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ABSTRACT

Objective: The goal of the 2018 n2c2 shared task on cohort selection for clinical trials (track 1) is to identify

which patients meet the selection criteria for clinical trials. Cohort selection is a particularly demanding task to

which natural language processing and deep learning can make a valuable contribution. Our goal is to evaluate

several deep learning architectures to deal with this task.

Materials and Methods: Cohort selection can be formulated as a multilabeling problem whose goal is to deter-

mine which criteria are met for each patient record. We explore several deep learning architectures such as a

simple convolutional neural network (CNN), a deep CNN, a recurrent neural network (RNN), and CNN-RNN hy-

brid architecture. Although our architectures are similar to those proposed in existing deep learning systems

for text classification, our research also studies the impact of using a fully connected feedforward layer on the

performance of these architectures.

Results: The RNN and hybrid models provide the best results, though without statistical significance. The use of the

fully connected feedforward layer improves the results for all the architectures, except for the hybrid architecture.

Conclusions: Despite the limited size of the dataset, deep learning methods show promising results in learning

useful features for the task of cohort selection. Therefore, they can be used as a previous filter for cohort selec-

tion for any clinical trial with a minimum of human intervention, thus reducing the cost and time of clinical trials

significantly.

Key words: cohort selection, deep learning, multilabel text classification, convolutional neural network, recurrent neural

network

INTRODUCTION

In biomedical research, a cohort is a group of patients who share a

set of desired characteristics for a specific study. The fast and accu-

rate selection of cohort patients is critical to the success of research

studies, such as clinical trials or epidemiological studies.

The cohort definition is a very time-consuming task because of

the large number of patient records that have to be manually

reviewed by the researchers. This process is a very challenging prob-

lem due to multiple variations of how the information is recorded,

medical coding mistakes, sparse data, or missing details, among

other issues. Thus, a robust cohort definition requires careful

reading of the patient records in order not to miss potential subjects

for the study.

Automated natural language processing (NLP) methods for co-

hort selection can alleviate the manual workload burden for

researchers by providing faster access to the relevant information in

patient records. Therefore, NLP would facilitate tremendous advan-

ces in clinical research. Although there are some rule-based algo-

rithms1,2 capable of identifying patients that satisfy specific criteria

relevant to a study, they cannot be reused in other clinical trials.

Classical machine learning classifiers can automatically learn rules

to identify these patients. However, they still require human
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expertise to define the most informative feature set for the task.

Consequently, there is a need to explore novel methods that can se-

lect the most suitable set of patients for any clinical trial, indepen-

dently of the criteria used and with minimal human intervention.

One of the most important advantages of deep learning is that it can

automatically learn the most appropriate features from the raw text,

without the need for manual work in the feature engineering task.

In this article, we present a comparative study of various popular

deep learning architectures applied to the challenging task of cohort

selection, posed as a multilabel text classification problem. A signifi-

cant benefit of the deep learning architectures is that they require lit-

tle domain knowledge, and thereby, they could be easily applied to

identify the patient cohort of any clinical trial or study. Although

our deep learning architectures are similar to those proposed in

existing deep learning systems for text classification,3–6 we also

study if the use of a deep fully connected feedforward (FFF) layer be-

fore the prediction layer could improve their results. We also com-

pare random initialization and pretrained word embeddings to

initialize our models.

In this section, we discuss the main works based on NLP for co-

hort selection. Segura-Bedmar et al7 aimed to develop new technolo-

gies for supporting epidemiological studies. In particular, they

applied different classical machine learning classifiers and a convo-

lutional neural network (CNN) network3 for the automatic detec-

tion of anaphylaxis (a severe allergic reaction) cases from a

collection of 219 902 clinical records, of which <1% are anaphy-

laxis cases. Although the CNN model achieves a very high perfor-

mance (F1¼95.6%), a linear support vector machine provides the

highest performance (F1¼95.8%), with far less computational

complexity.

