
Li et al. BMC Bioinformatics          (2019) 20:501 
https://doi.org/10.1186/s12859-019-3067-z

METHODOLOGY ARTICLE Open Access

SDA: a semi-parametric differential
abundance analysis method for
metabolomics and proteomics data
Yuntong Li1, Teresa W.M. Fan2,3,4, Andrew N. Lane2,3,4, Woo-Young Kang2,3,4, Susanne M. Arnold2,5,
Arnold J. Stromberg1, Chi Wang2,6* and Li Chen2,6*

Abstract

Background: Identifying differentially abundant features between different experimental groups is a common goal
for many metabolomics and proteomics studies. However, analyzing data from mass spectrometry (MS) is difficult
because the data may not be normally distributed and there is often a large fraction of zero values. Although several
statistical methods have been proposed, they either require the data normality assumption or are inefficient.

Results: We propose a new semi-parametric differential abundance analysis (SDA) method for metabolomics and
proteomics data from MS. The method considers a two-part model, a logistic regression for the zero proportion and a
semi-parametric log-linear model for the possibly non-normally distributed non-zero values, to characterize data from
each feature. A kernel-smoothed likelihood method is developed to estimate model coefficients and a likelihood ratio
test is constructed for differential abundant analysis. The method has been implemented into an R package, SDAMS,
which is available at https://www.bioconductor.org/packages/release/bioc/html/SDAMS.html.

Conclusion: By introducing the two-part semi-parametric model, SDA is able to handle both non-normally
distributed data and large fraction of zero values in a MS dataset. It also allows for adjustment of covariates.
Simulations and real data analyses demonstrate that SDA outperforms existing methods.

Keywords: Differential abundance analysis, Metabolomics, Proteomics, Semi-parametric log-linear model, Kernel
smoothing

Background
Mass spectrometry (MS) has been widely used to pro-
file abundances of metabolomic or proteomic features
in biological samples [1]. A common goal of many MS-
based studies is to identify features [2, 3] that have dif-
ferent abundances under different experimental groups.
For example, in a lung cancer exosomal lipids dataset
generated from the Resource Center for Stable Isotope-
Resolved Metabolomics at the University of Kentucky, a
total of 39 late-stage lung cancer and 27 normal samples
were analyzed using Fourier-transform mass spectrome-
try. The abundances of 282 lipid features were measured.
One goal of the study is to identify lipid features that were
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differentially abundant between lung cancer and normal
samples.
The MS data sets often contain a large fraction of

zero values [4, 5]. For example, in the aforementioned
lung cancer exosomal lipid dataset, 40.1% of the observed
values were zeros. The distribution of zero value propor-
tion across metabolomic features is presented in Fig. 1a.
These zero values indicate the absence or below the detec-
tion limit of certain metabolites in certain samples. The
existence of these zero values complicates data analysis.
Firstly, simply ignoring them would lead to biased results
[6, 7]. Secondly, as the data comprise a mixture of a point
mass at zero intensity and a distribution of non-zero val-
ues, standard statistical methods, such as the two-sample
t-test, are inappropriate. To better characterize the data,
two-part models, which use one model to quantify the
zero proportion and the other model to characterize the
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Fig. 1 Characteristics of MS data. a Distribution of zero value proportions; and b Distribution of p-values from Shapiro-Wilk tests for features from a
lung cancer exosomal lipids dataset. P-values were calculated for lung cancer patients and normal controls separately

non-zero values, have been proposed. Lachenbruch [7]
and Taylor and Pullard [8] presented several two-part
tests, including the two-part t, two-part Wilcoxon and
two-part empirical likelihood ratio tests.
Another challenge with the MS data is that the (log-

