130 3693 2318
Gomp 142 92 5240 1433 309 137 4937 3989
Kann 236 111 7182 2529 476 232 8774 5829
Weib 775 479 22,265 13,026 1533 1110 36,699 32,631
MaxGEV 1457 872 43,370 23,773 3373 2234 61,906 37,915
Logis 1951 1507 32,937 25,744 3457 2934 76,047 60,910
Norm 2546 1824 57,583 37,984 5268 4027 102,331 71,574
LargEV 8116 6986 149,526 118,413 16,008 13,829 307,781 243,955
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countries. In addition, the smaller compression of the USA distribution of deaths 
compared to the other countries clearly emerges from the two graphs.

Figure 11 shows the location u and scale c estimates for six models of the LS 
family fitted to Swedish adult female and male mortality during 1960–2016. The 
parameters have been rescaled for comparability, and while here we focus on Swe-
den, the results are the same for the other countries.
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Fig. 9  Estimated shape � parameters of the Minimal Generalized Extreme–Value model for female (left) 
and male (right) adults aged 30–110+ in four high-longevity countries during 1960–2016. (Color figure 
online)
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Fig. 10  Age-at-death distributions in 2016 for female (left) and male (right) adults aged 30–110+ in four 
high-longevity countries corresponding to the Minimal Generalized Extreme–Value model estimates
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The figure shows that the location and scale estimates are very consistent across 
models: the former are always extremely close to each other, as well as the latter 
which are characterized by a slightly higher volatility. As such, the very same pat-
terns of shifting and compression dynamics emerge from employing different LS 
models due to the similarity of the models’ estimates.

Appendix E: Decomposition of Mortality Changes into Location 
and Scale Effects

Here, we decompose changes in life expectancy at age 30 ( ̇e30,t ) into two 
components:

where Δu and Δc are the gains in life expectancy resulting from the changes in the 
location (shift) and scale (compression) parameters, respectively.

Taking advantage of the findings reported in Fig. 11, namely the consistency and 
comparability of the location–scale parameters across different specification of the 
LS family, we focus on the decomposition of the Gompertz model. Specifically, we 
extend the methodology presented by Bergeron-Boucher et al. (2015) to the LS-like 
parameterization of the Gompertz model.

Equation  (7) introduced the LS-like parameterization of the Gompertz model. 
Here, we make explicit the time dependency of the model by letting the location and 
scale parameters be a function of time t:

Let a dot on top of a variable denote its derivative with respect to time (Vaupel and 
Canudas-Romo 2003). The change over time in the force of mortality ( �̇�x,t ) can be 
decomposed into respective components of change for the location ( ̇ut ) and scale ( ̇ct ) 
parameters:

where fu(�x,t) and fc(�x,t) are weighting function of the hazard rate for the location 
and scale parameters, respectively.

Similarly to the force of mortality, we can derive the time change of life expec-
tancy. Specifically, life expectancy at age 30 can be expressed as:

(E.1)ė30,t = Δu + Δc,

(E.2)�x,t =
1

ct
e

x−ut

ct .

(E.3)
�̇�x,t = u̇t

[
−
𝜇x,t

ct

]
+ ċt

[
−
𝜇x,t

ct

(
1 +

x − ut

ct

)]

= u̇t fu(𝜇x,t) + ċt fc(𝜇x,t),

(E.4)e30,t = ∫
�

30

la,t da,
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where la,t is the survival function at age a and time t. Changes in life expectancy at 
age 30 ( ̇e30,t ) can thus be written as:

where l̇a,t is the time derivative of the survival function. If we substitute Eq. (E.3) 
into Eq. (E.5), we can decompose the changes in life expectancy at age 30 ( ̇e30,t ) into 
changes due to the location and scale parameters as:

(E.5)ė30,t = ∫
𝜔

30

l̇a,t da = −∫
𝜔

30

la,t ∫
a

30

�̇�x,t dx da,

(E.6)
ė30,t = u̇t ∫
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30

la,t ∫
a

30

fu(𝜇x,t) dx da

�����������������������������������
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+ ċt ∫
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30

la,t ∫
a
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fc(𝜇x,t) dx da

�����������������������������������
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Fig. 11  Location u and scale c rescaled estimates of six LS models for female and male adults aged 
30–110+ in Sweden during 1960–2016
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The first term in Eq.  (E.6) represents the gain in life expectancy resulting from a 
change in location ( Δu ), corresponding to a shifting pattern, while the second term 
is the gain in life expectancy produced by a change in variability ( Δc ), indicating a 
compression pattern. These are the equivalent terms of Eq.  (E.1) in the Gompertz 
model. Specifically, we employ discrete approximations to estimate derivatives such 
as those in Eq. (E.6) (see Bergeron-Boucher et al. 2015, Appendix B).

