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Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged at
the end of last century as a human pathogen capable of causing severe
acute respiratory infection and encephalitis. Although NiV provokes serious
diseases in numerous mammalian species, the infection seems to be
asymptomatic in NiV natural hosts, the fruit bats, which provide a
continuous virus source for further outbreaks. Consecutive
human-to-human transmission has been frequently observed during
outbreaks in Bangladesh and India. NiV was shown to interfere with the
innate immune response and interferon type I signaling, restraining the
anti-viral response and permitting viral spread. Studies of adaptive
immunity in infected patients and animal models have suggested an
unbalanced immune response during NiV infection. Here, we summarize
some of the recent studies of NiV pathogenesis and NiV-induced
modulation of both innate and adaptive immune responses, as well as the
development of novel prophylactic and therapeutic approaches, necessary
to control this highly lethal emerging infection.

Keywords
Nipah virus, innate immunity, adaptive immunity, pathogenesis, animal
models, contra-measures

* *

*

     Reviewer Status

  Invited Reviewers

 version 1
published
16 Oct 2019

   1 2 3

, National Institute of AllergyVincent Munster

and Infectious Diseases, National Institutes of
Health, Hamilton, USA

1

, Cornell University,Hector Aguilar-Carreno

Ithaca, USA
2

, Icahn School of Medicine at MountBenhur Lee

Sinai, New York, USA
3

 16 Oct 2019,  (F1000 Faculty Rev):1763 (First published: 8
)https://doi.org/10.12688/f1000research.19975.1

 16 Oct 2019,  (F1000 Faculty Rev):1763 (Latest published: 8
)https://doi.org/10.12688/f1000research.19975.1

v1

Page 1 of 10

F1000Research 2019, 8(F1000 Faculty Rev):1763 Last updated: 16 OCT 2019

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/8-1763/v1
https://f1000research.com/articles/8-1763/v1
https://orcid.org/0000-0003-0578-7765
https://f1000research.com/articles/8-1763/v1
https://doi.org/10.12688/f1000research.19975.1
https://doi.org/10.12688/f1000research.19975.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.19975.1&domain=pdf&date_stamp=2019-10-16


 

 Branka Horvat ( )Corresponding author: branka.horvat@inserm.fr
  : Data Curation, Investigation, Writing – Original Draft Preparation, Writing – Review & Editing;  : DataAuthor roles: Pelissier R Iampietro M

Curation, Investigation, Writing – Original Draft Preparation, Writing – Review & Editing;  : Conceptualization, Funding Acquisition, ProjectHorvat B
Administration, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

 No competing interests were disclosed.Competing interests:
 The work was supported by LABEX ECOFECT (ANR-11-LABX-0048) of Lyon University within the “Investissements d’Avenir”Grant information:

program (ANR-11-IDEX-0007) conducted by the French National Research Agency (NRA) and by the Aviesan Sino-French agreement on Nipah
virus study. RP is supported by a doctoral fellowship from the Direction Générale de l’Armement (DGA). 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2019 Pelissier R  . This is an open access article distributed under the terms of the  , whichCopyright: et al Creative Commons Attribution License
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Pelissier R, Iampietro M and Horvat B. How to cite this article: Recent advances in the understanding of Nipah virus
 F1000Research 2019,  (F1000 Faculty Rev):1763 (immunopathogenesis and anti-viral approaches [version 1; peer review: 3 approved] 8

)https://doi.org/10.12688/f1000research.19975.1
 16 Oct 2019,  (F1000 Faculty Rev):1763 ( ) First published: 8 https://doi.org/10.12688/f1000research.19975.1

Page 2 of 10

F1000Research 2019, 8(F1000 Faculty Rev):1763 Last updated: 16 OCT 2019

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.19975.1
https://doi.org/10.12688/f1000research.19975.1


