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Investigation of the temporal 
roaming behaviour of free-roaming 
domestic dogs in Indigenous 
communities in northern Australia 
to inform rabies incursion 
preparedness
Elizabeth K. Maher1, Michael P. Ward1* & Victoria J. Brookes   1,2

Australia is canine rabies free but free-roaming, domestic dog populations in remote northern 
communities are at risk of an incursion due to proximity to rabies-endemic south-east Asia. Unrestricted 
contact between dogs could facilitate rabies spread following an incursion, and increase the impact on 
both dogs and people. Whilst dog vaccination is the foundation of rabies prevention, control strategies 
could be enhanced by understanding the temporal pattern of roaming and associated risk factors, 
so that movement restrictions can be targeted. Global positioning system datasets from 132 dogs in 
eight Indigenous communities in the Torres Strait and Northern Peninsula Area (NPA) of Australia were 
analysed using regression methods. The influence of risk factors (including age, sex, location, season 
and hour of day) on dogs’ distance from their residences were assessed. Dogs roamed furthest in the 
NPA and during the dry season. Daily peaks in mean roaming distance were observed at 1000–1100 hrs 
and 1700–1800 hrs in the Torres Strait, and 1700–1800 hrs in the NPA. These findings demonstrate 
that understanding community-specific temporal roaming patterns can inform targeted movement 
restrictions during an outbreak of rabies in remote communities in northern Australia.

Rabies is distributed throughout Asia, Africa, Europe and North and South America1. Although rabies virus 
can infect all mammals, canine-rabies is the most widely distributed form and accounts for over 95% of human 
infections2,3. It causes an estimated 59,000 human deaths, and costs USD 8.6 billion annually due to premature 
deaths, post-exposure prophylaxis (PEP) and income loss during courses of PEP4. Improvements in control and 
prevention – such as bite prevention, vaccination, surveillance, public awareness and effective dog movement 
restrictions – have the potential to significantly reduce the impact of rabies4.

Australia is currently free of canine-rabies3 but the proximity of northern Australia to rabies-endemic 
Indonesia places this area at risk of an incursion5. Outbreaks in south-east Asia have demonstrated the propen-
sity for transboundary spread6,7, and recent research has identified potential entry and transmission routes for 
canine-rabies into Australia via Indonesia, Papua New Guinea and the Torres Strait5,8,9.

Domestic dogs are abundant in many Aboriginal and Torres Strait Islander (Indigenous) communities in 
northern Australia10,11. Although owned, these dogs roam freely, posing a risk in the case of a rabies incursion 
due to the potential for high contact rates10. Overlap between wild-dog territory and roaming ranges of domestic 
dogs also presents a risk of canine-rabies transmission between these populations12, and increases the risk of 
endemicity should an incursion occur5,13.

Potential spread and the impacts of rabies in Australia have been investigated using rabies-spread models 
in populations of both free-roaming domestic and wild-living dogs14–17. Whilst the size and duration of pre-
dicted outbreaks vary between models, as well as between locations and types of dog population, predictions 
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have consistently been sensitive to contact rates. Rabies is a vaccine preventable disease and mass vaccination of 
dogs is considered the foundation for canine-rabies control and elimination18; it has been demonstrated to reduce 
incidence in many regions19. However, due to the predicted influence of contact rates on disease spread, adjunct 
measures such as movement control could also reduce the potential for spread.

Accordingly, the Australian Veterinary Emergency Plan for response should a rabies incursion occur recom-
mends a range of control measures20. As well as vaccination, strategies include quarantine of suspected infected 
and exposed dogs and movement restrictions of all dogs. Research has shown that whilst movement restrictions 
would generally be supported by northern Australian communities15, effective implementation would be difficult 
due to material disadvantage in this region21. Therefore, given limited resource availability, targeted movement 
controls – for example, movement restriction of types of dogs that are more likely to roam, or restriction of all 
dogs at times when roaming is common – could be a more effective strategy than blanket movement restrictions. 
Understanding the temporal roaming patterns of free-roaming domestic dogs in northern Australian communi-
ties is needed to develop such strategies.