References

Aburto, J. M., Wensink, M., van Raalte, A., & Lindahl-Jacobsen, R. (2018). Potential gains in life expec-
tancy by reducing inequality of lifespans in Denmark: An international comparison and cause-of-
death analysis. BMC Public Health, 18(1), 831.

Beard, R. E. (1971). Some aspects of theories of mortality, cause of death analysis, forecasting and sto-
chastic processes. Biological Aspects of Demography, 999, 57–68.

Bell, W. R. (1997). Comparing and assessing time series methods for forecasting age-specific fertility and 
mortality rates. Journal of Official Statistics, 13(3), 279–303.

Bennett, S. (1983). Log-logistic regression models for survival data. Journal of the Royal Statistical Soci-
ety. Series C (Applied Statistics), 32(2), 165–171.

Bergeron-Boucher, M.-P., Ebeling, M., & Canudas-Romo, V. (2015). Decomposing changes in life expec-
tancy: Compression versus shifting mortality. Demographic Research, 33(14), 391–424.

Bongaarts, J. (2005). Long-range trends in adult mortality: Models and projection methods. Demography, 
42(1), 23–49.

Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: A review of methods. Annals of 
Actuarial Science, 3(1–2), 3–43.

Brillinger, D. R. (1986). A biometrics invited paper with discussion: The natural variability of vital rates 
and associated statistics. Biometrics, 42(4), 693–734.

Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic 
Research, 19, 1179–1204.

Cheung, S. L. K., & Robine, J.-M. (2007). Increase in common longevity and the compression of mortal-
ity: The case of Japan. Population Studies, 61(1), 85–97.

Cheung, S. L. K., Robine, J.-M., Paccaud, F., & Marazzi, A. (2009). Dissecting the compression of mor-
tality in Switzerland, 1876–2005. Demographic Research, 21(19), 569–598.

Cheung, S. L. K., Robine, J.-M., Tu, E. J.-C., & Caselli, G. (2005). Three dimensions of the survival 
curve: Horizontalization, verticalization, and longevity extension. Demography, 42(2), 243–258.

Christensen, K., Davidsen, M., Juel, K., Mortensen, L., Rau, R., & Vaupel, J. W. (2010). The divergent 
life-expectancy trends in Denmark and Sweden—and some potential explanations. In E. M. Crim-
mins, S. H. Preston, & B. Cohen (Eds.), International differences in mortality at older ages: Dimen-
sions and sources. Washington: National Academies Press.

Colchero, F., Rau, R., Jones, O. R., Barthold, J. A., Conde, D. A., Lenart, A., et al. (2016). The emer-
gence of longevous populations. Proceedings of the National Academy of Sciences, 113(48), 
E7681–E7690.

Congdon, P. (1993). Statistical graduation in local demographic analysis and projection. Journal of the 
Royal Statistical Society. Series A (Statistics in Society), 156(2), 237–270.

de Beer, J., & Janssen, F. (2016). A new parametric model to assess delay and compression of mortality. 
Population Health Metrics, 14(1), 46.

de Moivre, A. (1725). Annuities on lives: Or, the valuation of annuities upon any number of lives as also 
of reversions. London: William Person.

Fries, J. F. (1980). Aging, natural death, and the compression of morbidity. New England Journal of 
Medicine, 303(3), 130–135.

Gampe, J. (2010). Human mortality beyond age 110. In Supercentenarians (pp. 219–230). Springer.
Gigliarano, C., Basellini, U., & Bonetti, M. (2017). Longevity and concentration in survival times: The 

log-scale-location family of failure time models. Lifetime Data Analysis, 23(2), 254–274.



672 U. Basellini et al.

1 3

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a 
new mode of determining the value of life contingencies. Philosophical Transactions of the Royal 
Society of London, 115, 513–583.

Graunt, J. (1662). Natural and political observations made upon the bills of mortality. In: W. F. Willcox 
(eds) London American edition. Baltimore: John Hopkins Press, 1939.

