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Abstract
The sequence–structure–function paradigm of proteins has been revolutionized by

the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered

regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstruc-

tured under physiological conditions. The absence of well-defined three-dimensional

structures in the free state of IDPs/IDRs is fundamental to their function. Folding

upon binding is an important mode of molecular recognition for IDPs/IDRs. While

great efforts have been devoted to investigating the complex structures and binding

kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs

remains very limited. Here, we review recent advances on the binding mechanisms

of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly,

and the binding mechanisms can be highly dependent on the structural properties of

IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection

and induced fit in a binding process, which can be templated by the target and/or

encoded by the IDP/IDR. Further studies should provide deeper insights into the

molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR

binding mechanisms in the future.

KEYWORD S

binding kinetics, fuzzy interaction, intrinsically disordered proteins, molecular recognition, transition state

1 | INTRODUCTION

Proteins are important biological molecules. The three-
dimensional (3D) structure, which is determined by the primary
amino-acid sequence, is critical for a protein to carry out its
functions. Traditionally, proteins are classified as being either
ordered (folded) or disordered (unfolded) by analyzing their
conformational states. Ordered proteins have well-defined

3D structures and exhibit small-scale structural fluctuations
under physiological conditions. On the contrary, intrinsically
disordered proteins could sample an ensemble of con-
formations which may be compact (molten globule-like) or
extended (coil-like or pre-molten globule-like).1–5 Further-
more, proteins can be entirely disordered polypeptides (IDPs)
or a combination of disordered regions (IDRs) and ordered
domains.6–8

Based on bioinformatics predictions, IDPs/IDRs are abun-
dant in all species.9–11 By analyzing the proteomes of 3,484
species and correlating the fraction of disordered residues with
proteome size, it is shown that eukaryotes have more disor-
dered residues than prokaryotes.12 A recent comprehensive
analysis of over 6 million proteins characterized intrinsic dis-
order at proteomic and protein levels indicates that IDPs/IDRs
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are more abundant in eukaryotes and certain functions are
exclusively implemented by IDPs/IDRs.13 The correlation
between the organism complexity and the amount of intrinsic
disorder are consistent with the extensive involvement of
IDPs/IDRs in regulatory and signaling functions and the
increased disorder content in eukaryotic proteomes might
be used by nature to deal with the increased cellular
complexity.12,14,15

IDPs/IDRs are involved in various biological functions. In
a comprehensive bioinformatics study carried out by Xie
et al.,16,17 a positive correlation between the functional annota-
tion of the SwissProt database and the predicted intrinsic disor-
der has been found. Generally, IDPs/IDRs are enriched in
proteins involved in signaling and regulatory functions, includ-
ing transcription regulation, cell cycle, mRNA processing,
scaffolding, and apoptosis.6,14,15,18–31 Consequently, dys-
regulation of IDPs/IDRs are associated with a variety of
human diseases.32–44 Most recently, many IDPs/IDRs are
found to be able to undergo liquid–liquid phase separation
(LLPS), which is related to the assembling of membraneless
organelles in vivo.45–53 So far, studies on IDPs/IDRs have
greatly extended our understanding on the sequence–structure–
function relationship of proteins.29,54–56 Recently, the protein
structure–function continuum concept was proposed by
Uversky to illustrate the numerous biological functions of p53
through multiple proteoforms by various mechanisms and may
be extended to many multi-function IDPs.57

In this review, we will summarize recent advances of our
understanding on the molecular recognition of IDPs/IDRs. We

will focus on specific interactions between IDPs/IDRs and their
targets, which usually result in folding of the IDPs/IDRs upon
target binding. We will discuss the mechanistic features of
molecular recognition inferred from kinetics, thermodynamics,
and structure investigations.