Previous research on free-roaming dogs in northern Australia12,22–25 and elsewhere has focussed on spatial 
patterns. For example, Hudson et al.23 demonstrated that free-roaming dogs could be categorized by the size of 
their home range and the duration required to reach maximum home range size, Oesch26 demonstrated variation 
in the home range size and speed of roaming, and Kennedy et al.27 observed increased activity by dogs at dawn 
and dusk. Research on temporal roaming patterns of free-roaming dogs is very limited.

The objective of this study was to describe the temporal roaming patterns of free-roaming domestic dogs in 
northern Australian Indigenous communities in terms of their distance from their residence, and investigate 
determinants that could influence the distance, duration and temporal patterns of roaming. Our overall aim was 
to generate information to guide strategies to restrict dog movement should an incursion of rabies occur in north-
ern Australia. It was hypothesised that the temporal roaming patterns of free-roaming domestic dogs in remote 
Indigenous communities is not random, and is influenced by determinants associated with the communities, 
individual dogs, season and the time of day.

Methods
Dataset.  Data were collated from existing GPS telemetry datasets collected from free-roaming domestic dogs 
in Indigenous communities in the Torres Strait (TS) and the Northern Peninsula Area (NPA) of Queensland, 
northern Australia (Fig. 1) between September 2013 and March 2017 (Table 1). The NPA comprises five com-
munities with a total estimated population size of 800 dogs11. The Torres Strait lies between Papua New Guinea 
and mainland northern Queensland and comprises many islands of which 17 are inhabited. The Torres Strait 
communities included in the current study were Warraber, Saibai and Kubin, with estimated population sizes of 
41, 43 and 39 dogs, respectively28.

Domestic dogs in the study communities are owned and free-roaming11,28. Very few, if any, dogs are stray 
(unowned) and dogs do not generally change ownership. Owners feed commercial dog food and scraps to their 
dogs, and dogs also scavenge food whilst roaming (from bins, school lunches, the council refuse dump and from 
other residents). Environmental health workers provide limited healthcare such as parasiticides for dogs, and 
veterinary healthcare (for example, surgical or chemical sterilisation) is provided intermittently21,29.

Figure 1.  Map of the location of the study regions (A) in a study of the temporal roaming patterns of 
free-roaming domestic dogs in the Torres Strait and Northern Peninsula Area, Queensland, Australia. 
NPA = Northern Peninsula Area, PNG = Papua New Guinea.
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Details of the methods used for data collection are included in Bombara et al.12, Durr and Ward24, Durr et al.25,  
and Brookes et al.28. The study and methods were implemented in accordance with, and were approved by, 
the Human Ethics Committee (#2013/757) and the Animal Ethics Committee (#N00/7–2013/2/6015) of The 
University of Sydney.

Briefly, datasets were collected using GPS recording units (CatTraQ™, http://www.mr-lee.com/, accessed 
1.12.18) that were attached to nylon collars and fitted to free-roaming domestic dogs at study sites. Dog selection 
was guided by local Environmental Health and Animal Management Workers. In the NPA, 159 dogs were col-
lared in 5 communities during three collection periods. Mean duration of datasets was 56.2 hours (sd 11.3 hours). 
In the TS, 76 dogs were collared in three communities during three collection periods. Mean duration of datasets 
was 69.5 hours (sd 37.1 hours). GPS ‘fix interval’ was 1 minute in the NPA and 15 s in the TS; these differences 
were a result of the different objectives of the original studies. ‘Fix intervals’ are the specified duration after the 
previous location recording (‘fix’) at which the unit starts to search for satellites to fix the next location.

Data management.  A description of individual dogs was collated in a Microsoft Excel data sheet for anal-
ysis30. Identification codes were allocated to each individual dog. Dates of collection periods were recorded for 
each GPS dataset for each dog (some dogs were collared on more than one occasion in the NPA). Age (adult [>1 
year old], puppy [≤1 year old], unknown), sex (male, female, unknown) and neuter status (neutered, entire, 
unknown) were standardised across the datasets. Region, community and the residence’s geographic coordi-
nates were recorded for each dog. The coordinates of each dog’s residence were converted from geographic to 
projected coordinates (EPSG:28353: GDA94/MGA zone 53), and their locations confirmed by plotting them in 
geographic-information software (QGIS31). Dogs for which residence location was unknown were removed from 
the analysis.

GPS datasets for each dog were prepared for analysis. GPS fixes were removed prior to when the collar was 
fitted on the dog, after the collar was removed from the dog, and if the data was implausible for free-roaming 
activity (travel by vehicle indicated by speed >20 km/h, or GPS measurement error indicated by single outlier fix). 
GPS fix coordinates were projected (EPSG:28353: GDA94/MGA zone 53).