transformed) non-zero values are often non-normally dis-
tributed. We applied the Shapiro-Wilk test of normality
to each metabolite with at least 20 non-zero values in the
lung cancer exosomal lipid dataset. Figure 1b shows the
distribution of resulting p-values. More than 8% of the
p-values were less than 0.01, strongly indicating that the
abundance data were not normally distributed for at least
a substantial number of metabolites. Therefore, differen-
tial abundance analysis methods that fit a normal model
for the non-zero values of each metabolite, e.g. a two-
part t-test [7, 8], are inappropriate and may yield unreli-
able p-values for those non-normally distributed metabo-
lites. As a result, the selection of differentially abundant
metabolites is also biased as it is based on the rankings of
those suspicious p-values that do not compare the signifi-
cance of different metabolites in a fair and robust manner.
Non-parametric methods, such as the two-part Wilcoxon
test [7, 8] and empirical likelihood ratio test [8], have
also been proposed. However, the tests themselves do not

provide a clear quantification of the effect size, do not
allow for adjustment of covariates, and may be inefficient.
In this paper, we propose a new semi-parametric differ-

ential abundance analysis (SDA) method for proteomics
and metabolomics data from mass spectrometry. Our
method considers a two-part semi-parametric model to
address the issues mentioned above. For the zero part,
we consider a logistic regression model which is asymp-
totically equivalent to the chi-squared test when there is
only one categorical experimental factor. For the non-zero
part, we consider a semi-parametric log-linear model,
which assumes a linear effect of experimental factors
on the log-transformed feature abundance but allows an
arbitrary distribution for the random error term. The
semi-parametric log-linear model has been introduced
for survival data, where it is called the semi-parametric
accelerated failure time (AFT) model [9]. To our knowl-
edge, this is the first time this model has been utilized for
proteomics and metabolomics data, where it is especially
attractive because of the ability to handle non-normally
distributed data and the direct scientific interpretation
of model parameters. In addition, we propose a kernel-
smoothed likelihood method to estimate regression coef-
ficients and construct a likelihood ratio test for differential
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abundant analysis. We evaluate the performance of our
method using simulation studies and real data analyses.

Methods
Our goal is to identify metabolomic or proteomic features
that are differentially abundant between experimental
groups. As we described in the previous section, MS data
comprise a mixture of zero intensity values and possi-
bly non-normally distributed non-zero intensity values.
Therefore, the differential abundance analysis needs to be
performed to compare both the zero proportion and the
mean of non-zero values between groups. To accomplish
this, we propose SDA, which considers a two-part semi-
parametric model that uses a logistic regression model to
characterize the zero proportion and a semi-parametric
log-linear model to characterize possibly non-normally
distributed non-zero values.

A two-part semi-parametric model
Let Yig be the random variable representing the observed
abundance of feature g in subject i (i = 1, 2, ...,N). The
distribution for Yig consists a point mass at zero and a
continuous distribution on positive values. We begin by
introducing a logistic regression model for the zero part.
Let πig = Pr(Yig = 0) be the point mass. We consider

log
(

πig

1 − πig

)
= γ0g + γ gX i,

where X i = (Xi1,Xi2, ...,XiQ)T is a Q-vector of covari-
ates for subject i. The corresponding Q-vector of model
parameters γ g = (γ1g , γ2g , ..., γQg)T quantify covariates’
effects on the fraction of zero values for feature g and γ0g
is the intercept.
For the continuous non-zero part, i.e. Yig > 0, we

consider a semi-parametric model:

log(Yig) = βgX i + εig .

The model parameters βg = (β1g ,β2g , ...,βQg)T have a
direct and clear scientific interpretation, i.e. βqg is the log
fold change in observed non-zero abundance comparing
different values of the q-th covariate for feature g. The εig ’s
(i = 1, 2, ..N) are independent error terms with a common
but completely unspecified density function fg . Impor-
tantly, we do not impose any distributional assumption on
fg . Therefore, our semi-parametric model only specifies a
linear effect of covariates, but allows the error term to be
arbitrarily distributed. If we further assume εig following a
normal distribution, this model reduces to a regular linear
regression model on log(Yig). However, without assum-
ing a specific parametric distribution for εig , our model
is much more flexible to characterize data with unknown
and possibly non-normal distribution.