Glicksberg et al8 used electronic phenotyping algorithms from

the PheKB database2 for the automatic cohort selection of 5 dis-

eases: dementia, herpes zoster, sickle cell, type 2 diabetes and

attention-deficit/hyperactivity disorder. These algorithms consist of

a set of rules based on concepts from terminologies such as the Inter-

national Statistical Classification of Diseases-Ninth Revision (ICD-

9) and can be considered as gold standard selection methods to per-

form cohort selection for these diseases. The authors also exploited

an approach based on word embeddings. Concretely, each patient

record was represented as an average of its word embeddings. Then,

a similarity measure such as the cosine distance was used to propose

the patient records more related to a given disease. The experimental

results show that the approach based on word embeddings provides

better performance than the phenotyping algorithms.

More recently, Antunes et al9 proposed 3 different approaches

for the 2018 n2c2 track 1 on cohort selection: 1) a set of hand-

crafted rules to identify keywords specific to the criteria; 2) several

classical machine learning classifiers (eg, AdaBoostClassifier, Bag-

gingClassifier, DecisionTreeClassifier, GradientBoostingClassifier,

XGBClassifier) on the clinical records, which are represented using

the ICD-9 codes related to the criteria; and 3) 2 different deep learn-

ing methods: a neural network and a CNN, in which the clinical

records are represented as matrices of word embeddings. The rule-

based approach provides the best results for some criteria, but Gra-

dientBoostingClassifier obtains the best overall performance, with a

micro-F1 of 0.8356 and a macro-F1 of 0.6517. Deep learning meth-

ods provide worse performance than classical classifiers. In particu-

lar, the CNN model yields a micro-F1 of 0.7676 and a macro-F1 of

0.4949. Although the best results were obtained by the rule-based

method and the classical classifiers trained using ICD-9 codes, the

creation of these rules as well as the selection of the most suitable

ICD-9 codes for representing each of the selection criteria require a

high level of medical expertise to analyze the clinical records. More-

over, these rules and ICD-9 codes can be only applied to the specific

criteria defined for this shared task.

In this article, we explore several deep learning architectures,

which have proved successful in the task of multilabel text classifica-

tion, such as a simple CNN,3 a deep CNN,4 a recurrent neural net-

work (RNN),5 and a hybrid architecture combining CNN and

RNN.6 To the best of our knowledge, the simple CNN is the only

deep learning architecture that has been used in the cohort selection

task so far.

MATERIALS AND METHODS

Dataset
We used the dataset of the 2018 n2c2 shared task (track 1), focused

on cohort selection for clinical trials. It consists of 311 patient

records, which were manually labeled by experts to indicate whether

a patient meets a possible criterion from a list of 13 criteria. Some of

the 13 selection criteria are the following: Major-diabetes (which

indicates whether the patient has a complication related to major-

diabetes), Drug-abuse (whether the patient has a drug abuse

problem), or Abdominal (whether the patient has a history of intra-

abdominal surgery, small or large intestine resection or small bowel

obstruction). The organizers split the dataset into 2 parts: training

(203 records) and test (108 records) sets. Figure 1 shows the distri-

bution of 13 criteria on the training and test datasets. As can be

seen, both datasets are very unbalanced. It also shows that the test

dataset has a very similar criteria distribution to the training dataset.

Some criteria such as Mi-6Mos (myocardial infarction in the past 6

months), Keto-1yr (diagnosis of ketoacidosis in the past year),

Alcohol-abuse (current alcohol use over weekly recommended

limit), or Drug-abuse present a very small number of training instan-

ces, which makes extremely difficult to learn a model capable of ac-

curately identifying these criteria in the patients records. The most

common criteria are Make-decision (patient makes their own medi-

cal decisions), English (patient speaks English), and Asp-for-mi (use

of aspirin to prevent myocardial infarction), with more than 150

instances in the training dataset.

Methods
Cohort selection can be modeled as a multilabel text classification

problem, in which the goal is to identify the set of criteria (labels)

that are met for each patient record. Compared with multiclass text

classification, where each text is classified with a single class label,

multilabel text classification is more difficult because there are many

possible label combinations.