2 | MOLECULAR RECOGNITION
FEATURES

The flexible structures of IDPs/IDRs make them suitable for
cellular regulatory and dynamic signaling processes.14 Several
functional modes have been summarized for IDPs/IDRs,
including entropic chains, effectors, scavengers, assemblers,
display sites, and chaperones.7,30,58 A common module for
molecular recognition within IDPs/IDRs is often known as
molecular recognition features (MoRFs) or short linear
motifs.59–63 The sequence features of MoRFs are distinct from
the rest portion of IDPs/IDRs, enabling development of pre-
dictors to identify MoRFs.64 For example, ANCHOR predicts
disordered binding regions based on the pairwise energy esti-
mation from IUPred.65–68 Usually, upon binding to their
partners, MoRFs undergo disorder-to-order transitions. This
process is termed coupled folding-binding.69,70 The structures
of MoRFs adopted upon binding can be divided into three
types: α-helix, β-strand, and irregular secondary structure.
IDPs/IDRs can utilize multiple MoRFs simultaneously when
interacting with their binding partners (Figure 1).59

Studying the recognition mechanisms of IDPs/IDRs
with their partners is not a trivial task. In recent years,

FIGURE 1 Examples of intrinsically disordered protein (IDP) complex with various combinations of molecular recognition features (MoRFs).
IDPs are shown in rainbow color and the targets are shown in gray. PDB IDs are: Bim/MCL-1 (2NL9), CSL/notch (2FO1), FOXO3a/KIX (2LQI),
MLV IN/Brd4 (2N3K), Rb/E2F1-DP1 (2AZE), and ExsC/ExsE (3KXY)
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however, large progress has been made from a close collab-
oration between experimental and computational studies.
A spectrum of techniques have been applied to study
IDPs/IDRs, providing valuable information on their struc-
tures, dynamic properties and binding mechanisms.2,3,71–75

In parallel, molecular modeling and computer simulations
provide atomic pictures of conformation ensembles and
binding processes as well as reveal important underlying
physical principles.76–82

3 | RATE CONSTANTS

Coupled folding with binding has been suggested to enhance
the binding rates of IDPs/IDRs.83 Theoretical analysis and
computer simulations predicted that the “fly-casting” effect
accelerates the binding rate by twofolds to threefolds.83–85

Consistent with this prediction, rate constants of IDP/IDR-
protein interactions from the literature show differences from
those of ordered proteins in a general trend.85 The binding
kinetics of IDPs/IDRs is affected not only by the overall
structure flexibility, but also by the local conformation pref-
erence of MoRFs. Stabilizing the preformed conformation of
MoRFs has been found to accelerate the association rate
constants (kon), due to an increase of the probability of con-
verting collision complexes to bound state.86–90 On the other
hand, increasing the degree of disorder has been found to
significantly increase the dissociation rate constant (koff),
suggesting that the dominant effect of disorder on molecular

recognition may be to accelerate dissociation rather than
association.87,91 While computer simulations provide
detailed correlation between conformation disorder and
binding/unbinding rate constants, it is difficult to test the
actual role of disorder in binding kinetics experimentally as
it is hard to quantify the extent of disorder and the influence
on binding kinetics could be resulted from changes in the
interactions between the target and IDP/IDR or changes in
the binding mechanism.

Electrostatic interactions could play important roles in the
coupled folding-binding process of IDPs/IDRs as many
MoRFs contain charged residues.92 For many studied IDPs/
IDRs, the kon values are reduced for about ten folds when the
salt concentration increases from low (~50 mM) to high
(~500 mM), that is, ∂log(kon)/∂log(Csalt) ≈ − 1 (Table 1), indi-
cating the presence of favorable electrostatic interactions.
Molecular dynamics simulations found that long-range electro-
static interactions accelerate the binding rate in a range consis-
tent with experimental results.97,104–108 More importantly,
simulations revealed that electrostatic forces enhance the bind-
ing kinetics not only by increasing the encounter rate but also
by enhancing the efficiency of IDPs/IDRs evolving to
the bound states upon encounter.105,108 Advances in single
molecule techniques allow the detection of transient species
during a coupled folding-binding process. Interestingly, the
transition path times of ACTR/NCBD interaction is much lon-
ger than the transition path times of protein folding, indicating
the presence of stable intermediate state along the binding