Estimation of model parameters
We propose a likelihood-based approach to estimate
model parameters. The likelihood function for the two
models jointly is:

N∏
i=1

[ exp(γ0 + γ gXi)

1 + exp(γ0 + γ gXi)

]δig[Y−1
ig fg(log(Yig) − βgXi)

1 + exp(γ0 + γ gXi)

]1−δig
,

(1)

where δig = I{Yig = 0} is an indicator function of zero
value. Directly calculating the maximum likelihood esti-
mate from this model is intractable because the likelihood
involves an infinite-dimensional nuisance parameter fg ,
which is a common challenge for semi-parametric model
inference. A popular approach to overcome this chal-
lenge is the nonparametric maximum likelihood (NPML)
method [10]. The NPML method restricts the cumula-
tive distribution function of the error term to be a step
function and therefore reduces the parameters in the like-
lihood to finite-dimensional. Then a profile likelihood for
the parameters of interest is calculated and the NPML
estimate of the parameters of interest is obtained by max-
imizing the profile likelihood. This approach, however, is
infeasible for the semi-parametric model considered here
because the resulting profile likelihood depends on the
ranks of log(Yig) − βgX i and is very non-smooth so that
the maximization point of it is unattainable [11].
To address this problem, we replace εig ’s den-

sity function fg(x) by its kernel density estimator
1/(Nh)

∑n
j=1 K{(log(Yj) − βgX j − x)/h}, where K(·) is a

one dimensional kernel function, such as the Gaussian
kernel, with bandwidth h. Thus, we obtain the follow-
ing kernel-smoothed approximation of the likelihood in
Eq. (1):

L(βg , γ g , γ0g)

=
N∏
i=1

[ exp(γ0 + γ gX i)

1 + exp(γ0 + γ gX i)

]δig

×
[ 1

Nh
∑N

j=1 K{(log(Yjg) − βgX j − (log(Yig) − βgX i))/h}
Yig{1 + exp(γ0 + γ gX i)}

]1−δig

.

This kernel-smoothed likelihood includes only a finite
number of model parameters. Importantly, this function
is very smooth in (γ0g , γ g ,βg), and thus the maximum
likelihood estimator, (γ̂0g , γ̂ g , β̂g), can be easily obtained
through a trust region maximization algorithm or
other Newton-Raphson gradient-based search algorithm
[11–14].

Identification of differentially abundant features
Hypothesis testing on the effect of the q-th covariate on
the g-th feature is performed by assessing γqg and βqg .
Consider the null hypothesis H0 : γqg = 0 and βqg = 0
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against alternative hypothesis H1 : at least one of the two
parameters is non-zero. We propose a likelihood ratio test
(LRT) to test the hypothesis. The test statistic is:

LRTg = − 2[ log{L(γ̃0g , γ̃ g , β̃g)} − log{L(γ̂0g , γ̂ g , β̂g)}] ,

where (γ̃0g , γ̃ g , β̃g) is the maximization point of the likeli-
hood under H0. The p-value is calculated based on a chi-
square distribution with 2 degrees of freedom. To adjust
for multiple comparisons across features, the false dis-
covery rate (FDR) q-value [15] is calculated based on the
qvalue function in the qvalue package in R/Bioconductor.