Introduction
Emerging infectious diseases pose a significant threat to 
human and animal welfare in the world. Nipah virus (NiV) 
is a recently emerged zoonotic Paramyxovirus, from the  
Mononegavirales order, capable of causing considerable  
morbidity and mortality in numerous mammalian species,  
including humans1–3. Although NiV infection remains rare in 
humans, this virus has captured the attention of both scientific 
and public health communities because of its high fatality rate,  
ranging from 40% in Malaysia to more than 90% in Bangladesh 
and India, where it was associated with frequent person-to- 
person transmission4,5. Having the capacity to cause severe  
zoonosis with serious health and economic problems, without 
efficient treatment yet available, NiV is considered a possible  
agent for bioterrorism6, has global pandemic potential7, and is 
classified as a biosecurity level 4 (BSL4) pathogen. In 2015, the  
World Health Organization included NiV in the Blueprint list 
of eight priority pathogens for research and development in a  
public health emergency context8. Furthermore, the Coalition 
for Epidemic Preparedness Innovations has targeted NiV as a  
priority for vaccine development on the basis of its high potential  
to cause severe outbreaks9.

Viral structure and epidemiology
NiV belongs to Henipavirus genus, along with the highly 
pathogenic Hendra virus (HeV), which emerged in Australia  
in 199410, and the non-pathogenic Cedar virus discovered in  
201211. Moreover, Henipa-like full-length viral sequences 
were found in African fruit bats12 and Chinese rats (Moijang  
virus)13. Two major genotypes of NiV have been identified 
so far: Malaysia and Bangladesh, which share 92% of nucle-
otide homology14,15 and present some differences in their  
pathogenicity16. The NiV genome is composed of a negative- 
sense, single, non-segmented RNA and contains six tran-
scription units encoding for six viral structural proteins  
(3′-N-P-M-F-G-L-5′) and three predicted P gene products  
coding for non-structural proteins, C, V, and W, demonstrated to  
function as inhibitors of the host innate immune response17–20.

NiV was first identified as the cause of an outbreak of  
encephalitis in humans during 1998 to 1999 in Malaysia and  
Singapore21. The virus has been transmitted from infected pigs 
to humans, and the control of the epidemic necessitated culling 
over 1 million pigs, presenting a huge economic burden22,23.  
Although no further outbreaks have occurred in Malaysia since 
then, annual outbreaks of the new NiV strain have started since  
2001 in Bangladesh5. The new NiV cases have been identified 
in the other parts of Southeast Asia: one in Philippines24 and  
three in India, with the last one in the state of Kerala, reaching 
a fatality rate of 91%4, solidifying NiV as a persistent and  
serious threat in South Asia.

Fruit bats from Pteropus species (flying foxes) have been  
recognized as the natural host of NiV25. Deforestation in large  
regions of Southeast Asia damages bat roosting trees and food  
supplies, leading to the migration of bat colonies toward urban  
sites, thus increasing the contact with humans26,27. NiV trans-
mission from bats to humans was shown to occur through  
consumption of raw date palm juice or fruits contaminated with 

bat saliva or urine28. Alternatively, transmission occurs via 
close contact with infected domestic animals acting as viral  
amplifying vectors, such as pigs or horses, and via inter-
human transmission in one third of NiV Bangladesh strain  
infections5,29,30. In addition, NiV and Henipa-like viruses have 
been molecularly or serologically detected (or both) in Pteropus  
bats in different countries from Asia and Africa12, and the  
worldwide distribution of these bat species poses a threat to  
potential NiV pandemics7.

Nipah virus pathogenesis and animal models
NiV-caused disease is characterized by the onset of non- 
specific symptoms, including fever, headache, dizziness, vomiting, 
and myalgia. Later, patients may develop severe encephali-
tis and pulmonary disease. Respiratory syndrome is observed 
more frequently in patients infected with NiV Bangladesh.  
Recently, the persistence of NiV RNA was described in the  
semen of a patient surviving NiV infection in India31; this is  
similar to what has been previously reported for Ebola32 and  
Zika33 virus. Survivors from NiV infection frequently have  
long-term neurological sequelae34. Furthermore, another clinical 
syndrome, late-onset encephalitis, has been observed in some 
patients following an initial NiV infection that was either  
mild or asymptomatic. Finally, relapse encephalitis could  
develop as resurgences of the virus, appearing several months 
to years after recovering from a symptomatic initial infection35, 
including a case in which encephalitis occurred 11 years after  
initial infection36.