TABLE 1 Effect of salt
concentration on the association rate
constant of IDPs

IDP Number of charges Target ∂log(kon)/∂log(Csalt) Reference

p5313-61 –11 +1 NCBD −2.10 93

HPV E7 −4 +0 Rb −1.56 94

MLL −6 +1 KIX −1.52 95

STAT2 −10 +4 TAZ1 −1.32 96

ACTR −11 +4 NCBD −1.26 93

p27 −16 +14 Cdk2/cyclin A −1.21 97

SRC1 −11 +5 NCBD −1.15 93

E3IDP −12 +20 Im3 −1.06 98

TIF2 −9 +2 NCBD −0.86 93

PUMA −10 +6 MCL-1 −0.68 99

WASP −21 +21 Cdc42 −0.62 100

p5313-63 −12 +1 Mdm2 −0.56 101

p7311-25 −3 +0 Mdm2 −0.38 101

c-Myb −5 +5 KIX −0.25 102

p5315-29 −3 +1 Mdm2 −0.21 101

p6352-65 −3 +0 Mdm2 0.13 101

eIF4G −2 +4 eIF4E 0.75 103

Abbreviation: IDP, intrinsically disordered protein.
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process.109 Furthermore, the lifetime of transient complexes for
ACTR/NCBD is also longer than that for barnase/barstar,110

consistent with previous simulation predictions.85

It is noted that as the conformations of IDPs/IDRs are
highly dynamic, electrostatic interactions between IDPs/IDRs
and their targets during the encounter process may be different
from those of the corresponding ordered proteins, which may
be reflected from a recent study on the interactions between
the colicin E3 rRNase domain (E3) and the immunity protein
Im3 (Figure 2a).98 Although E3 is a folded domain, disorder
prediction suggests that it contains high disorder propensities
(Figure 2b,c). Actually, a single alanine mutation at Tyr507
within the hydrophobic core of E3 causes the protein to
become an IDP (E3IDP). Kinetics studies show that kon of
E3WT with Im3 is decreased by three orders of magnitude
when the salt concentration is increased. However, under the
same range of salt concentration, kon of E3

IDP with Im3 is only
decreased by less than 40 folds (Figure 2d).98 However, as the
mechanism of E3IDP binding to Im3 is unclear, it is unknown
whether E3IDP folds before binding or folds during binding. In
this context, the salt dependence of the association rate con-
stant for E3IDP/Im3 interaction remains elusive.

4 | CONFORMATIONAL
SELECTION, INDUCED FIT AND
BEYOND

Recently, Dunker and Oldfield111 suggested that the interac-
tion between an IDP/IDR and its partner should not be
described as induced fit where the protein is folded but can
adjust its structure to fit the substrate. However, since the
discovery of IDPs/IDRs, the sequence–structure paradigm
has been revolutionized. In this context, it should be

reasonable to expand the concepts of induced fit to analyze
the binding processes of IDPs/IDRs. Thus, in an induced fit
process, unfolded conformations of an IDP/IDR are able to
weakly interact with the target to form encounter complexes
which induce the unfolded conformations fold into the bound
conformations. On the contrary, in a conformational selection
process, an IDP/IDR samples unfolded conformation as well
as pre-folded conformations and only the prefolded conforma-
tions are binding competent.