Results
Simulation studies
We performed comprehensive simulation studies to eval-
uate the performance of SDA and to compare with three
existing methods described in Taylor and Pollard [8]:
two-part t test (2T), two-part Wilcoxon test (2W) and
empirical likelihood ratio test (ELRT). Because Taylor and
Pollard [8] did not provide a method for multiple compar-
ison adjustment for these three methods, we considered
the same FDR adjustment method [15] used in SDA to
make methods more comparable.
We focused on the two-group comparison problem and

considered two simulation scenarios. For the first sce-
nario, data were simulated based on a prostate cancer pro-
teomics data from the human urinary proteome database
[16]. A detailed description of this dataset is provided in
the “Real data analyses” section. Each simulated dataset
contains 2n subjects and 4,000 features. For each feature,
the n observations of group 1 were generated based on a
mixture distribution pH(x) + (1 − p)F̂(x), where the zero
proportion p was generated from Uniform(0, 0.8), H(x)
was the unit step function, and F̂(x)was the empirical dis-
tribution (in the log scale) of a randomly selected feature
that had at least 20 non-zero values in the control group
of the proteomics data. For a non-differentially abundant
feature, the n observations of group 2 were generated from
the same distribution as of group 1. For a differentially
abundant feature, a 2-fold difference (β = log(2)), which
was also used in one of the simulation studies in [6], was
added to the non-zero part of the distribution.
In our simulations, we set n to 50 or 100 and consid-

ered 5%, 10% or 20% differentially abundant features. In
this section, we only present results from simulations with
10% differentially abundant features. Similar results were
obtained for 5% or 20% differentially abundant features
(see Additional file 1). For the proposed method, we chose
the Gaussian kernel for K(·) which is commonly used in
kernel density estimation. For the smoothing parameter h,
we used the optimal bandwidth h = 1.144σ̂N−1/5 [17],
where N = 2n is the total sample size, and σ̂ is the sample
standard deviation of {log(Yig), i = 1, ...N}.

We first compared the performance of different meth-
ods in terms of ranking features. Figure 2 shows the true
positive rate (TPR) against the number of top-ranked fea-
tures based on p-values for each method. The left column
shows results from all features, including both normally
and non-normally distributed. SDA had a higher TPR
than all other methods, and the difference increased with
sample size. Two-part t and two-part Wilcoxon tests had
very similar TPRs, while ELRT had a much lower TPR.
The right column shows results from non-normally dis-
tributed features (Shapiro-Wilk test p-value <0.01 for
at least one of the two groups). Similar to the left col-
umn, SDA had the highest TPR, demonstrating its ability
to model non-normally distributed data. The two-part
t-test had a lower TPR than the two-part Wilcoxon test as
the data normality assumption of the two-part t test was
violated for those features.
To further quantify the overall performance of differ-

ent methods, we calculated the area under the ROC curve
(AUC). As shown in Table 1, SDA had the highest AUC
values under all scenarios, especially when evaluating on
non-normally distributed features only. The AUCs from
two-part Wilcoxon and two-part t tests were close to
each other when evaluating on all features, and two-part
Wilcoxon had a slightly better AUC when evaluating on
non-normally distributed features only. ELRT had the
worst AUCs in all scenarios.
We next assess the accuracy in estimating the FDR for

different methods. Figure 3 displays the reported FDR
against true FDR. The reported FDR based on SDA and
two-part t-test were close to the true FDR, indicating that
those methods were able to accurately estimate the FDR.
The reported FDR based on the two-part Wilcoxon test
was smaller than the true FDR under all scenarios, sug-
gesting that it was conservative in detecting differentially
abundant features. The reported FDR based on ELRT was
close to the true FDR when n = 50, but went larger than
the true FDR when n increased to 100.
Figure 4 plots the number of discoveries against a given

FDR threshold, which was set to 0.05, 0.1, or, 0.2. For
each scenario, we present the total discoveries as well
as the false discoveries (shaded area). The SDA method
identified more truly differentially abundant features than
all other methods at any given threshold.
For the second simulation scenario, data were simu-

lated following the same procedure as the first simulation
scenario, but with one additional step of censoring by a
detection limit. Specifically, the detection limit for a fea-
ture was chosen as the 10th percentile of the simulated
non-zero values from the two groups combined. All non-
zero values below the detection limit were set to zero to
mimic the situation that a fraction of observed zero values
were due to detection limit. Data simulated under this sce-
nario had different numbers of zeros between groups for
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Fig. 2 Comparison of the true positive rate (TPR) in top ranked features. Left panels: all features were considered; Right panels: only non-normal
features (Shapiro-Wilk test p-value <0.01 for at least one of the two groups) were considered. The average TPR over 100 replicates was reported