Gupta, A., & Székely, G. (1994). On location and scale maximum likelihood estimators. Proceedings of 
the American Mathematical Society, 120(2), 585–589.

Halley, E. (1693). An estimate of the degrees of the mortality of mankind. Philosophical Transactions, 
17, 596–610.

Heligman, L., & Pollard, J. H. (1980). The age pattern of mortality. Journal of the Institute of Actuaries, 
107(01), 49–80.

Horiuchi, S., Ouellette, N., Cheung, S. L. K., & Robine, J.-M. (2013). Modal age at death: Lifespan indi-
cator in the era of longevity extension. Vienna Yearbook of Population Research, 11, 37–69.

Human Mortality Database. (2018). University of California, Berkeley (USA) and Max Planck Institute 
for Demographic Research (Germany). Available at www.morta lity.org or www.human morta lity.de 
(data downloaded on 25 May 2018).

Jacobsen, R., Keiding, N., & Lynge, E. (2006). Causes of death behind low life expectancy of Danish 
women. Scandinavian Journal of Public Health, 34(4), 432–436.

Jacobsen, R., Osler, M., Lynge, E., & Keiding, N. (2004). Women’s death in scandinavia: What makes 
Denmark different? European Journal of Epidemiology, 19(2), 117–121.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2. In: 
Wiley series in probability and mathematical statistics: Applied probability and statistics.

Kannisto, V. (2000). Measuring the compression of mortality. Demographic Research.  https ://doi.
org/10.4054/DemRe s.2000.3.6.

Kannisto, V., Lauritsen, J., Thatcher, A. R., & Vaupel, J. W. (1994). Reductions in mortality at 
advanced ages: Several decades of evidence from 27 countries. Population and Development 
Review, 20(4), 793–810.

Keyfitz, N. (1982). Choice of function for mortality analysis: Effective forecasting depends on a mini-
mum parameter representation. Theoretical Population Biology, 21(3), 329–352.

Kontis, V., Bennett, J. E., Mathers, C. D., Li, G., Foreman, K., & Ezzati, M. (2017). Future life expec-
tancy in 35 industrialised countries: Projections with a bayesian model ensemble. The Lancet, 
389(10076), 1323–1335.

Lawless, J. F. (2011). Statistical models and methods for lifetime data (Vol. 362). Hoboken: Wiley.
Lenart, A., & Missov, T. I. (2016). Goodness-of-fit tests for the Gompertz distribution. Communications 

in Statistics-Theory and Methods, 45(10), 2920–2937.
Lindahl-Jacobsen, R., Oeppen, J., Rizzi, S., Möller, S., Zarulli, V., Christensen, K., et al. (2016a). Why 

did Danish women’s life expectancy stagnate? The influence of interwar generations’ smoking 
behaviour. European Journal of Epidemiology, 31(12), 1207–1211.

Lindahl-Jacobsen, R., Rau, R., Jeune, B., Canudas-Romo, V., Lenart, A., Christensen, K., et al. (2016b). 
Rise, stagnation, and rise of Danish women’s life expectancy. Proceedings of the National Academy 
of Sciences, 113(15), 4015–4020.

Makeham, W. M. (1860). On the law of mortality and the construction of annuity tables. Journal of the 
Institute of Actuaries, 8(6), 301–310.

Meeker, W. Q., & Escobar, L. A. (2014). Statistical methods for reliability data. Hoboken: Wiley.
Missov, T. I., & Lenart, A. (2013). Gompertz-makeham life expectancies: Expressions and applications. 

Theoretical Population Biology, 90, 29–35.
Missov, T. I., Lenart, A., Nemeth, L., Canudas-Romo, V., & Vaupel, J. W. (2015). The Gompertz force of 

mortality in terms of the modal age at death. Demographic Research, 32(36), 1031–1048.
Missov, T. I., & Vaupel, J. W. (2015). Mortality implications of mortality plateaus. SIAM Review, 57(1), 

61–70.
Mukhopadhyay, N. (2000). Probability and statistical inference. CRC Press.
Mullen, K., Ardia, D., Gil, D., Windover, D., & Cline, J. (2011). DEoptim: An R package for global opti-

mization by differential evolution. Journal of Statistical Software, 40(6), 1–26.
Myers, G. C., & Manton, K. G. (1984). Compression of mortality: Myth or reality? The Gerontologist, 

24(4), 346–353.
Oeppen, J., & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296(5570), 1029–1031.
Ouellette, N., & Bourbeau, R. (2011). Changes in the age-at-death distribution in four low mortality 

countries: A nonparametric approach. Demographic Research, 25, 595–628.

http://www.mortality.org
http://www.humanmortality.de
https://doi.org/10.4054/DemRes.2000.3.6
https://doi.org/10.4054/DemRes.2000.3.6


673

1 3

Location–Scale Models in Demography: A Useful…

Perks, W. (1932). On some experiments in the graduation of mortality statistics. Journal of the Institute 
of Actuaries, 63(1), 12–57.