Conformational selection and induced fit have been widely
applied to explain the coupled folding-binding process of
IDPs/IDRs.75,112,113 Which mechanism dominates during
the binding process depends on several factors, including
the structure preference and conformational dynamics of the
IDPs/IDRs, the association rate, and the concentration as
well.114–125 It has been established that IDPs/IDRs sample a
variety of conformations rapidly.126–129 At one extreme, if the
conformation ensemble of an IDP/IDR in the unbound state is
completely different from that in the bound state, it is expected
that the binding process proceeds via the induced fit mecha-
nism. Except this extreme condition, (partially) bound-like
conformations could be sampled by the free IDPs/IDRs. It is
plausible that these preformed bound-like conformations can
also initiate the binding process. Under such circumstance, the
observed binding mechanism is determined by a competition
between the flux of conformational selection and that of
induced fit.119–122 The flux from unbound state to bound
state is determined by the folding/unfolding rate constants,
association/dissociation rate constants as well as protein con-
centrations.119 The flux description predicts that conforma-
tional selection is favored when the folding kinetics of free
IDPs/IDRs is fast, affinity for inactive conformations is low,
and protein concentration is low.121 In another study, similar
conclusions are reached for the effect of protein concentration

FIGURE 2 Binding of E3 to Im3. (a) Crystal structure of E3/Im3 complex. E3 is shown in rainbow color and Im3 in gray. (b) Disorder
propensity prediction of E3 using three different predictors: IUPred2 (black), MFDp2 (red), and PONDR VL-XT (blue). (c) Location of E3 on the
charge-hydrophobicity plot. The black line indicates the boundary between the intrinsically disordered proteins (IDPs) region and the ordered
proteins. (d) Effect of salt concentration on kon for E3

WT and E3IDP98
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via molecular dynamics simulations; however, the effect of
conformation transition kinetics is opposite.120 Sampling of the
bound-like conformations in the unbound state is necessary but
not sufficient for a conformational selection process. As confor-
mational transitions occur in the unbound state as well as in the
loosely bound state, increasing conformation transition kinetics
will push the mechanism toward induced fit.120,122

Several experimental strategies have been proposed to
distinguish conformational selection from induced fit. Weikl
and Deuster114 proposed a framework by perturbing the con-
formational equilibrium between the inactive conformations
and active conformations via introducing mutation far from
ligand binding site. In the case of conformational selection,
such mutations will mainly change the association rate,
whereas in the case of induced fit, the dissociation rate will
be mainly affected. In the interactions between the BH3
motif of PUMA and the structured protein MCL-1, the heli-
cal structure of PUMA was modulated by mutating solvent-
exposed residues to proline or glycine.87,130 The mutations
resulted in a modest effect on kon but a significant effect on
koff, suggesting that the PUMA/MCL-1 interaction is an
induced fit process. Stabilizing the helical conformation by
trifluoroethanol may be applied to perturb the conforma-
tional equilibrium as well. Increasing the trifluoroethanol
concentration increased the helix content of c-Myb and
decreased the dissociation rate of c-Myb/KIX complex,
suggesting that folding of c-Myb is induced after KIX bind-
ing.131 The ACTR/NCBD interaction was investigated by
selectively perturbing the amount of secondary structure in
free ACTR via mutation and kon and koff were affected to
similar extent,86,89 suggesting that conformational selection
is involved in the ACTR/NCBD binding process. While
mutational analysis provides clues to speculate the binding
mechanism, a correlation between helix propensity and rate
constants is not a proof for conformational selection.116,132

Other proposed strategies rely on measuring the observed
rate constant under various ligand or/and target concentra-
tions and investigating the dependence of observed rate con-
stant on concentration.115–118 For example, a comparison of
the observed rate constant for various ACTR/NCBD concen-
trations and NTAIL/XD concentrations suggest that their
binding processes are induced fit.116,133,134

From studies on IDP/IDR-protein interactions, it is likely
that the binding processes are induced fit combined with vari-
ous degree of conformational selection.75,135 As discussed
above, the relative flux through these two pathways is deter-
mined by the protein concentrations, association rate and con-
formation transition kinetics. It is plausible that the partially
preformed bound-like conformations play a role in the initial
binding step, forming weak encounter complexes which fur-
ther evolve into the bound conformation.90 Recently, through
NMR investigation, Schneider et al.136 found that the free-
state conformational equilibrium of NTAIL is funneled by

interactions with XD, leading to preformed bound-like
conformations in the encounter complex. Thus, the free-state
conformational transition of an IDP/IDR and its interactions
with the target are coupled in the “conformational funneling”
description of the folding-binding process.132,136 Structure
information on the encounter complexes, the intermediates,
and transition states will be of great value for comprehensive
understanding of the entire binding process.

