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Quantification of linkage disequilibrium (LD) patterns in the human genome is essential for genome-
wide association studies, selection signature mapping and studies of recombination. Whole genome 
sequence (WGS) data provides optimal source data for this quantification as it is free from biases 
introduced by the design of array genotyping platforms. The Malécot-Morton model of LD allows the 
creation of a cumulative map for each choromosome, analogous to an LD form of a linkage map. Here 
we report LD maps generated from WGS data for a large population of European ancestry, as well as 
populations of Baganda, Ethiopian and Zulu ancestry. We achieve high average genetic marker densities 
of 2.3–4.6/kb. These maps show good agreement with prior, low resolution maps and are consistent 
between populations. Files are provided in BED format to allow researchers to readily utilise this 
resource.

Background & Summary
Mapping of linkage disequilibrium (LD) is invaluable for many endeavours including identifying signatures of 
selection, refinement of signals in genome-wide association studies and studies into recombination1–3.

One approach to the quantification of LD is the generation of LD maps applying the Malécot-Morton model4,5. 
The product generated utilising the Malécot-Morton model are maps in cumulative linkage disequilibrium units 
(LDU), which are broadly analogous to an LD-based form of centimorgans. Previous studies have reported 
maps generated from array based genotyping data in multiple populations (e.g.6), allowing for cross-population 
comparisons.

The mathematical basis of LDMAP has been previously described4,5. In brief, LDMAP generates a cumulative 
map of LD distances between markers, based upon the Malécot-Morton model of association by distance:

ρ = − +−


L Me L(1 ) (1)d

where ρ


 is the association between two markers in a population, L is the component of ρ


 not due to LD, but due to 
confounding factors such as recent founder effects, M is the association at 0 distance (approximately 1 for mono-
phyletic haplotypes),  is the rate of decline in the association between the markers and d is the physical distance 
between the markers5. The final LDU map is built by cumulative addition of d  for each inter-marker span.

The increasing availability of whole genome sequencing (WGS) data allows the investigation of LD patterns at 
the highest level, without the impact of issues such as ascertainment bias in the selection of single nucleotide pol-
ymorphism (SNP) markers. We have previously shown that WGS-based maps provide tangible benefits in their 
practical application. Arrays have been designed to give a reasonable coverage of LD information for a reduced set 
of SNPs, as such they have limited resolution and population-specific biases are introduced during SNP selection. 
Given that WGS variant identification is ‘hypothesis free’ (i.e. SNPs are not required to be pre-defined as in array 
genotyping), these data, and thus these maps, represent a maximally informative resource7.
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The lack of ascertainment bias for SNP data collection is particularly important for African populations, as 
they have the greatest population diversity and are often under-represented in genomic studies. Though they are 
often underrepresented, these populations are particularly informative for many studies, given the extended time 
since a population bottleneck7,8. Higher resolution maps allow for analyses on a finer scale of the patterns of LD, 
such as structure within genes9.

Here, we report our generation of WGS based LD maps for four populations, one of European and three of 
African descent. These maps provide a valuable population genetic resource, providing a maximal resolution, 
selection bias free, dataset for studies which require the incorporation of LD statistics.

Methods
Autosomal WGS data from two cohort sequencing studies was utilised. African populations were sequenced 
within the African Genome Diversity Project8,10, utilising Illumina short read sequencing to an average depth of 
4x. European ancestry individuals were sequenced by the Wellderly Study11, utilising Complete Genomics high 
depth sequencing. Multidimensional scaling as implemented in PLINK12 was applied to ensure genetic homoge-
neity within the sub-cohorts.

SNPs were subject to quality control prior to map generation. Specifically, they were required to have a minor 
allele frequency ≥1%, <5% genotype missingness and not to significantly deviate from Hardy-Weinberg equilib-
rium (at α = 10−3). All analyses were undertaken using the reference genome GRCh37 (hg19).

LD maps were made using LDMAP with default parameters. Owing to the computational intensity of LD map 
generation, this was performed for 12,000 marker overlapping segments, which were then concatenated into full 
chromosome maps, removing the 25 terminal markers of each segment to avoid end effects.

Data Records
LD maps reported here are freely available at https://doi.org/10.6084/m9.figshare.7850882 13. These data are in 
Browser Extensible Data (BED) format, including the cumulative LDU position of every SNP marker within the 
generated maps. Additionally, these data are also made available as the kb/LDU ratio for each inter-SNP span 
providing a view of the regional ‘intensity’ of LD.

For the African populations8, 95–100 individuals were utilised for each sub-population, yielding approxi-
mately 14 million SNP markers (Table 1). The European map utilised 454 individuals11, yielding approximately 
7.5 million markers. The increased population diversity for the African compared to European population can be 
seen in the increase common SNP density, as well as the longer LDU length which corresponds to the longer total 
haplotypic diversity within a population.

Population Individuals Marker count Densitya LDU

Baganda 100 13,439,201 4.35 129,640

Ethiopian 95 13,892,209 4.48 107,001

European 454 7,062,420 2.28 63,427

Zulu 100 14,205,839 4.59 130,156

Table 1.  Key statistics for generated LD maps. aAverage SNP markers per kb.

Fig. 1  Comparison of the four maps for chromosome 22. The raw cumulative maps are shown (left), as well as 
maps normalised to have the same total length (right). It can be seen that the contour profiles of the maps are 
highly similar, though there is variation in the total map length.
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Technical Validation
For these data, we can determine that they are robust as they are consistent with prior, lower resolution maps, and 
that they are consistent between populations assessed (Figs 1 and 2). As we know that patterns of recombination 
and thus LD are broadly consistent between populations, this meets our prior expectations; furthermore the total 
map lengths are proportional to time since an effective population bottleneck (being longer in African popula-
tions reflecting the additional diversity present)6,7,14.

Fig. 2  Comparison of the four maps for all autosomes. The raw cumulative maps are shown. It can be seen that 
the contour profiles of the maps are highly similar, with a consistend trend in LDU lengths for the populations, 
with European being consistently the shortest and Baganda/Zulu the longest.
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Usage Notes
Maps can be readily incorporated into genomic analyses using tools such as BEDTools15, allowing annotation of 
regions with LD information for subsequent analysis such as determining whether a genomic feature has higher 
LD than background on average.

Genome wide association studies using a composite likelihood model can be undertaken with LD information 
as provided here, allowing for additional power for signal detection and refinement2,16.

Code Availability
The core LDMAP software is written in C, and made available at www.soton.ac.uk/genomicinformatics/research/
ld.page.
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