Analysis.  All analyses were implemented in the R statistical platform32 and analysed using the packages plyr33, 
ggplot34, multilevel35, lubridate36 and splancs37.

Demographics.  Summary statistics described the number of dogs in each community and region, and their 
age and sex. Chi-squared tests were used to determine if there were significant (P ≤ 0.05) differences between sex, 
neuter status and age.

Temporal activity.  Distance from residence was calculated as the difference between residence location and 
GPS fix location for all GPS fixes. Summary statistics described mean distance from residence for all dogs. Mean 
distance from residence stratified by community, region, month and year of collection, age, neuter status and sex 
were also summarised and visualised using boxplots.

Daily pattern of activity away from dogs’ residences.  The likelihood that dogs were away from their 
residence at different times of the day was investigated using von Mises kernel density plots (circular distributions 
of distance from home over a 24 hour period; R package overlap38). Data points >44 metres away from the resi-
dence address of the dog were categorised as ‘away from residence’, to account for GPS error24. Density plots were 
stratified by region, community, age, sex and neuter status. To construct density plots, distance was aggregated 
to the mean distance from residence during seven-minute consecutive intervals for all data-sets. This interval 
was selected based on twice the mean actual fix interval for GPS units that were set to record fixes at 1-minute 
intervals (note that the actual fix interval is greater than the set interval due to the time taken to acquire enough 
satellites for a GPS fix). This avoided over-representation of GPS points from datasets in which GPS fix intervals 
were short (15 s; TS dogs).

Linear regression analyses were then conducted to further explore the daily pattern of activity away from dogs’ 
residences for each region. The dependent variable – mean hourly distance from residence – was regressed on 

Region Community
Human 
Population

Proportion 
Indigenous Study months

Northern 
Peninsula 
Area

Bamaga48 1,164 80.2% (NPA 
region)

September 2013, April 2014 
and September 2014 (NPA 
region)

Injinoo49 561

New Mapoon50 383

Seisia51 260

Umagico52 427

Torres Strait

Kubin53 187 100% December 2016

Saibai54 456 85.6% March 2017

Warraber55 245 96.7% September 2016

Table 1.  Study sites, dataset collection months and human demographics in a study of temporal activity of free-
roaming domestic dogs in the Torres Strait and Northern Peninsula Area (NPA), Queensland, Australia.
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hour of the day for each region. Coefficient plots were used to visualise the change in mean distance roamed from 
residence for a 24-hour period in each region.

Risk factors for activity away from dogs’ residences.  Regression analyses were conducted to explore 
associations between potential risk factors and the distance from residence. Dog identification was included as 
a random effect to account for multiple GPS datasets for some dogs who were monitored repeatedly in different 
years or seasons. For each dependent variable, univariable analysis was conducted to investigate the effect of 
community, month, year, sex, neuter status and the interaction between sex and neuter status on mean distance 
from residence. Biologically plausible combinations (for example, month and season, were not included together) 
of variables that were found to be significantly associated with distance from residence in the univariable analy-
ses were included in multivariable regression models. Final models were selected based on minimising Akaike’s 
Information Criterion with correction for small sample size (AICc); variables that were no longer significant were 
removed if the AICc of the subsequent model was lower than the initial model. For multivariable analyses, month 
was re-categorized to season (dry season – May to October; wet season – November to April)39.

Results
During the study period, 235 dogs were collared. After exclusion of dogs without recorded residence locations, 
213 GPS telemetry datasets were available for analysis (TS = 70 datasets, NPA = 143 datasets). The total number 
of individual dogs that were monitored was 132 (TS = 70 dogs, NPA = 62 dogs).

Table 2 shows the number of GPS datasets by age and sex for communities in each region. There was no sig-
nificant difference in the proportion of dogs collared and datasets obtained in the two regions (X2 = 0.54, df = 1, 
P = 0.50). There was also no significant difference in the proportion of male and female dogs (X2 = 0.008, df = 1, 
P = 0.93), known neuter status (X2 = 0.63, df = 1, P = 0.43) or age (X2 = 2.57, df = 1, P = 0.11) between regions.