5 | THE TRANSITION STATES

It is important to analyze the transition state to understand
how a coupled folding-binding process crosses the free
energy barrier. This can be achieved by ϕ-value analysis and
linear free-energy relationships (LFERs) analysis. In a
coupled-folding binding process, the ϕ-values are calculated
from the free energy change for the transition state (ΔΔG‡)
and at equilibrium (ΔΔGEq):

ϕ=
ΔΔG‡

ΔΔGEq
, ð1Þ

ΔΔG‡ =RTln
kwild-typeon

kmutant
on

� �
, ð2Þ

ΔΔGEq =RTln
Kmutant

d

Kwild-type
d

 !
: ð3Þ

By comparing the influence of a point mutation on kon
and Kd, the ϕ-value of a residue provides information on the
proportion of native contacts (either intermolecular or intra-
molecular) it makes at the transition state. In general, resi-
dues with ϕ ≈ 0 and ϕ ≈ 1 indicate their structures in the
transition state resemble those in the unbound state and the
bound state, respectively.

Although with a lower resolution, the location of transi-
tion state can also be inferred from the LFER analysis. Small
structure alteration on the unbound molecules will result in
changes in the complex stability and association kinetics by:

log
kMT
on

kWT
on

= αlog
KWT

d

KMT
d

: ð4Þ

The parameter α (0 ≤ α ≤ 1) measures the location of the
transition state along the binding path. Binding processes
with α ≈ 0 and α ≈ 1 mean that the transition state is
unbound-like and bound-like, respectively. The LFER analy-
sis is helpful to identify the location of transition state when
mutations result in small changes in stability, prohibiting
reliable calculations of ϕ-values.
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ϕ-value analysis and LFER analysis have been applied to
many IDP/IDR complexes (Table 2). In most studied cases,
low fractional values of ϕ and α are commonly observed, indi-
cating that IDPs/IDRs remain largely unstructured in the transi-
tion states. This is manifested in the conformation ensemble of
transition states obtained via molecular dynamics simulations
using ϕ-values as restraints.138,147 It is noted that ϕ-values are
not evenly distributed along the sequences. Residues with high
ϕ-value may serve as the anchor sites to stabilize the encounter
complexes, allowing the encounter complexes to cross the free
energy barrier and evolve to native bound states. This picture
resembles the dock-and-coalesce mechanism proposed by
Zhou et al.150 Furthermore, low values of ϕ and α highlight
the importance of non-specific interactions (including electro-
static and hydrophobic interactions) in the initial stage of bind-
ing, probably stabilizing the encounter complexes.

6 | IDPS/IDRS ENCODED BINDING
VERSUS TARGET TEMPLATED
FOLDING

Since IDPs/IDRs are mainly unfolded in their unbound
states, their folded structures observed in the complex state
should be induced or stabilized by the binding partners. It

remains unclear how a coupled folding-binding process is
encoded. The sequence–structure relationship of proteins
tells that the 3D structure of a protein is primarily encoded
by its sequence. Extending this paradigm to the coupled
folding-binding of IDPs/IDRs, it is expected that the folded
structure of an IDP/IDR in its bound state and its binding
mechanism are determined by its sequence and/or the tar-
get's sequence (thus the target's structure).