In this section, we describe several deep learning architectures to

classify patient records according to the selection criteria defined in

the track 1 of the 2018 n2c2 shared task. The 4 architectures pro-

posed are 1) a simple CNN,3 2) a deep CNN consisting of 3 convo-

lutional blocks,4 3) an RNN with gated recurrent units (GRUs),5

and 4) a hybrid model that comprises a CNN followed by a GRU

RNN.6 These architectures have already shown promising results

for text classification. To represent the patient records, we explore

both random initialization and pretrained word embeddings. In par-

ticular, we use a model trained on a large corpus of biomedical and

general-domain texts.10

Unlike the original architectures, we also explore the use of a

FFF layer before the classification layer. This layer allows us to map
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the features into a higher-order feature space, which is more easily

separable into the different labels. As our goal is to predict multiple

labels (selection criteria) for each patient record, the output layer of

all our architectures uses the sigmoid activation function, which

gives us independent probabilities for each label (criterion). Thus,

the output layer has 1 sigmoid output unit per label.

The first of our 4 deep learning approaches is an extension of the

CNN architecture3 for sentence classification. This architecture

proved to be successful in discovering discriminative and meaningful

phrases in a text, which could be useful for the selection criteria

task. Each patient record is represented as a matrix of word embed-

dings. As each record has a different number of words, we studied

the distribution of the number of words in the dataset and saw that

only 10% of records have more than 5000 words. Thus, we only

consider the 5000 first tokens for each cleaned record and pad the

shorter records. Then, each record is represented as a matrix of

word embeddings with dimension n x k, where n is the number of

words (n¼5000) and k is the dimension size of word embeddings.

In our case, k is set to 200, which is the dimension of the pretrained

word embeddings used in this article. The first layer after the embed-

dings is a convolutional layer that applies a series of filters of differ-

ent sizes on the input matrix. The filters slide over the input matrix,

producing feature vectors, which are the input of the max-pooling

layer. This layer takes the maximum values from the different filters,

thus capturing the most relevant features. As said above, our CNN

architecture also adds a FFF layer before the last layer, which takes

as input the feature vector produced by the max-pooling layer.

As a second approach, we use the deep CNN architecture,4

which applies multiple sequential convolutional layers. Our goal is

to study if a deeper CNN model can provide better performance for

the cohort selection task than the simple CNN architecture, de-

scribed previously. Owing to our computational limitations, we

could only build a deep CNN model consisting of 3 convolutional

blocks with filter sizes of 64, 128, and 256, respectively. In turn,

each block contains 2 consecutive convolutional layers and is fol-

lowed by a max-pooling layer. The deep CNN also integrates an

FFF layer before the prediction layer.

Our third approach is based on an RNN, which processes the in-

put text token by token, storing the semantics of the previous tokens

in a hidden layer. RNN is capable of capturing contextual informa-

tion and long-term dependencies,5 which is very important in our

case since the clues about the different selection criteria could ap-

pear anywhere in a patient record. There are several types of RNN,

such as long short-term memory networks (LSTMs)11 or GRUs.12

Both networks use several gates to decide what information should

be passed to the output. In this way, the networks can remove irrele-

vant information, but keep the discriminatory information for the fi-

nal prediction. While LSTMs have 3 gates (input, output, and forget

gates), GRUs only use 2 gates (update and reset gate). In this work,

we use GRUs because LSTM units are not appropriate for process-

ing whole long documents,13 as is our case. Moreover, GRUs have

shown to achieve better performance on smaller datasets.12 We also

add an FFF layer before the last layer.

Our last approach is a hybrid CNN-RNN architecture based on

the system proposed by Chen et al.6 CNN is used to learn the fea-

tures to represent the patient records. Then, these features are the in-

put of an RNN, which is applied to multilabel prediction. However,

instead of using LSTM units, we apply an RNN with GRUs. Figure 2

shows this hybrid architecture extended with the FFF layer before

the prediction layer.

Our source code is publicly available (https://github.com/PRae-

zUC3M/cohort_selection/) to enable the reproducibility of our

experiments.

RESULTS

Our experiments aim to answer 3 questions: 1) do the pretrained

word embeddings overcome the random initialization? 2) does the

use of an FFF layer in our deep learning architectures improve the

results? and 3) what is the best deep learning architecture for the

task of cohort selection?