differentially abundant features because the group with
lower abundance level of a feature had more values that
fell below the detection limit. The results were presented
in Figures S7-15 in Additional file 1. Similar to the first
simulation scenario, SDA had a higher true positive rate
compared to other methods under this simulation sce-
nario. SDA also identified more truly differentially abun-
dant features than all other methods at any given FDR
threshold for non-normally distributed features.

Table 1 Comparison of the area under the ROC curve (AUC)

All features Non-normal features

n DE% SDA 2T 2W ELRT SDA 2T 2W ELRT

50 5 0.89 0.88 0.88 0.78 0.93 0.88 0.90 0.75

10 0.89 0.88 0.88 0.78 0.94 0.88 0.91 0.77

20 0.89 0.88 0.88 0.78 0.93 0.88 0.91 0.76

100 5 0.97 0.95 0.95 0.89 0.98 0.95 0.97 0.88

10 0.97 0.95 0.95 0.88 0.98 0.95 0.97 0.87

20 0.97 0.95 0.95 0.89 0.98 0.95 0.96 0.88

The AUCs based on all features and non-normal features (Shapiro-Wilk test p-value
<0.01 for at least one of the two groups) were both reported. Results were based
on an average over 100 replicates

Real data analyses
Prostate cancer proteomics data
We applied our method to prostate cancer data from
the human urinary proteome database [16]. In our analy-
sis, we compared proteomic feature abundances between
526 prostate cancer and 1503 healthy subjects. A total of
5605 proteomic features were measured for each subject,
where the abundance measurement had been normalized
relative to 29 urinary “housekeeping” peptides to adjust
for analytical and urine dilution variances [16, 18, 19].
Figure 5 presents results on analyzing the whole dataset
with an FDR threshold of 0.05. The majority of differen-
tially abundant features identified by different methods
overlapped, having 3043 features in common. We next
evaluated the performance of different methods under
smaller sample size, where we sub-sampled 10% or 20% of
the data and calculated the concordance on identified dif-
ferentially abundant features between the sub- and whole
datasets. Specifically, we focused on the 3043 features that
were commonly identified by all methods from the whole
dataset and investigated what fraction of these features
could also be identified by each method when analyzing
the sub-dataset. Figure 6 plots the number of discoveries
under FDR threshold of 0.05, 0.1 or 0.2. Compared to
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Fig. 3 Comparison of false discovery rate (FDR) estimation. Left panels: all features were considered; Right panels: only non-normal features
(Shapiro-Wilk test p-value <0.01 for at least one of the two groups) were considered. Results were averaged over 100 replicates

other methods, SDA based on a sub-dataset were able
to identified a larger number of the 3043 differentially
abundant features obtained from the whole dataset, and
therefore provided a better concordance between the sub-
and whole dataset analysis.

Lung cancer exosomal lipids data
We applied our method to the lung cancer exosomal lipids
dataset described in the “Background” section. The data
acquisition and normalization procedure of this dataset is
provided in Additional file 2. Table 2 shows differentially
abundant features identified by SDA, two-part t, two-part
Wilcoxon, and ELRT tests for the comparison between
late stage lung cancer and normal samples. SDA identified
a total of 15 differentially abundant features, including all
6 features identified by any of the other three methods and
9 additional features. These features were further char-
acterized by tandem MS, which showed that several ions
comprise more than one isobaric species which could
be assigned to specific lipids (see Table S1 in Additional
file 2). The lipids were dominated by triglycerides, which
are typically storage lipids and associated with lung can-
cer risk based on cohort studies [20, 21]. Some of the acyl
chains were long chain (>16) and polyunsaturated, which
can be hydrolyzed to bioactive lipids (diacylglycerols and

the fatty acids). Also found was a sphingomyelin, which
can be important cell signaling regulators [22] with key
roles in lung cancer pathogenesis [23].