An IDP/IDR binds to diverse targets and folds into similar
structures resembling its free conformation ensemble should
support that the folded structure of an IDP/IDR is encoded by
its sequence. An example is the N-terminal transactivation
domain of p53, which forms similar α-helical structures upon
binding to Mdm2 (PDB 1YCR), MdmX (PDB 2MWY),
TAZ1 (PDB 5HOU), TAZ2 (PDB 2MZD), tfb1 PH domain
(PDB 2GS0), RPA70 (PDB 2B3G), HMGB1 (PDB 2LY4),
and NCBD (PDB 2L14). Besides the folded structure, the bind-
ing mechanism can also be encoded by the IDPs/IDRs. Clarke
et al141 compared the transition states between the disordered
BH3-only proteins PUMA and BID and the folded BCL-2–like
proteins A1 and MCL-1 using ϕ-value analysis. They found
that the ϕ-value profiles for PUMA and BID are conserved
when binding to different partners, suggesting that the binding
processes of PUMA and BID are encoded by the IDPs/IDRs
but not templated by the partners (Figure 3a). Recently, Wu

TABLE 2 ϕ-Value analysis of coupled folding-binding process

IDP Target
ϕ-Value
distribution Reference IDP Target

ϕ-Value
distribution Reference

HIF-1α TAZ1 137 c-Myb KIX 88,138,139

STAT2 TAZ1 96 pKID KIX 140

PUMA A1 141 MLL KIX 142

PUMA MCL-1 130,141 E6 peptide PDZ2 143

BID A1 141 S peptide S protein 144

BID MCL-1 141 NTAIL X domain 145

α-Spectrin β-Spectrin 146 ACTR NCBD 86,147,148

C-terminal tail
of nNOS PDZ

Syntrophin PDZ 149

Note: The IDPs are colored in light green and the targets are colored in gray. Residues with low (ϕ ≤ 0.25), medium (0.25 < ϕ < 0.6), and high (ϕ ≥ 0.6) ϕ-values are
highlighted in blue, magenta, and red, respectively.
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and Zhou altered the binding pathways of WASP with Cdc42,
either suppressed the original dominant pathway or promoted a
new dominant pathway through manipulating the charged resi-
dues on WASP,151 further emphasized the role of IDPs/IDRs
in encoding the binding process.

On the other hand, there are also evidences showing
that the folding/binding process is templated by the target.
Although they bind to the same pocket of S100B, the
C-terminal segment of p53 and TRTK-12 show low sequence
similarity and form different bound conformations. However,
computer simulations show strong similarities in the binding
intermediate states of the two peptides, suggesting that S100B
templates the binding process.152 Toto et al. perturbed the
hydrophobic network of KIX using site-directed mutagenesis
and investigated the folding mechanism of c-Myb with wild-
type and mutated KIX.138 By performing a LFER analysis,
they found that the α-value decreases from 0.89 for wild-type
KIX to around 0.5 for I26V and L43A mutants and to 0.19
for I72V mutant. The decrease in α-value appears to be corre-
lated to the decrease in the hydrophobic solvent accessible
surface area in the binding site on KIX [Figure 3b]. It is sur-
prised to find that the structure of KIX dictates the folding
mechanism of c-Myb as c-Myb has a strong propensity for
α-helix formation in its N-terminus and the coupled folding-
binding process of c-Myb to KIX has been suggested to
involve elements of conformational selection.88 The templated
folding mechanism has been suggested to enable IDPs/IDRs
to be specifically recognized by multiple targets.138 A similar
strategy was applied to investigate the interactions between
NTAIL and XD and revealed that the binding process of NTAIL

is very malleable and is affected by the structure of XD.153

On the contrary, mutagenesis and ϕ-value analysis revealed
that the transition state of ACTR/NCBD complex is highly
heterogeneous and is robust with respect to most mutations
for ACTR or NCBD.147

As IDPs/IDRs possess various sequence and structure
preferences, the above discussions indicate that the coupled
folding-binding process of an IDP/IDR could be templated
by the partner as well as encoded by its sequence. Further

mechanistic studies are required to reveal the microscopic
details on how a target templates or how an IDP/IDR encodes
the binding/folding process.