The median distance from residence of all GPS fixes was 63 m (95% range 13–302 m; Fig. 2). Warraber had 
the largest interquartile range (IQR), whilst Saibai and Injinoo the smallest (Fig. 3). Umagico and Warraber dogs 
had the highest median distance from residence (54 m and 46 m, respectively), whilst Saibai and Injinoo had the 
lowest (28 m and 26 m, respectively; Fig. 3). Injinoo and Saibai had outliers furthest from the median (Fig. 3). By 
month, the lowest median distance from residence was in March (median 28 m) and greatest median distance was 
in August (median = 46 m; Fig. 4).

Daily pattern of activity away from dogs’ residences.  Density plots of the proportion of dogs away 
from their residence (>44 m) are shown in Figs 5 and 6. There was a general pattern of two peaks when dogs 
were away from their residences during the 24-hour period in all communities in the NPA at approximately 
0600 hrs and 1800 hrs; the largest morning peak was in Injinoo and the largest evening peak was in Seisia (Fig. 5). 
The lowest morning peak was in New Mapoon and the lowest evening peak was in Bamaga (Fig. 5). The highest 
proportion of dogs were at their residence at around 1400 hrs in all communities except Bamaga (approximately 
1700 hrs).

In the TS, the proportion of dogs away from their residence increased from midnight to reach an evening 
peak at 1800 hrs (Fig. 6); the highest evening peak was observed in Warraber. Dogs were most likely to be at their 
residence at midnight.

Both male and female dogs displayed peaks away from their residence at 0600 hrs and 1800 hrs (Supplementary 
Information, Fig. S1). Neutered and entire dogs, as well as those of unknown neuter status, also displayed the same 
peaks (Supplementary Information, Fig. S2), as did both adult dogs and puppies (Supplementary Information, 
Fig. S3).

Regression analysis showed that hour of the day was significantly associated with the mean distance from res-
idence (P < 0.001) in each region. Consistent with the density plots, there were two main peaks of mean distance 
from residence in the TS, with one morning peak around 1000 hrs to 1100 hrs, and one evening peak around 
1700 hrs to 1800 hrs. Mean distances from residence were 83 m and 77 m at 1000 hrs and 1100 hrs in the morning, 

Datasets (by age) Datasets (by sex)

Region Community Datasets (total) Adult Puppy Male Female

TS

Kubin 24 18 6 11 13

Saibai 25 22 3 16 9

Warraber 21 15 6 13 8

Region total 70 55 15 40 30

NPA

Bamaga 39 37 2 27 12

Injinoo 16 16 0 1 15

New Mapoon 30 25 5 17 13

Seisia 32 32 0 10 22

Umagico 26 25 1 11 15

Region total 143 135 8 66 77

Study total 213 190 23 106 107

Table 2.  Number of datasets by age and sex within regions and communities in a study of temporal roaming 
patterns of free-roaming domestic dogs using GPS-collars in the Torres Strait and Northern Peninsula Area, 
Queensland, Australia.
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respectively, and 118 m and 136 m at 1700 hrs and 1800 hrs in the evening, respectively (Fig. 7). In the NPA there 
was only one main peak in the evening, from 1700 hrs to 1800 hrs, with mean distances from residence of 101 m 
at both 1700 hrs and 1800 hrs (Fig. 7).

Risk factors for activity away from dogs’ residences.  Univariable regression analysis demonstrated 
that community, month and year were significantly associated with distance from residence (Table 3). The mean 
distance from residence recorded for Saibai dogs was 34 m. Dogs in Injinoo, Kubin and Seisia roamed a similar 
distance, whilst dogs in Warraber, New Mapoon, Bamaga and Umagico roamed significantly further. The dogs 
that roamed the furthest mean distance from their residence were from Umagico (102 m). Dogs roamed fur-
thest in May and September and least in March and November; they also roamed furthest in 2013 and 2014 and 

Figure 2.  Histogram of mean distance from residence at which GPS fixes were recorded in a study of the 
temporal roaming patterns of free-roaming domestic dogs in the Torres Strait and Northern Peninsula Area, 
Queensland, Australia. The red line represents median distance and blue dashed lines represent 1st and 3rd 
quartiles (interquartile range).