Pletcher, S. D. (1999). Model fitting and hypothesis testing for age-specific mortality data. Journal of 
Evolutionary Biology, 12(3), 430–439.

Preston, S. H., Heuveline, P., & Guillot, M. (2001). Demography: Measuring and modeling population 
processes. Oxford: Blackwell.

R Development Core Team. (2017). R: A language and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria.

Rothenberg, R., Lentzner, H. R., & Parker, R. A. (1991). Population aging patterns: The expansion of 
mortality. Journal of Gerontology, 46(2), S66–S70.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Ševčíková, H., Li, N., Kantorová, V., Gerland, P., & Raftery, A. E. (2016). Age-specific mortality and 

fertility rates for probabilistic population projections (pp. 285–310). Cham: Springer International 
Publishing.

Siler, W. (1979). A competing-risk model for animal mortality. Ecology, 60(4), 750–757.
Sundhedsministeriet (1994). Levetiden i Danmark [Life Expectancy in Denmark] (Sundhedsministeriet, 

Copenhagen). Danish.
Tabeau, E. (2001). A review of demographic forecasting models for mortality. In Forecasting mortality in 

developed countries (pp. 1–32). Springer.
Thatcher, A. R., Kannisto, V., & Vaupel, J. W. (1998). The force of mortality at ages 80 to 120. In Mono-

graphs on population aging (Vol. 5). Odense: Odense University Press.
Thiele, T. N. (1871). On a mathematical formula to express the rate of mortality throughout the whole of 

life, tested by a series of observations made use of by the Danish Life Insurance Company of 1871. 
Journal of the Institute of Actuaries and Assurance Magazine, 16(5), 313–329.

Vallin, J. & Meslé, F. (2016). Highest life expectancies: Which leader after Japan? In Annual Meeting of 
the Population Association of America, Washington, DC.

Vaupel, J. W., & Canudas-Romo, V. (2003). Decomposing change in life expectancy: A bouquet of for-
mulas in honor of Nathan Keyfitz’s 90th birthday. Demography, 40(2), 201–216.

Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., et al. (1998). Bio-
demographic trajectories of longevity. Science, 280(5365), 855–860.

Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on 
the dynamics of mortality. Demography, 16(3), 439–454.

Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechan-
ics, 103, 293–297.

Willekens, F. (2001). Gompertz in context: The gompertz and related distributions. In E. Tabeau, A. van 
den Berg Jeths, & C. Heathcote (Eds.), Forecasting mortality in developed countries, European 
studies of population (Vol. 9, pp. 105–126). Dordrecht: Springer.

Wilmoth, J., Andreev, K., Jdanov, D., Glei, D., Boe, C., Bubenheim, M., Philipov, D., Shkolnikov, V., & 
Vachon, P. (2007). Methods protocol for the human mortality database. Last Revised: May 31, 2007 
(Version 5).

Wilmoth, J. R., Deegan, L. J., Lundström, H., & Horiuchi, S. (2000). Increase of maximum life-span in 
Sweden, 1861–1999. Science, 289(5488), 2366–2368.

Wilmoth, J. R., & Horiuchi, S. (1999). Rectangularization revisited: Variability of age at death within 
human populations. Demography, 36(4), 475–495.


	Location–Scale Models in Demography: A Useful Re-parameterization of Mortality Models
	Abstract
	1 Introduction
	1.1 Parametric Mortality Models
	1.2 Short History of Parametric Mortality Models
	1.3 Aims

	2 Methods
	2.1 Life Table Functions
	2.2 The Location–Scale Family of Mortality Models
	2.3 Gompertz and the Location–Scale Family
	2.4 Other Parametric Mortality Models
	2.5 Data and Estimation Procedure

	3 Illustrations
	3.1 Parameter Interpretation: Shifting and Compression
	3.2 Correlation and Bias of Parameter Estimates

	4 Discussion and Conclusion
	Acknowledgements 
	References