Precision, recall, and F1 scores are standard metrics to evaluate

the performance of a binary classification problem. These metrics

can be extended to a multilabeling setting by calculating their

macro-averaged and micro-averaged versions. In the macro-average

method, labels are equally treated because we compute the metric

for each label and then calculate the average. In the micro-average

method, we count all true positives, false negatives, and false posi-

tives for all labels and then compute the metrics using these values.

This method is more suitable for unbalanced datasets, as in our case.

Since some criteria (labels) in the dataset are very unbalanced (see

Figure 1), the micro-averaged F1 is the most appropriate metric for

comparing the different models among them. Moreover, we use the

Friedman test to determine if there are significant differences among

the models studied in this article.

We used cross-validation for model hyperparameter tuning and

performed a grid search study to determine the best parameters of

each one of the deep learning architectures studied in this article. Ta-

ble 1 shows a summary of the parameters used in each architecture.

Loss functions are used to measure the error between the output and

the predicted output of a model to learn the model parameters in the

training phase. To train our models, we apply binary cross-entropy

as the loss function because it is more suitable for multilabel prob-

lems.13 We also use Adam optimizer for faster convergence.14

To answer question 1, we compare the effect of random initiali-

zation with the pretrained word embeddings. Moreover, to answer

question 2, we also study the impact of using an FFF layer in the 4

architectures. Table 2 shows the scores for the simple and deep CNN

models. Table 3 shows the results for the RNN and hybrid models.

DISCUSSION

We first discuss the results for the simple CNN architecture (see Ta-

ble 2). If the FFF layer is not used, random initialization and the

Figure 1. Criteria distribution.
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pretrained word embeddings show very similar results without sta-

tistically significant differences (see Table 4). However, when the

simple CNN architecture includes an FFF layer, the pretrained word

embeddings provide worse overall scores than random initialization,

with a 3.4% decrease of micro-F1 and 3.2% in macro-F1. Although

there are no statistical differences among all the simple CNN models

(see Table 4), the results show that the simple CNN architecture ex-

tended with the FFF layer and trained with random initialization ob-

tain the best micro-F1 (77.21%) and macro-F1 (49.68%) compared

with the other simple CNN models.

If the simple CNN architecture does not uses the FFF layer, the

pretrained word embeddings obtain significant improvements in

scores for some criteria such as Abdominal, Creatinine, and Major-

diabetes, with increases of 2.7%, 1.2%, and 11.8% on F1, respec-

tively. On the other hand, some criteria such as Advanced-cad,

Dietsupp-2mos, and Hba1c show better results when the simple

CNN model without the FFF layer was trained with random initiali-

zation (see Table 2), showing increases of 6.6%, 6.7%, and 5.9% in

F1, respectively. If the simple CNN architecture is extended with the

FFF layer, random initialization provides statistically significant bet-

ter scores than the pretrained word embeddings for some criteria

such as Abdominal, Advanced-Cad, Creatinine, and Major diabetes,

with improvements of 13.2%, 30.7%, 1.3%, and 10.5% in F1,

respectively. On the other hand, the pretrained word embeddings

only increase the performance for Hba1c (13.4%) and achieve a

marginal improvement of 0.69% for Dietsupp-2mos. For the rest of

the criteria, the differences are not statistically significant (see Sup-

plementary Appendix Tables 3–8). Therefore, the combination of

the pretrained word embeddings and the FFF layer produces a nega-

tive impact on the scores for the most criteria. More research needs

to be done to understand why some criteria perform better with ran-

dom initialization. A possible cause could be that these criteria may

be described with words that are not presented in the pretrained

word embedding model used in this work.

We now analyze the results provided by the deep CNN models.

The use of the FFF layer provides better performance than without

using it (see Table 2). Using this layer, random initialization and the

pretrained word embeddings show very similar results. When the

model uses random initialization, this layer obtains an increase of

2.5% on micro-F1, but with a marginal decrease of 0.6% on macro-

F1. When the model uses the pretrained word embeddings, the FFF

layer provides a slight improvement of only 0.8% on micro-F1, but

with a decrease of 1.6% on macro-F1. If the FFF layer is not used,

the pretrained word embeddings provide a significant improvement

of 1.6% on micro-F1 and 1.4% on macro-F1 compared with ran-

dom initialization. Comparing the 4 models of the deep CNN archi-

tecture, the best micro-F1 (76.11%) is obtained by the model

trained with random initialization and using the FFF layer. The deep

CNN without the FFF layer provides the best macro-F1 (45.6%)

when it is trained using the pretrained word embeddings.

