Skip to main content
. 2018 Oct 24;35(4):645–673. doi: 10.1007/s10680-018-9497-x

Table 1.

Mortality models belonging to the location–scale (LS) and log–location–scale (LLS) families and models closely related to them, together with their parameterization in terms of the classic, LS and LLS force of mortality μ(x), μLS(x), μLLS(x), location u and scale c parameters

Models belonging to the LS family μ(x) 1cμLSx-uc u c
Logistic bexp(a+bx)1+exp(a+bx) 1cexp(x-uc)1+exp(x-uc) -ab 1b
Normal 1σϕx-λσ1-Φx-λσ 1cϕx-uc1-Φx-uc λ σ
Smallest Extreme–Value 1σexp(x-λσ) 1cexp(x-uc) λ σ
Largest Extreme–Value 1σexp(-x-λσ)expexp-x-λσ-1 1cexp(-x-uc)expexp-x-uc-1 λ σ
Models belonging to the LLS family μ(x) 1cxμLLSln(x)-uc u c
Weibull ab(ax)b-1 1cxexpln(x)-uc -ln(a) 1b
Log–Logistic bxexp(a+bln(x))1+exp(a+bln(x)) 1cxexpln(x)-uc1+expln(x)-uc -ab 1b
Log–Normal 1σxϕln(x)-λσ1-Φln(x)-λσ 1cxϕln(x)-uc1-Φln(x)-uc λ σ
Models related to the LS family μ(x) LS-like μ(x) u c
Gompertz aexp(bx) 1cexpx-uc 1blnba 1b
Gamma–Gomp aexp(bx)1+abγexp(bx)-1 1cexpx-uc1+γexpx-uc-exp-uc 1blnba 1b
Kannisto exp(a+bx)1+exp(a+bx) exp(x-uc)1+exp(x-uc) -ab 1b
Minimal Generalized Extreme–Value 1σ1+ξ-x-λσ-1ξ-1 μ(x) λ σ
Maximal Generalized Extreme–Value 1σexp-s-1ξs-1ξ-11-exp-s-1ξ μ(x) λ σ
where s=1+ξx-λσ

ϕ(z)=12πexp-z22 and Φ(z)=-zϕ(w)dw denote the probability density function and the cumulative distribution function of the standardized normal distribution, respectively