Primary human epithelial cells from the respiratory tract were 
shown to be highly permissive to Henipaviruses and may  
represent the initial site of infection37. Additionally, the virus  
shows a high neuro-tropism and the ability to infect muscular  
cells, suggesting rather ubiquitous expression of its entry 
receptors in different tissues2. In contrast to some other  
Paramyxoviridae, NiV is not lymphotropic, and among different 
blood cell types, NiV could infect dendritic cells only38.  
Nevertheless, viral dissemination within the host is facilitated 
by NiV attachment to circulating leukocytes through binding to 
heparan sulfate without infecting the cells39, using leukocytes  
as a cargo allowing viral transfer to endothelial vascular cells 
through a mechanism of transinfection38.

NiV uses Ephrin-B2 and -B3 as entry receptors that are highly 
conserved among numerous species40–43. Indeed, various  
mammalian species such as hamsters, ferrets, cats and bigger 
animals, including horses, pigs, and non-human primates, have  
been experimentally infected and used to develop potential new 
therapeutics44,45. Furthermore, Pteropus fruit bats, the natural  
reservoir of the virus, were experimentally inoculated with  
NiV in order to study their susceptibility to infection, viral  
distribution, and pathogenesis46,47. No clinical signs were  
observed in flying foxes, raising the interest of the scientific 
community in the study of fruit bat–NiV interactions and  
understanding their capacity to control NiV infection47–49.

Infection of hamsters with both NiV or HeV induces acute fatal 
encephalitis with a pathology similar to that of humans50,51  
and this small-animal model provides a useful tool in studying  
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both pathogenesis and potential countermeasures. As pigs were 
the critical amplifying host during the NiV outbreak in Malaysia,  
they have also been used as a model for NiV infection. Indeed,  
viral shedding, associated with an invasion of the central  
nervous system, has been associated with a mortality of 10 to  
15% in infected animals52. Interestingly, unlike other species, 
NiV is able to infect certain populations of swine lymphocytes53.  
Similarly to what has been observed in hamsters54, the NiV  
Malaysia strain induces higher virus replication and clinical  
signs in pigs, compared with the NiV Bangladesh strain55.  
Remarkably, in the ferret model, the NiV Malaysia and  
Bangladesh strains showed similar pathogenicity56, although  
higher amounts of viral RNA were recovered in oral secretions 
from ferrets infected with NiV Bangladesh57.

Although mice represent a small-animal model convenient to 
study viral infections providing a well-developed experimental  
toolbox, NiV induces a subclinical infection in elderly wild-
type mice only58. However, it has been demonstrated that NiV  
infection is highly lethal in interferon receptor type I (IFN-I)- 
deficient mice59,60.

Development of non-human primate models is particularly 
important for the advances in anti-viral preventive and thera-
peutic approaches. Squirrel monkeys61 and African green  
monkeys (AGMs)62 are susceptible to NiV infection, and the AGM 
model has been used extensively as its general disease progres-
sion and symptomatology are similar to those of NiV-infected  
humans. NiV infection through the respiratory route in AGM 
induces a generalized vasculitis and reproduces the clinical  
symptoms observed in humans, including respiratory distress62,63, 
a neurological disease64, and a viral persistence in the brain 
from surviving animals65. Furthermore, concomitant to human 
infections, NiV Bangladesh is more pathogenic than the NiV  

Malaysia strain in AGM66. Pathogenesis following NiV infection 
is observed mainly in the respiratory tract and is characterized 
by acute respiratory distress syndrome and pneumonia following  
infection of epithelial cells (Figure 1a). As in other animal  
models, the virus could be found in a wide range of tissues, 
including kidneys (Figure 1b), brain, or liver (or a combination  
of these), suggesting efficient viral dissemination62,67.