Discussion
In standard statistical practice, examining data normal-
ity is usually the first step of data analysis. If the
data is normally distributed, parametric methods, e.g.
t-test, will be used. Otherwise, non-parametric tests, e.g.
Wilcoxon rank-sum test, will be considered. However, for
metabolomics and proteomics data with a large number
of features, it is more difficult to examine data normality
for each of the features, but the choice of an appropriate
statistical method depends on it. SDA solves this problem
by introducing a unified semi-parametric model for both
normally and non-normally distributed data, and there-
fore providing valid inference without having to check
for data normality. SDA possesses merits of both non-
parametric and parametric methods. On one hand, it is
free of the data normality assumption. On the other hand,
it allows quantification of the effect size and adjustment of
covariates.
SDA is robust to the choice of bandwidth for mod-

erate to large sample size. But when the sample size
is small, choice of bandwidth may have an impact. We
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Fig. 4 Comparison of the number of significant features for an FDR threshold of 0.05, 0.1, or 0.2. The unshaded bar indicates the number of true
discoveries, and the shaded bar indicates the number of false discoveries. Results were averaged over 100 replicates. Left panels: all features were
considered; Right panels: only non-normal features (Shapiro-Wilk test p-value <0.01 for at least one of the two groups) were considered

evaluated the bandwidth proposed by [17] as well as
five other bandwidths described in [11] using simulation
studies. We found that the bandwidth h = 1.144σ̂N−1/5

[17] yielded the best performance (data not shown).
Therefore, this bandwidth was used in our analysis.
The observed zero values may be a mixture of zeros due

to the absence of a compound and values below the detec-
tion limit. To deal with values below the detection limit,
one frequently used approach is data imputation [24].
However, for MS data, it is unknown whether an observed
zero value is due to the absence of a compound or below
the detection limit. Data imputation can only be per-
formed on all the observed zero values, which would lead
to biased results because zero values due to the absence of
a compound would also be imputed with positive values.
In fact, it is difficult to distinguish these two types of zeros
in statistical inference without imposing additional para-
metricmodel assumptions. Therefore, ourmethod, as well
as the two-part t-test and two-part Wilcoxon test, focuses
on assessing the null hypothesis that the distribution of

observed abundance level is the same between groups, i.e.
the proportion of observed zero values (including both the
absence of a compound and below the detection limit) and
the distribution of observed non-zero values (values above
the detection limit) are the same between groups. Our
alternative hypothesis is that the proportion of observed
zero values and/or the distribution of observed non-zero
values are different between groups.
For the case of two-group comparison in presence of

detection limit, our test is also a valid test (in terms of
preserving the type I error rate) for assessing the null
hypothesis that the distribution of underlying abundance
level without censoring by the detection limit is the same
between groups, i.e. the proportion of zero underlying
abundance values and the distribution of non-zero under-
lying abundance values are the same between groups (see
Proposition S1 in Additional file 3). To numerically vali-
date this, we performed a single-feature simulation study,
which showed that our test preserved the type I error rate
around 5% (see Table S2 in Additional file 1). Furthermore,
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Fig. 5 A Venn diagram visualizing the number of distinct and
common differentially abundant features identified by each method
based on the prostate cancer proteomics data. The FDR threshold
was 0.05

as demonstrated by the second simulation scenario in the
“Simulation studies” section, our method outperformed
other methods in identifying differentially abundant fea-
tures, especially non-normally distributed features, under
such situation.
This paper focuses on downstream differential abun-

dance analysis of MS data, expecting that the data have
already been appropriately processed and normalized. In
fact, data normalization is a critical step in MS data pro-
cessing to adjust size effect, due to the difference in the
sample amount or dilution across samples, as well as other
technical variations. Various data normalization methods,
such as housekeeping normalization [18, 25, 26], cen-
tred logratio transformation [25], probabilistic quotient
normalization [25, 27], total sum normalization [25], and
variance stabilization normalization [27, 28], have been
proposed. The choice of an appropriate normalization
method depends on the type of biological samples, the
study design, and the investigator’s experience. It has been
shown that data normalization can substantially affect
downstream analysis [25, 28, 29]. Therefore, we highly