Figure 3.  Boxplot of mean distance from residence recorded by community in a study of the temporal roaming 
patterns of free-roaming domestic dogs using GPS collars in the Torres Strait and Northern Peninsula Area, 
Queensland, Australia.
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least in 2016 and 2017. Sex, neuter status and age were not significantly associated with distance from residence. 
Given the timing of studies (NPA communities were generally studied in 2013 and 2014, and TS communities in 
2016 and 2017), we expected that the effect of year was due to the effect of community. Therefore, ‘year’ was not 
included in the multivariable regression analyses.

Because both region and community were significantly associated with distance from residence in the uni-
variable models, two models were investigated using multivariable regression analysis and the following combi-
nations of risk factors: 1. community and season (month reduced to season [Wet or Dry] to enable convergence 
of models), and 2. region (NPA or TS) and season. Both community and season in Model 1 were significantly 
associated with distance from residence, and this model had the lowest AICc of all models, including univariable 
models, in which variables were significantly associated with distance from home (Table 4). Roaming distances 
by community were similar to those in the univariable analysis. Dogs roamed a mean of 5.5 m further in the dry 
season. Region and season were also both significantly associated with distance from residence in Model 2 and 
again, this model had lower AICc than univariable models (Table 5). Overall, dogs in the NPA were estimated to 
roam further than those in the TS region. Again, dogs were estimated to roam further (mean 6.3 m) in the dry 
season in both regions.

Figure 4.  Boxplot of mean distance from residence recorded by month in a study of temporal roaming patterns 
of free-roaming domestic dogs using GPS collars in the Torres Strait and Northern Peninsula Area, Queensland, 
Australia.

Figure 5.  Density plot of the proportion of dogs away from their residence (>44 m) in a study of temporal 
roaming patterns of free-roaming domestic dogs using GPS collars in the Northern Peninsula Area, 
Queensland, Australia.
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Figure 6.  Density plot of the proportion of dogs away from their residence (>44 m) in a study of temporal 
roaming patterns of free-roaming domestic dogs using GPS collars in the Torres Strait, Queensland, Australia.

Figure 7.  Coefficient plot of distance from residence by hour in a study of the temporal roaming patterns of 
free-roaming domestic dogs in the Torres Strait, Queensland, Australia. The coefficient is measured in meters. 
NPA = Northern Peninsula Area, TS = Torres Strait.
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Variable Level
Number in 
level Coefficient (m)

Standard 
error (m) P value AICc

Community

<0.01 167801

Saibai† 25 34.4 12.0

Injinoo 16 16.6 26.2 0.53

Kubin 24 23.0 16.9 0.17

New Mapoon 30 30.1 19.6 0.13

Warraber 21 43.8 17.6 0.01

Seisia 32 59.7 21.1 0.01

Bamaga 39 55.0 18.8 <0.01

Umagico 26 67.6 19.2 <0.01

Sex

0.21 —

Female† 107 61.8 8.0

Male 106 13.4 10.6 0.21

Neuter status

0.14 —

Entire† 136 64.2 6.3

Neutered 62 8.5 12.6 0.50

Unknown 15 38.6 19.5 0.05

Age

0.32 —

Puppy† 23 57.3 13.1

Adult 190 14.3 14.4 0.32

Month

<0.01 167818

March† 25 34.4 12.0

Nov 24 23.0 16.9 0.17

April 32 43.7 14.3 <0.01

Aug 21 43.8 17.6 0.01

May 30 44.9 14.3 <0.01

Sep 81 51.0 14.1 <0.01

Year

<0.01 167831

2017† 25 34.4 12.2

2016 45 32.5 15.0 <0.01

2013 46 45.7 14.4 0.03

2014 97 51.7 14.3 <0.01

Table 3.  Univariable regression analysis summary of fixed effects of variables associated with mean distance 
from residence in a study of the temporal roaming patterns of free-roaming domestic dogs in the Torres Strait 
and Northern Peninsula Area, Queensland, Australia. AICc = Akaike’s Information Criterion (corrected for 
small sample size). †Reference level.