The RNN architecture with the FFF layer shows improvements

in the overall scores (see Table 3), with an increase of 2.2% on

micro-F1 and 3.3% on macro-F1 for random initialization. The

same positive effect is obtained for the pretrained word embeddings,

with an improvement of 1.72% on micro-F1, but with a marginal

drop of 0.25% on macro-F1. The RNN architecture extended with

the FFF layer and trained with random initialization provides the

best overall micro-F1 (78.43%) and macro-F1 (48.31%). For the

RNN architecture without using the FFF layer, random initialization

and the pretrained word embeddings show very similar micro-F1,

but with an increase of 1.2% on macro-F1 when the pretrained

word embeddings are used. They also obtain significant improve-

ments for the criteria Major-diabetes and Advanced-cad, with

increases of 20.6% and 7.4% on F1, respectively. On the other

hand, Creatinine shows a significant drop of 11.3% in F1. More-

Figure 2. Convolutional neural network-recurrent neural network hybrid architecture. FFF: fully connected feedforward.

Table 1. Summary of best parameters for our deep learning mod-

els

Method Hyperparameters

CNN Number of filters: 128

Filter size: 10

Dropout: 0.1

Batch size: 32

Deep CNN Numbers of filter for the 3 convolutional

blocks: 64, 128, 256

Filter size: 3

Dropout: 0.46

Batch size: 64

RNN (GRU) Dropout: 0.5

Batch size: 128

CNNþRNN Random initialization

Two convolutions with 128 filters.

Filter size: 5

Dropout: 0.5

Batch size: 128

CNN: convolutional neural network; FFF: fully connected feedforward;

GRU: gated recurrent unit; RNN: recurrent neural network.
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over, when the architecture uses the FFF layer, random initialization

provides better performance for some criteria such as Abdominal,

Creatinine, and Major-diabetes, with significant improvements of

9.1%, 19.8%, and 11.8% in F1, respectively.

Finally, we discuss the results provided by the hybrid architec-

ture combining a CNN and an RNN (see Table 3). When the FFF

layer is not used, random initialization and the pretrained word

embeddings show very similar overall micro-F1 (around 78%), but

with an increase of 2.3% on macro-F1 when using random initiali-

zation. Some criteria such as Abdominal and Dietsupp-2mos show

significant improvements of 9, 1% and 10.4% respectively when us-

ing the pretrained word embeddings. On the other hand, random

initialization achieves significantly better performance for the

Advanced-cad, Creatinine, and Major-diabetes with increases of

15.1%, 13%, and 14.5%, respectively, over the scores given by the

pretrained word embeddings. Unlike the previous architectures, the

use of the FFF layer has a negative impact on the performance of the

hybrid architecture, leading to a decrease of 6.2% on micro-F1 and

1% on macro-F1 when the pretrained word embeddings are used.

However, the reduction is smaller for random initialization (0.3%

on micro-F1 and 1.7% on macro-F1). The combination of

pretrained word embeddings plus the FFF layer shows a substantial

decrease in performance compared with the other hybrid models.

The overall results indicate that the best hybrid model (micro-

Table 2. F1 scores for the simple and deep CNN architectures.