Innate immunity and interferon type I signaling
Innate immune response plays a critical role in anti-viral  
host defense and its modulation during NiV infection has been 
demonstrated in several reports17,68–71. Robust expression of  
anti-viral genes in lung tissue, including MX1, RSAD2, ISG15, 
and OAS1, during the early stages of NiV infection in ferrets was 
not sufficient to contain viral dissemination56. Suppression of  
IFN-I production is known to promote viral spread by disrupt-
ing the first lines of defense, resulting in important tissue damage 
and leading to death. Several mechanisms have been described 
and both structural and non-structural NiV proteins were found 
to be involved in the blocking of IFN-I signaling pathway, using  
distinct strategies72–78, as summarized in Figure 2.

Inhibition of IFN-I response was observed in different animal 
models during the course of NiV infection. Indeed, NiV infection 
of hamsters79 and ferrets56 provides insight into the specific viral 
signature with a downregulated or delayed IFN-I response during 
the course of infection. In addition, several in vitro studies allowed 
the identification of viral proteins involved in immune suppression, 
providing detailed mechanisms of the modulation of IFN-related 
pathways. Sanchez-Aparicio et al. reported interactions between 
non-structural NiV-V protein and both RIG-I and RIG-I regulatory 
protein TRIM2580. They described the binding of the conserved C-
terminal domain of NiV-V to caspase activation and recruitment 
domains (CARDs) of RIG-I and the SPRY domain of TRIM25, 

Figure 1. Immunohistochemistry of African green monkey (AGM) tissues after Nipah virus (NiV) infection. An AGM was infected by 
NiV via the respiratory route, and necropsy was performed 8 days after infection. Immunostaining of lungs (a) and kidney (b) was made by 
using a polyclonal rabbit antibody specific for NiV nucleoprotein, and hematoxylin was used for the counter-staining. Interstitial pneumonia 
was found in lungs, inflammatory cells were present in both lungs and kidney, and positive immunostaining for NiV N (arrows) was observed 
in the alveolar wall and kidney glomerulus.
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Figure 2. Schematic presentation of Nipah virus (NiV)-induced modulation of type I interferon (IFN-I) production and signaling. 
(a) NiV infection is followed by the production of viral RNA, which activates TLR and RLR pathways in the cell, leading to the activation of 
IFN-I and IFN-stimulated genes (ISGs). However, several NiV proteins could interfere with this activation at different levels. NiV-V disrupts 
MDA5 and LGP2 stimulation and subsequent RIG-I activation81. Conjointly, NiV-C protein counteracts IKKα/β dimerization, important for the 
activation of IRF3 and IRF782, while NiV-W protein prevents nuclear transport of phosphorylated IRF3/7 dimers78. In addition, NiV-V protein 
inhibits RIG-I activation and its signaling pathway by binding to its caspase activation and recruitment domain (CARD) following anterior 
binding to TRIM25 that prevents further RIG-I ubiquitination80. Finally, experiments using a live virus NiV deficient in M gene expression 
highlighted the effect of NiV-M in the degradation of TRIM6 and disruption of IKKε ubiquitination (Ub), oligomerization, and subsequent 
phosphorylation (P) by preventing synthesis of K48-linked unanchored polyubiquitin chains83. (b) NiV-induced production of IFN-I leads to 
the stimulation of IFN-I receptor (IFNAR) and subsequent anti-viral signaling, which could be disrupted by several NiV proteins. NiV-N could 
inhibit nuclear import of STAT1/2 dimer84, while NiV-M triggers degradation of TRIM6 and disrupts subsequent IKKε, TBK1, and STAT1/2 
phosphorylation83, as described in (a). In addition, experiments using live virus demonstrated that NiV-P and V could interfere with STAT1 and 
STAT2 phosphorylation73,75 while NiV-W prevents their nuclear exportation77. Those mechanisms, combined, constitute the immune evasion 
strategy displayed during NiV infection, allowing an efficient host invasion. Inhibitory mechanisms presented by underlined NiV proteins 
correspond to studies published after 2016.