Variable Level Coefficient (m)
Standard error 
(m) P value AICc

Intercept Saibai, wet season† 34.4 12.0 <0.01 167796

Community

0.01

Injinoo 11.7 26.3 0.66

Kubin 23.0 16.8 0.17

New Mapoon 25.3 19.8 0.20

Warraber 38.3 17.8 0.03

Bamaga 50.2 19.0 0.01

Seisia 55.2 21.2 0.01

Umagico 62.4 19.4 <0.01

Season
0.05

Dry 5.5 2.8 0.05

Table 4.  Summary of fixed effects of multivariable regression analysis of variables associated with mean 
distance from residence in a study of the temporal activity of free-roaming domestic dogs using GPS collars in 
the Torres Strait and Northern Peninsula Area, Queensland, Australia. AICc = Akaike’s Information Criterion 
(corrected for small sample size). †Reference level.
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Discussion
This study indicates that free-roaming domestic dogs’ use of their environment in communities in the Torres 
Strait (TS) and Northern Peninsula Area (NPA) of Queensland, Australia varies by time of the day, season 
and location. There are many potential drivers of roaming from residence by dogs in communities in which 
free-roaming is the norm. For example, roaming might be associated with human activity. In a study of urban 
free-roaming owned dogs in Chile, GPS fixes were most frequent between 12:00 and 16:00 when people returned 
home for lunch40. It was hypothesised that at other times, dogs were more likely to be asleep under cars or trees 
that obstructed sky-view for GPS fixes. Dogs in both the TS and NPA roamed furthest in the evening when people 
are likely to have returned from work or school and travel around the community for activities such as shopping, 
visiting friends and relatives, and engaging in recreational activities. The dogs might be inclined to follow their 
owners around the community, resulting in a greater proportion of dogs roaming larger distances at these times. 
Dogs also did not roam as far in the morning and middle of the day as they did in the evening. This could also be 
associated with human activity – which is likely to be reduced at these times – but might also be due to the higher 
temperatures in the middle of the day, causing dogs to seek shade.

Besides human activity, dogs might also roam to engage in dog-orientated activities such as seeking mates 
and food, and patrolling territory. We did not find that sex or neuter status influenced the distance that dogs 
roamed away from their residence, which might have been expected if mate-seeking behaviour influenced roam-
ing distance. However, due to the cyclicity of reproductive activity in dogs (generally a 6 to 9-month reproductive 
cycle in females), it is possible that the number of datasets were too few and of insufficient duration to detect 
sex-specific differences in roaming distance from residence. Previous analysis of more geographically diverse 
GPS datasets from dogs in northern Australia found that entire males generally had the largest home-ranges, a 
finding which supports this hypothesis but could also be caused by entire males patrolling their territory22,25. In a 
study of 14 livestock guardian dogs (LGD) on three large farms in Victoria, Australia, it was found that the LGDs 
had morning and afternoon peaks of activity41. The sheep that the dogs guarded also had morning and afternoon 
activity peaks, but unlike the sheep, the dogs were also more active at night than during the day. Overall, the dogs’ 
activity pattern was more consistent with the activity times of the main predator species. Therefore, the authors 
hypothesised that the dogs’ activity was most likely associated with territory patrol and protection of their sheep, 
rather than directly associated with the activity of the sheep. In the current study, territory patrol might also drive 
the peaks of activity of the dogs; wild dogs are present in the NPA and domestic dogs might perceive them as a 
threat in the early morning, whilst in both the Torres Strait and the NPA, human activity might be more influen-
tial on the distance that dogs roam in the evenings.

The potential overlap of domestic and wild dog home ranges and roaming activity is important in the context 
of rabies preparedness. In communities in which domestic dogs roam large distances – such as those in the NPA 
– there is a risk of disease spread to susceptible wildlife and feral species12. This highlights the need for effective 
movement controls in NPA communities, particularly in the early evening when there is both a greater propor-
tion of dogs that are away from their residence, and those dogs are at greater distances from their residence. Some 
species such as feral pigs or cats are spill-over hosts for rabies, and whilst it is possible that infected individuals 
could present some risk (for example to hunters and their dogs42), these populations are unlikely to become a 
reservoir of canine-rabies and present ongoing risks. However, wildlife canid populations such as red foxes are 
important hosts of rabies globally, and eradication of rabies in these populations is challenging43,44. Although 
there are no foxes in the study region, it is possible that the wild dog population could become a reservoir for 
rabies following spread from domestic dogs (or following a direct incursion into the wild dog population) in 
regions such as the NPA17,45. Such a situation is likely to be difficult to resolve and result in the need for ongoing 
vaccination of domestic dogs – requiring vigilance to maintain – as well as post-exposure prophylaxis of people 
following bites, and potential livestock losses.