CNN Deep CNN

Without FFF With FFF Without FFF With FFF

Random Pretrained Random Pretrained Random Pretrained Random Pretrained

Abdominal 0.5486 0.5764a 0.5764a 0.4444 0.3617 0.4886 0.3878 0.3878

Advanced-cad 0.3844 0.3182 0.6411a 0.3333 0.4223 0.3182 0.3478 0.3478

Alcohol-abuse 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915

Asp-for-mi 0.434 0.434 0.434 0.434 0.434 0.434 0.434 0.434

Creatinine 0.5111 0.5238a 0.5111 0.4976 0.3878 0.4118 0.4118 0.4118

Dietsupp-2mos 0.4643 0.3973 0.4258 0.4327 0.457 0.4643 0.4712a 0.4667

Drug-abuse 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828

English 0.4737 0.4737 0.4737 0.4737 0.4737 0.4737 0.4737 0.4737

Hba1c 0.5581a 0.4991 0.4 0.5342 0.4 0.4 0.4 0.4

Keto-1yr 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Major-diabetes 0.4505 0.5694a 0.55 0.4444 0.4171 0.4976 0.3478 0.3478

Makes-decisions 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828

Mi-6mos 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828

Overall(micro) 0.7527 0.7515 0.7721a 0.7372 0.7347 0.7514 0.7611 0.76

Overall(macro) 0.4819 0.4794 0.4963a 0.4642 0.4456 0.456 0.4395 0.4392

Random means that random initialization was used. Pretrained means that pretrained word embeddings were used.

CNN: convolutional neural network; FFF: fully connected feedforward.
aBest score.

Table 3. F1 scores for the RNN and hybrid architectures.

RNN CNNþRNN

Without FFF With FFF Without FFF With FFF

Random Pretrained Random Pretrained Random Pretrained Random Pretrained

Abdominal 0.3878 0.3878 0.4792a 0.3878 0.3878 0.4792a 0.3878 0.3878

Advanced-cad 0.3478 0.4222 0.3478 0.3478 0.4994a 0.3478 0.4034 0.3844

Alcohol-abuse 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915 0.4915

Asp-for-mi 0.434 0.434 0.434 0.434 0.434 0.434 0.434 0.5238a

Creatinine 0.5249 0.4118 0.6104 0.4118 0.6889a 0.5581 0.5833 0.5833

Dietsupp-2mos 0.4886 0.4857 0.6296 0.7333a 0.5662 0.6703 0.5982 0.4976

Drug-abuse 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828

English 0.4737 0.4737 0.4737 0.4737 0.4737 0.4737 0.4737 0.4737

Hba1c 0.4 0.4 0.4 0.4 0.4792 0.4 0.4 0.4

Keto-1yr 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Major-diabetes 0.3478 0.5543 0.4665 0.3478 0.6122 0.4665 0.6296a 0.4994

Makes-decisions 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828

Mi-6mos 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828 0.4828

Overall(micro) 0.7623 0.7639 0.7843 0.7811 0.7827 0.7856a 0.779 0.7233

Overall(macro) 0.4496 0.4622 0.4831 0.4597 0.5062a 0.4823 0.4884 0.4761

Random means that random initialization was used. Pretrained means that pretrained word embeddings were used.

CNN: convolutional neural network; FFF: fully connected feedforward; RNN: recurrent neural network.
aBest score.
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F1¼78.27% and macro-F1¼50.62%) is trained with random ini-

tialization and does not use the FFF layer.

As usual, the macro-F1 scores are lower than their corresponding

micro-F1 for all models. Classifiers tend to perform worse in the

classes with few instances. Therefore, their F1 scores negatively im-

pact the overall score. We can see that the hybrid approach gives the

top macro-F1 (50.62%).

All the models show low performance for the minor criteria such

as Alcohol-abuse, Drug-abuse, and Mi-6Mos, which may be due to

the high imbalance between their positive and negative instances.

Contrary to what was expected, the models do not work well for the

criteria that are present in most patient records such as Make-

decisions, English, or Asp-for-mi. More research needs to be done to

find out its cause. On the other hand, as expected, the balanced cri-

teria such as Advanced-cad (advanced cardiovascular disease),

Dietsupp-2mos (taken a dietary supplement in the past 2 months),

or Major-diabetes often obtain the best results.

We now answer question 3. The RNN and hybrid architectures

provide the best overall results, with micro-F1 around 78% and

macro-F1 around 49%. The simple CNN and deep CNN provide

slightly lower overall results. Although CNN can identify more dis-

criminative contextual features through its convolutional and max-

pooling layers, small filters in the convolutional layer could produce

the loss of long-distance patterns, while large filters could cause data

scarcity. The use of more than 2 convolutional layers in the deep

CNN not only improves the results, but also increases the training

time. On the other hand, in terms of time complexity, a CNN with a

single convolutional layer is more efficient than the other deep learn-

ing models, because it requires a lot less training time.