thus preventing ubiquitination of RIG-I and its downstream  
signaling (Figure 2a). In addition to previously described  
antagonist effects of NiV-V on MDA5 and STAT1 activation73,81, 
this recent report highlights the multirole of NiV-V protein in 
dismantling the IFN-I response. Furthermore, another study  
described the capacity of NiV matrix protein (M), known to 
be important in virus assembly and budding, to disrupt IFN-I  
signaling (Figure 2b). Indeed, NiV-M protein interacts with  
E3-ubiquitin ligase TRIM6, triggering its degradation and  
subsequent inhibition of IKKε kinase-mediated IFN-I response83. 
These results were confirmed by a reduced level of endog-
enous TRIM6 expression upon NiV infection only when M was  

expressed. Moreover, the role of NiV nucleoprotein (N) was  
recently reported in hampering IFN-I signaling by preventing 
the nuclear transport of both signal transducer and activator of  
transcription 1 (STAT1) and STAT284, subsequently impairing 
the expression of IFN-stimulated genes. All together, these  
recently described routes used by NiV proteins to prevent host 
anti-viral response provide new insights into viral evasion  
mechanisms involved in the control of the IFN-I pathway.

Adaptive immunity
NiV causes an important modulation of both humoral and cell-
mediated immune responses during the course of infection85,86.  

Page 5 of 10

F1000Research 2019, 8(F1000 Faculty Rev):1763 Last updated: 16 OCT 2019



The NiV outbreak in Kerala in May 2018 provided the opportu-
nity to study the adaptive immune responses in two surviving  
patients infected with the NiV Bangladesh strain85. Although 
absolute number of T-lymphocytes remained normal in blood, 
the marked elevation of activated CD8 T cells, co-expressing  
granzyme B and PD-1 was observed, suggesting the increase 
of lymphocyte population important for the elimination of  
infected cells. Patients surviving NiV infection also had  
elevated counts in B-lymphocytes, associated with an important 
generation of NiV-specific IgM and IgG antibodies. These data 
support the importance of both humoral and cell-mediated  
immune responses in the protection against NiV infection.  
Survivors from NiV infection elicited a stronger, more efficient,  
and more balanced immune response compared with fatalities.

Three recent studies evaluated immune responses in peripheral 
blood and tissues in ferrets and monkeys, following infection 
through the respiratory route56,63,87. Analysis of the gene  
expression profile in ferrets following the infection with the 
NiV Bangladesh strain showed a time-dependent increase of  
macrophage markers and an unchanged level of lymphocyte  
markers in lungs, while brain infection was characterized by 
limited immune response56, thus presenting the first global  
characterization of the host gene expression during Henipa-
virus infection. Study of the peripheral immune response in  
NiV-infected AGM highlighted the onset of a cell-mediated  
immune response through the production of Th1-associated 
cytokines and an increase in CD8+ T cell activation/proliferation 
markers in blood, lung, and brain tissues, although neutraliz-
ing antibodies were not generated during the 10-day course of 
infection63. Interestingly, the study of natural killer (NK)-cell  
response during infection in AGM emphasized an increase in 
their proliferation, activation, and functional activity during both  
acute and convalescent phases in surviving animals contrary to  
succumbing ones87, thus suggesting the implication of NK cells in 
anti-NiV response.

New strategies to control Nipah virus infection
Several vaccine development strategies have recently been  
studied in small-animal models, including chimeric rabies- 
based88, virus-like particle (VLP)-based89, adenovirus-based90, 
and epitope-based91,92 vaccines. Those approaches induced a  
protection against NiV by triggering a specific response against 
its envelope glycoprotein G that will require further develop-
ment using non-human primates to evaluate their efficiency and  
safety. An additional study using recombinant vesicular  
stomatitis virus expressing NiV-G protein, in addition to Ebola 
virus GP protein (rVSV-EBOV-GP-NiV-G), demonstrated 
complete protection from a high dose of NiV in the hamster  
model93. That study was followed by further evaluation of the 
vaccine vector in the AGM model, where the induction of a  
robust and rapid protective anti-NiV immune response was 
observed94,95. Vaccination of animals with rVSV-EBOV-GP-
NiV-G vector induced protection against NiV challenge when  
administered either the day before or at the day of challenge and 
elicited partial protection when administered up to 1 day post-
exposure. A plausible explanation of the mechanism involved  
in the generation of this fast protection could be the stimulation 