7 | EFFECT OF
MACROMOLECULAR CROWDING

The intracellular environment is very crowded since up to 40%
of the volume of a cell is occupied by biological macromole-
cules.154 Macromolecular crowding can affect protein–target
binding and protein folding.155 In particular, the malleability of
IDPs/IDRs makes them susceptible to the influence of macro-
molecular crowders.156,157 Conformational compaction of IDPs/
IDRs by macromolecular crowders has been observed, where
the effect depends not only on the crowder size and concentra-
tion, but also on the properties of IDPs/IDRs.158–163 MAP2c,
p21Cip1, and FlgM show global compaction and local structur-
ing in crowded conditions.164,165 The distal helix of cal-
cineurin and transiently helical regions of ACTR are also
stabilized when crowded by synthetic polymers.166,167 How-
ever, conformational compaction induced by crowders is not
necessary to promote secondary structure formation for IDPs/
IDRs. For example, α-Casein, the C-terminal activation domain
of c-Fos, and the kinase-inhibition domain of p27Kip1 shows lit-
tle structural changes under crowded conditions.164,168

Besides modulating the conformational properties of
IDPs/IDRs, macromolecular crowding also affects their diffu-
sion properties. In general the translational and rotational dif-
fusions of IDPs/IDRs are reduced.169,170 Interestingly, the
effect of crowding on the diffusion of IDPs/IDRs is less than
that on folded proteins.169,170 Consequently, larger IDPs/IDRs
may diffuse faster than smaller folded proteins in cells.169

Recently, study on FlgM under crowded condition reveals the
presence of extended conformations which snake through
interstitial crevices and bind multiple crowders simulta-
neously.171 It is probable that such extended conformations
may facilitate recognition of IDPs/IDRs under crowded
conditions.

FIGURE 3 Illustrations of intrinsically disordered protein (IDP) encoded binding and target templated binding. (a) ϕ-values for the disordered
BH3-only protein PUMA binding with BCL-2–like proteins A1 and MCL-1.141 (b) correlation of α-value from linear free-energy relationships
(LFER) analysis for c-Myb with the hydrophobic solvent accessible surface area in the binding site on KIX138
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It is also important to directly study the effect of macro-
molecular crowding on the molecular recognition process.
Binding of calmodulin with CaMKI peptide was investi-
gated under crowded conditions.172 It was found that the
on- and off-rates are reduced by about two folds in a com-
pensatory fashion, thus the binding affinity is almost not
changed. The reduction of association rate constant sug-
gests that binding of CaMKI peptide with calmodulin is
under diffusion control and crowding slows down the diffu-
sion process.155,172 For reaction control binding process, it
is expected that the association rate constant will be
increased.155 In another study, computer simulation on the
coupled folding-binding of pKID with KIX showed that the
folding-binding mechanism observed in bulk solution
remains unchanged under highly crowded conditions.173 It
seems that molecular crowding has small effect on the bind-
ing mechanism of IDPs/IDRs.

8 | DYNAMIC CONTACTS AND
FUZZY INTERACTIONS

While the main recognition elements are folded upon binding
for many IDPs/IDRs, they may still exhibit conformational
dynamics in the complex state.174,175 For example, the TAD
of STAT2 only undergoes a partial disorder-to-order transi-
tion upon binding with TAZ1 and retains subnanosecond
motions.176 Conformational dynamics in the bound state
enables the IDPs/IDRs to form polymorphic contacts with the
partners.177 Such heterogeneity in the bound form is referred
to as fuzziness.175,178 Fuzziness and dynamic binding are uni-
versal in the molecular recognition of IDPs/IDRs and are
beneficial for their function.8,174,179 The presence of fuzzy
interacting regions adjacent to the main binding elements can
regulate binding affinity, specificity, and selectivity.180–183