As was shown previously, Antunes et al9 also exploited a CNN

with a word embeddings model trained on the MIMIC-III (Medical

Information Mart for Intensive Care III) database, with around 2 bil-

lion clinical records. However, this system reported a micro-F1 of

76.76% on the test dataset of the n2c2 cohort selection. Our simple

CNN architecture extended with the FFF layer and trained with ran-

dom initialization obtains a micro-F1 of 77.21%. Likewise, the hybrid

and RNN architectures also provide better performance (with micro-

F1 around 78%) than the CNN model proposed by Antunes et al.9

We use the Friedman test at 95% to determine if there is statisti-

cally difference in results among the models studied in this article.

Some observations we can draw from Table 4 include the following:

• There are no statistical differences for most of the models.
• There are no statistical differences between the 4 models based

on the simple CNN architecture. Therefore, neither the FFF layer

nor the pretrained word embeddings improve the performance of

the simple CNN architecture significantly.
• The simple CNN trained with random initialization and without

using the FFF layer (FFF) has significant differences with all the

deep CNN models, except that trained with random initializa-

tion and without the FFF layer. The simple CNN does not pre-

sent statistical differences with the rest of the models.
• If the deep CNN model does not use the FFF layer, the pretrained

word embeddings provide significantly better results than ran-

dom initialization.
• In the RNN architecture with random initialization, the use of

the FFF layer shows significant better results than those provided

by this architecture without using this layer.
• If the RNN architecture adds the FFF layer, random initialization

provides a significant improvement in macro-F1 compared with

that provided using the pretrained word embeddings.

• In the hybrid model using random initialization, there are statis-

tical differences when the FFF layer is used.

CONCLUSION

The success of epidemiological studies and clinical trials depends

on the selection of the right patients. The medical researchers

must perform this selection carefully by the careful analysis of an

enormous amount of information from different sources. This

process is an expensive and time-consuming task. Rules-based

methods or machine learning classifiers exploiting the ICD-9

codes related to the selection criteria can be applied to alleviate

the burden of medical researchers in the cohort selection. How-

ever, the creation of these rules or the selection of the most repre-

sentative ICD-9 codes related to the selection criteria still

requires extensive additional work involving experts. Thus, in

this work, we have explored several deep learning architectures

because they can automatically learn the most appropriate fea-

tures by themselves without any human intervention and prior

knowledge.

In this article, we have proposed an extension of 4 deep learning

architectures, which have already proved successful for text classifi-

cation. In particular, we have added a fully connected feed forward

layer before their prediction layers. The results show that this layer

provides better results for all the architectures, except for the CNN-

RNN hybrid architecture. We have also compared random initiali-

zation and pretrained word embeddings to initialize our models.

Only the deep CNN architecture obtains a significant improvement

when pretrained word embeddings are used. Comparing the 4 archi-

tectures studied, the hybrid architecture obtains the best results,

closely followed by RNN.

To the best of our knowledge, deep learning methods have not

been applied to this task, except the CNN model proposed by

Antunes et al.9 Our hybrid architecture provides an improvement of

almost 2% on micro-F1 compared with this system. However, our

results are worse than those provided by the traditional machine

learning classifiers proposed in that work. This may be due to the

tiny size of the dataset. Indeed, the main limitation of this study is

the limited size of the dataset. With a larger dataset, the perfor-

mance of the deep learning methods would likely be improved sig-

nificantly.

As future work, we plan to explore semisupervised deep

learning techniques to overcome the lack of a sufficient number

of training examples. A notable shortcoming of the classical

approaches for multilabel text classification is that labels are

considered as independent units.3 However, they usually can pre-

sent strong dependencies among them, especially in the context

of clinical trials, in which some patient conditions can be

strongly related. For example, criteria such as smoker and lung

cancer often occur together in the patient records. Therefore, we

also plan to perform a study about if deep learning methods can

detect the label dependencies.
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