of the host’s innate immune response, inhibiting viral replica-
tion and allowing the development of a virus-specific adaptive 
immune response. Altogether, this recent work and previous  
reports highlight the importance of the humoral immune 
response and the protective role of antibodies directed against 
viral proteins in the control of NiV infection. Indeed, the human  
monoclonal antibody specific for Hendra G protein, m102.4,  
elicited promising results against Henipavirus infection  
following its passive transfer in infected ferrets96 and AGM97  
and is being tested in clinical trials.

Although the development of potential NiV vaccines is ongoing 
and the scrutiny to get authorized vaccines directed against  
BSL4 pathogens has been accelerated, the only approved vaccine 
on the market is an animal vaccine directed against HeV in  
horses in Australia (Equivac-HeV). The importance of a cell-
mediated immune protection against Henipaviruses has been  
demonstrated in hamsters and pigs86,98,99, indicating that  
particular attention should be given to this arm of the immune 
response for the development of new vaccines. Moreover, 
these reports underline that both well-balanced innate and  
adaptive immune responses play important roles in the control of 
NiV infection.

In parallel to vaccines, other therapeutic strategies have been 
under development. Recent in vitro investigations demon-
strated that nucleoside inhibitor 4′-azidocytidine (R1479) and 
its analogs, previously identified to inhibit flaviviruses, are 
also capable of inhibiting NiV replication and may present 
potential broad-spectrum anti-viral candidates for future  
development100,101. A recent study in hamsters demonstrated 
the ability of favipiravir (T-705), a viral RNA-dependent RNA  
polymerase inhibitor that acts as a purine analog, in preventing 
NiV-induced morbidity and mortality when administered 
immediately following infection102. Those results indicate that  
favipiravir, shown previously to protect against Ebola virus 
infection103, is a potentially good candidate for post-exposure  
prophylaxis to NiV. A different approach has been developed 
by specifically inhibiting NiV entry into the cells by acting 
on the fusion machinery104. Indeed, viral entry is mediated by 
the viral envelope glycoproteins G and F (fusion protein) and 
can be targeted by fusion-inhibitory peptides2. Intra-tracheal  
administration of these peptides conjugated to lipids, shown to 
increase their efficiency, was protective in both hamsters and 
AGM against high-dose lethal NiV challenge. Finally, recent 
promising work has validated the efficiency of remdesivir  
(GS-5734), a broad-acting anti-viral nucleotide prodrug, against 
NiV Bangladesh in an AGM model, demonstrating its ability to 
protect monkeys if given 24 hours post-infection105. Clinical trials 
of this drug against Ebola virus have recently been started in 
democratic republic of Congo106 and a similar approach will 
be required for the evaluation of remdesivir against NiV.

Conclusions and future directions
NiV attracts particular attention among members of the Paramyxo-
virus family, as it possesses high zoonotic potential associated  
with one of the highest fatality rates observed in infectious  
diseases. The wide distribution of its natural host, the fruit bats, 
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combined with the possibility of the spread of NiV via the  
respiratory route, raises the risk that pandemics will be caused 
by this virus in the future and calls for a better understanding 
of its pathogenesis and the development of efficient anti-viral  
approaches. NiV proteins were shown to effectively interact 
with the immune response and disable the establishment of a  
protective anti-viral immunity. Understanding the host–pathogen 
relationship at both molecular and cellular levels in different 
species and elucidating how bats could efficiently control NiV 

infection represent exciting challenges for future research and 
may open new avenues in the development of innovative anti-
viral strategies. These studies should lead to novel clinical trials,  
allowing the generation of drugs efficient in the treatment of NiV 
infection. Further studies require a multidisciplinary approach, 
putting together virologists, immunologists, epidemiologists, 
veterinarians, and physicians within a “one health approach” in 
the common endeavor to understand and control Henipavirus  
infections.
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