Fuzzy regions also facilitate IDPs/IDRs-mediated allosteric
communication.184 Furthermore, transient binding interactions
can promote formation of non-native interactions stabilizing
the encounter complexes, thus enhance the binding kinet-
ics.185 Dynamic interactions can also modulate the folding-
binding mechanism of IDPs/IDRs.186 As discussed above,
folding of c-Myb is templated by KIX, where transient
non-native hydrophobic interactions between c-Myb and KIX
populate when the hydrophobic surface in the binding site of
KIX is enlarged.138

Multivalent dynamic interactions are the main driving
forces of LLPS.187,188 Though many IDPs/IDRs involved in
LLPS apply multisite electrostatic and aromatic interactions,
dynamic coupled folding-binding interactions mediated by
specific recognition elements can also drive LLPS. For exam-
ple, interactions between SH3 domain and proline-rich motif
are involved in the LLPS of the nephrin–NCK–N-WASP
system and the RIM–RIM-BP system.189,190 PDZ domain-

mediated binding is required for phase separation of PSD
scaffold proteins.191,192 Multivalent arginine-rich linear motifs
interact with the NPM1 pentamer, leading to LLPS.193 Within
the protein-rich droplets, non-native transient interactions are
expected to become more populated than in dilute solution.
Nevertheless, the specific binding between the recognition
motif and the target domain should remain unchanged.

9 | POSTTRANSLATIONAL
MODIFICATIONS

IDPs/IDRs are enriched in posttranslational modification
(PTM) sites, such as phosphorylation, acetylation, and methyl-
ation.16,194,195 PTMs can regulate molecular recognition of
IDPs/IDRs in various ways.18 For example, PTMs can alter the
free energy landscapes of IDPs/IDRs, leading to changes in the
conformation ensembles. Bah et al. showed that phosphoryla-
tion of 4E-BP2 at T37 and T46 induces folding of 4E-BP2 into
a four β-strand structure, sequestering the eIF4E-binding motif
and blocking its accessibility to eIF4E.196 However, the struc-
tural changes induced by PTMs could also be subtle, as
observed in the N-terminal transactivation domain of p53.197

PTMs located at the binding interface can directly regulate the
interactions between IDPs/IDRs and the targets, for example,
phosphorylation will introduce electrostatic interactions
between the phosphate moiety and the binding partner.198

Interestingly, PTMs alter not only the equilibrium conforma-
tion ensemble but also conformational exchange among differ-
ent conformations.199 Consequently, the binding mechanisms
can also be modulated by PTMs.

10 | ALTERNATIVE SPLICING

Alternative splicing (AS) generates various protein forms
from a single gene. Previous studies have revealed that AS
sites are often located within IDRs which are enriched in
molecular recognition motifs.200,201 As molecular recognition
processes of IDPs/IDRs are mainly mediated by short recog-
nition elements, removal of recognition elements by AS will
eliminate existed molecular interactions or enable new inter-
actions when competitive interactions are removed. Some
proteins contain auto-inhibition segments that mask the bind-
ing sites or compete with other molecules for binding.202

Removal of the auto-inhibition segments by AS will switch
the proteins into active states or increase the binding affinities
for other molecules. Consequently, removing disordered seg-
ments containing different functional or signaling elements
allows for rewiring the cellular signaling pathways.19,26,203
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11 | CONCLUSIONS AND FUTURE
PERSPECTIVES

IDPs/IDRs are abundant in all species and involved in vital
biological processes. Coupled folding upon binding is an
important mode of molecular recognition for IDPs/IDRs.
IDPs/IDRs can employ various combinations of conforma-
tional selection and induced fit mechanisms and the binding
process can be templated by the target and encoded by the
IDP/IDR as well. The coupled folding-binding process can
also be heterogeneous or fuzzy. While great efforts have been
devoted to investigating the complex structures and binding
kinetics and affinities, our knowledge on the binding mecha-
nism of IDPs/IDRs remains very limited. Application of
advanced kinetic techniques and NMR will provide deeper
understanding on the features/mechanisms of molecular
recognition of IDPs/IDRs in the future, which may enable
rational design of IDP/IDR binding mechanisms.
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