Fig. 6 Concordance between the sub- and whole dataset differential abundance analysis based on the prostate cancer proteomic data. The FDR
threshold was 0.05. The unshaded bar indicates the number of differentially abundant features from the sub-dataset analysis which were also
identified by the whole dataset analysis, and the shaded bar indicates the number of differentially abundant features from the sub-dataset analysis
which were not identified by the whole dataset analysis. Results were averaged over 100 replicates. Upper panels: sub-sampling 10% of the data;
lower pannels: sub-sampling 20% of the data. Left panels: all features were considered; Right panels: only non-normal features (Shapiro-Wilk test
p-value <0.01 for at least one of the two groups) were considered
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Table 2 Differentially abundant features identified by different
methods based on the lung cancer exosomal lipids data

Feature ID γ̂g β̂g qSDA q2T q2W qELRT

C47H86O6 0.56 -1.17 0.02 0.01 0.25 —

C53H94O6 1.97 -0.7 0.02 0.02 0.08 —

C57H108O6* 1.13 -0.89 0.02 0.18 0.3 0.33

C59H104O6 2.54 -0.23 0.02 0.03 0.08 —

C54H100O6 1.3 -0.57 0.04 0.07 0.14 —

C49H92O6* 1.3 -0.66 0.05 0.26 0.32 0.33

C39H79N2O6P1* — 0.38 0.07 0.7 0.74 0.73

C40H80N1O8P1* — 0.31 0.07 0.38 0.32 0.33

C51H94O6* 1.87 -0.48 0.07 0.26 0.32 0.33

C52H98O6* 0.59 -0.8 0.07 0.18 0.32 —

C56H104O6* 0.99 -0.57 0.07 0.13 0.25 —

C56H106O6 -0.3 -0.94 0.07 0.04 0.3 —

C59H106O6* 1.03 -0.7 0.07 0.17 0.25 —

C59H112O6 -0.49 -0.91 0.07 0.01 0.13 —

C56H102O6* 1.13 -0.54 0.08 0.18 0.3 —

FDR threshold was 0.1. Estimations of γ and β as well as q-values from different
methods are presented. Lipid assignments of those features are provided in Table
S1 in Additional file 2. * indicates features only identified by SDA. — indicates results
not available. For C39H79N2O6P1 and C40H80N1O8P1, the calculation of γ̂g is not
available because there is no zero value in the cancer samples. For the ELRT
method, q-values for many features were not available

suggest users to carefully perform data normalization
prior to differential abundance analysis.
We consider the case that individual observations are

independent of each other in this paper. One of our
future directions is to extend SDA to paired data, e.g.
comparing metabolomic profiles between paired tumor
and normal samples from the same patient. To deal with
the correlation between paired samples, we can intro-
duce random effect terms in both the logistic regres-
sion and the semi-parametric log-linear models. However,
the computation of kernel-smoothed likelihood is more
complicated.

Conclusion
In this paper, we propose a new differential abundance
analysis method, SDA, for metabolomic and proteomic
data generated from MS. Based on a two-part semi-
parametric model, the SDA method is able to robustly
handle non-normally distributed data and to adjust for
covariates. Meanwhile, our model provides a direct quan-
tification of the effect size. We develop a kernel-smoothed
likelihood procedure for model parameter estimation and
a likelihood ratio test for differential abundance analy-
sis. Simulation studies and analyses of proteomics and
metabolomics datasets show that SDA outperforms exist-
ing methods.
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