Differences in dogs’ daily activity periods between regions and communities is also consistent with findings 
from other studies of free-roaming dogs, both in Australia and worldwide27,40,46. For example, Rubin and Beck 
(1982) found that free-roaming dogs in areas of Queens, New York, were most active in the early morning, with 
lower but more consistent activity later in the day. In a study in the Tiwi Islands by Kennedy et al.27, peak roaming 
occurred only in the morning, rather than in both the morning and evening. As well as differences in the need 
for territory patrol as described above, different human activity or food availability between regions and com-
munities might also exist. In another study, owned free-roaming dogs have been shown to have smaller home 
ranges than stray dogs, which was suggested to be caused by owners’ influence on their behaviour and subsequent 

Variable Level Coefficient (m) Standard error (m) P value AICc

Intercept TS, Wet 
season† 53.9 7.2 <0.01 167841

Region
0.01

NPA 24.4 10.4 0.02

Season
0.02

Dry 6.3 2.8 0.02

Table 5.  Multivariable regression analysis summary of fixed effects of variables associated with mean distance 
from residence in a study of the temporal roaming patterns of free-roaming domestic dogs in the Torres Strait 
and Northern Peninsula Area, Queensland, Australia. AICc = Akaike’s Information Criterion (corrected for 
small sample size). †Reference level.

https://doi.org/10.1038/s41598-019-51447-8


1 0Scientific Reports |         (2019) 9:14893  | https://doi.org/10.1038/s41598-019-51447-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

territory size47. In addition, environmental differences might also influence regional and community variation in 
roaming distances. Dogs in the NPA were found to roam furthest, perhaps because of more available land in the 
NPA compared to the smaller TS island communities. In particular, Saibai community is surrounded by swamp, 
mangrove and ocean without reef (unlike Warraber, where dogs roam on the reef)28 which is likely to restrict the 
distance roamed. Regardless of the reasons, community and regional differences in roaming distances and time 
of day indicates the need for response strategies tailored to individual communities or regions to ensure sufficient 
management of dog interactions to reduce disease transmission in the case of a rabies incursion.

Dogs were also found to roam further in the dry season in both the community and region models in the 
current study. Previous research has also indicated that season influences dog activity. In a study of LGDs in 
Victoria, Australia41, dogs’ peaks of activity were at sunrise and sunset and therefore, the times of day shifted with 
season due to the southerly latitude of the study location. In northern Australia, the nature of the wet season –  
monsoonal rains and areas of standing water – might present barriers to roaming, and could have restricted 
dogs’ distance from their residence in the current study, Consistent with this, in a study of the home range size of 
free-roaming domestic dogs in more diverse locations in northern Australia than the current study, home ranges 
were larger before the wet season than after25. We expect that spread of a disease such as rabies might be facilitated 
in the dry season in northern Australia, because greater roaming distances could increase the opportunity for 
interactions between dogs, as well as contact with susceptible wildlife. It is therefore important to consider the 
need for an increased focus on movement controls following an incursion in the dry season.

There are some limitations of the current study. Selection bias due to the opportunistic selection of dogs from 
owners who were present in the community and willing to participate might have influenced findings. Dogs with 
a lower propensity to roam the community might have been selected because they were more likely to be at their 
residence, resulting in under-estimation of roaming distances in these dog populations. Possible risk factors not 
considered in this study include differences in human activity, food availability, breeding season and dog breed. 
These factors might have influenced roaming distance or times and should be considered in further investiga-
tions. For example, the collection of data throughout a range of months might provide more insight about the 
influence of mate-seeking behaviour. In the TS, fewer datasets were included in the study, which might have 
reduced precision of estimations and power to detect significant differences between risk factors. GPS error might 
also have affected the precision of estimates, but it is unlikely that GPS error was greater in one of the regions 
compared to the other.

In conclusion, we identified that location, season and hour of day were significantly associated with the roam-
ing activities of free-roaming domestic dogs. When planning rabies control strategies – such as dog movement 
controls or the availability of dogs for vaccination – these factors should be taken into consideration. In the 
regions in this study, movement controls should be targeted to the early evening, when the greatest proportion of 
dogs are roaming at the furthest distances from their residences. Increased rigor of movement controls of domes-
tic dogs and surveillance of wildlife is also required in the dry season, when dogs roam further.
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